JPH06144972A - Ceramic laminate and its production - Google Patents

Ceramic laminate and its production

Info

Publication number
JPH06144972A
JPH06144972A JP4296160A JP29616092A JPH06144972A JP H06144972 A JPH06144972 A JP H06144972A JP 4296160 A JP4296160 A JP 4296160A JP 29616092 A JP29616092 A JP 29616092A JP H06144972 A JPH06144972 A JP H06144972A
Authority
JP
Japan
Prior art keywords
ceramic
coating film
ceramic laminate
metal
thermal spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4296160A
Other languages
Japanese (ja)
Other versions
JP2981806B2 (en
Inventor
Tsujihiko Yasuda
辻彦 安田
Ryuichi Masuda
隆一 升田
Yoshiro Hayashi
芳郎 林
Yoshio Nishihara
義夫 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Sukegawa Kogyo Kk
Toyota Motor Corp
Ube Corp
Original Assignee
Chubu Sukegawa Kogyo Kk
Toyota Motor Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Sukegawa Kogyo Kk, Toyota Motor Corp, Ube Industries Ltd filed Critical Chubu Sukegawa Kogyo Kk
Priority to JP4296160A priority Critical patent/JP2981806B2/en
Publication of JPH06144972A publication Critical patent/JPH06144972A/en
Application granted granted Critical
Publication of JP2981806B2 publication Critical patent/JP2981806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enhance durability to a molten light metal by forming a specified coating film and a 1st thermally sprayed coating film of an alloy having oxidation resistance at high temp. on a ceramic substrate. CONSTITUTION:A ceramic substrate 1 is coated with 20-200g/m<2> slurried mixture contg. 100 pts.wt. fluorides of one or more kinds of metals selected among Li, Na, K, Mg, Ca and Al and 20-500 pts.wt. one or more kinds of high m.p. metals having 1-100mum average particle diameter selected among Mo, Cu, Co and Ni and the coated substrate 1 is fired at 600-1,000 deg.C for 1-4hr to form a coating film 2 of a mixed sintered body. A 1st thermally sprayed coating film 3 of an alloy having oxidation resistance at high temp. is then formed on the coating film 2 in 20-50mum thickness. A 2nd thermally sprayed coating film 4 of ceramic having no wettability with a molten light metal is formed on the 1st coating film 3 in 10-500mum thickness if necessary and a pore sealing treatment film 5 of a heat resistant high molecular material is further formed on the 2nd coating film 4 if necessary. The formed films are baked at 200-500 deg.C for 10-60min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック積層体およ
びその製造方法に関する。特にAl,Mg,Znなどの
鋳造などにおける溶融軽金属との接触部位を有する製
品、例えば、ヒータチューブ,温度計保護管,炉壁,湯
道,湯口入れ子などに好適な発明である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic laminate and a method for manufacturing the same. In particular, the present invention is suitable for products having a contact portion with molten light metal in casting of Al, Mg, Zn, etc., such as heater tubes, thermometer protection tubes, furnace walls, runners, and gate inserts.

【0002】[0002]

【従来の技術】従来、Alなどの溶融軽金属に接触する
部分には、鋳鉄品が広く使用されていた。しかし、鋳鉄
は溶融軽金属と反応して、短時間で劣化・溶損しやす
い。
2. Description of the Related Art Conventionally, cast iron products have been widely used for the portions that come into contact with molten light metals such as Al. However, cast iron reacts with molten light metal and is easily deteriorated and melted in a short time.

【0003】そこで、近年、アルミナ、窒化ケイ素、炭
化ケイ素あるいはサイアロンなどのセラミックスが使用
され始めている。
Therefore, in recent years, ceramics such as alumina, silicon nitride, silicon carbide or sialon have begun to be used.

【0004】[0004]

【発明が解決しようとする課題】しかし、セラミックス
は通常の雰囲気下では溶融軽金属に対する耐食性に優れ
るが、溶融軽金属に長時間接触すると、溶融軽金属中に
少量含まれているLi,Naなどのアルカリ金属などと
徐々に反応して、強度が劣化するおそれがある。特に、
溶融軽金属中にフラックス(通常はアルカリ・アルカリ
土類金属塩)が存在する場合は、セラミックスは上記フ
ラックス成分とも反応して、短時間で強度が低下しやす
い。さらには溶融軽金属などの酸化物など、いわゆるノ
ロがセラミック表面に強力に固着,積層し、該酸化物な
どの除去が極めて困難であり、強制的に除去しようとす
ると、セラミック本体の破損を招くおそれがある。
However, although ceramics have excellent corrosion resistance to molten light metal under normal atmosphere, when they are in contact with molten light metal for a long time, alkali metals such as Li and Na contained in the molten light metal in a small amount are present. There is a risk that the strength will deteriorate due to a gradual reaction with such substances. In particular,
When a flux (usually an alkali / alkaline earth metal salt) is present in the molten light metal, the ceramics also react with the above-mentioned flux components, and the strength tends to decrease in a short time. Furthermore, so-called slags such as oxides of molten light metals adhere strongly to the ceramic surface and are laminated, and it is extremely difficult to remove these oxides, and forcible removal may result in damage to the ceramic body. There is.

【0005】本発明は、上記にかんがみて、溶融軽金属
に対して充分な耐久性を有するセラミック積層体および
その製造方法を提供することを目的とする。
In view of the above, an object of the present invention is to provide a ceramic laminate having sufficient durability against molten light metal and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明のセラミック積層
体は、下記構成により、上記課題を解決するものであ
る。
The ceramic laminate of the present invention has the following structure to solve the above problems.

【0007】第一の発明は、セラミック基体の上に、金
属フッ化物と高融点金属粉末の混合焼結体被膜と、その
上層に耐高温酸化合金からなる溶射被膜が形成されてな
ることを特徴とするセラミック積層体及びその製造方法
にある。
The first invention is characterized in that a mixed sintered body coating of a metal fluoride and a refractory metal powder is formed on a ceramic substrate, and a thermal spray coating made of a high temperature oxidation resistant alloy is formed on the mixed sintered body coating. And a method for manufacturing the same.

【0008】第二の発明は、上記発明のセラミック積層
体において、耐高温酸化合金の第一溶射被膜の上に、ア
ルミニウムなどの溶融軽金属に対して非濡れ性のセラミ
ックからなる第二溶射被膜が形成され、更に、この上に
耐熱性高分子材料で封孔処理被膜が形成されていること
を特徴とするセラミック積層体及びその製造方法にあ
る。
In a second aspect of the present invention, in the ceramic laminate of the above invention, a second thermal spray coating made of a ceramic that is non-wetting with respect to a molten light metal such as aluminum is provided on the first thermal spray coating of a high temperature oxidation resistant alloy. The ceramic laminate and the method for producing the same are characterized in that they are formed, and further, a sealing treatment film is formed thereon with a heat resistant polymer material.

【0009】[0009]

【手段の詳細な説明】以下、上記手段の各構成について
詳細に説明する(図1参照)。以下の説明で、配合単位
を示す「部」は「重量部」を意味する。
Detailed Description of Means Each configuration of the above means will be described in detail below (see FIG. 1). In the following description, “part” indicating a blending unit means “part by weight”.

【0010】(1) セラミック基体の形成材料としては、
アルミナ,窒化ケイ素,炭化ケイ素あるいはサイアロン
などの、溶融軽金属に接触する部分の材料として、最
近、広範に使用されつつあるセラミックスを例示でき
る。これらのうちで、熱衝撃に強い窒化ケイ素が望まし
い。
(1) As a material for forming the ceramic substrate,
As the material of the portion that comes into contact with the molten light metal, such as alumina, silicon nitride, silicon carbide, or sialon, ceramics that have been widely used recently can be exemplified. Of these, silicon nitride, which is resistant to thermal shock, is desirable.

【0011】(2) セラミック基体の上に、金属フッ化物
と高融点金属粉末のスラリー混合物を塗布・焼成して、
該混合物からなる混合焼結体被膜2を形成する。
(2) A slurry mixture of metal fluoride and refractory metal powder is applied and fired on a ceramic substrate,
A mixed sintered body coating 2 made of the mixture is formed.

【0012】金属フッ化物としては、Li,Na,K,
Mg,Ca,Alの金属のフッ化物の群から1種又は2
種以上を選択して使用することが望ましい。
The metal fluorides include Li, Na, K,
1 or 2 from the group of metal fluorides of Mg, Ca, Al
It is desirable to select and use one or more species.

【0013】そして、金属フッ化物の作用は、下記の如
くである。
The action of the metal fluoride is as follows.

【0014】窒化ケイ素等の非酸化物系セラミックス
は、その表面が溶融物に濡れにくく、反応性も低いため
異種材料との接着は一般的に困難である。
Non-oxide ceramics such as silicon nitride are generally difficult to adhere to different materials because their surfaces are difficult to wet with the melt and their reactivity is low.

【0015】本方法において、フッ化ナトリウム(Na
F)、フッ化カルシウム(CaF2)を塗布・焼成する
ことによりフッ素(F2 )、フッ化水素(HF)が熱分
解により発生する。
In the present method, sodium fluoride (Na
F) and calcium fluoride (CaF 2 ) are applied and baked to generate fluorine (F 2 ) and hydrogen fluoride (HF) by thermal decomposition.

【0016】これらの反応生成物が、セラミック表面を
強制的に浸食してセラミック表面の粗度を増し(アンカ
ー効果)、かつ、そのセラミック表面の一部を酸化させ
ることにより、異種材料の濡れを助長して接着強度を向
上させると推定される。
These reaction products forcibly erode the ceramic surface to increase the roughness of the ceramic surface (anchor effect) and oxidize a part of the ceramic surface, thereby wetting different materials. It is presumed that it promotes and improves the adhesive strength.

【0017】上記高融点金属としては、Mo,Cu,C
o,Niの金属の群から1種又は2種以上を選択して使
用することが望ましい。これらの高融点金属は、粉砕法
あるいはアトマイズ法などの慣用の方法で粉末状として
使用する。粉末の平均粒径は、通常、1〜100μm、
好ましくは、5〜20μmとする。
The refractory metal may be Mo, Cu, C.
It is desirable to use one or more selected from the group of metals o and Ni. These refractory metals are used in powder form by a conventional method such as a pulverizing method or an atomizing method. The average particle size of the powder is usually 1 to 100 μm,
It is preferably 5 to 20 μm.

【0018】上記塗布は、金属フッ化物と高融点金属粉
末を水あるいはアルコール類などと混合し、充分攪拌し
てスラリー状にしたものをスプレー・はけ塗り・浸漬な
どの慣用の方法で行なう。
The above-mentioned coating is carried out by a conventional method such as spraying, brush coating, dipping or the like, which is prepared by mixing the metal fluoride and the refractory metal powder with water or alcohols and stirring them sufficiently to make a slurry.

【0019】スラリー混合物の組成は、通常、金属フッ
化物100部に対して、高融点金属粉末20〜500
部、好ましくは50〜200部とする。高融点金属粉末
の添加量が20部未満もしくは500部を越えると、セ
ラミック基体と耐高温酸化合金の第一溶射被膜との密着
性に問題が発生し易くなる。
The composition of the slurry mixture is usually 20 to 500 refractory metal powder to 100 parts of metal fluoride.
Parts, preferably 50 to 200 parts. If the amount of the high melting point metal powder added is less than 20 parts or more than 500 parts, problems tend to occur in the adhesion between the ceramic substrate and the first thermal spray coating of the high temperature oxidation resistant alloy.

【0020】スラリー混合物の塗布量(固形分換算)
は、通常、20〜200g/m2 、好ましくは50〜1
00g/m2 とする。塗布量が20g/m2 若しくは2
00gを越えると、セラミック基体と耐高温酸化合金の
第一溶射被膜との密着性に問題が発生し易くなる。
Coating amount of slurry mixture (solid content conversion)
Is usually 20 to 200 g / m 2 , preferably 50 to 1
It is set to 00 g / m 2 . Coating amount is 20g / m 2 or 2
If it exceeds 00 g, a problem tends to occur in the adhesion between the ceramic substrate and the first thermal spray coating of the high temperature oxidation resistant alloy.

【0021】セラミック基体の上に、スラリー混合物を
塗布した後、室温放置あるいは強制乾燥し、次いで、大
気中もしくは窒素などの不活性ガス中で加熱焼成を行
う。
After coating the slurry mixture on the ceramic substrate, it is left at room temperature or forcedly dried, and then heated and baked in the atmosphere or in an inert gas such as nitrogen.

【0022】加熱焼成の条件は、通常、600〜100
0℃×1〜4h、好ましくは750〜850℃×1.5
〜2.5hとする。この加熱焼成が過少であると、セラ
ミック基体と耐高温酸化合金の第一溶射被膜との密着性
に問題が発生し易くなり、加熱焼成が過多であると、熱
損失・時間損失を招くばかりでなく、セラミック基体自
身を劣化させるおそれがある。
The heating and firing conditions are usually 600 to 100.
0 ° C x 1 to 4 hours, preferably 750 to 850 ° C x 1.5
~ 2.5h. If this heating and firing is too small, problems tend to occur in the adhesion between the ceramic substrate and the first sprayed coating of the high temperature oxidation resistant alloy, and if too much heating and firing causes not only heat loss and time loss. However, the ceramic substrate itself may be deteriorated.

【0023】(3) 第一溶射被膜3の形成材料としての、
耐熱・耐酸化合金としては、CoCrAlY,NiCr
AlY(両者を合わせて「MCrAlY」と言う。)、
CoCrW等を挙げることができる。これらの内で、M
CrAlYが、耐熱性及び耐食性に優れており、望まし
い。
(3) As a material for forming the first thermal spray coating 3,
CoCrAlY, NiCr as heat and oxidation resistant alloys
AlY (both are collectively referred to as "MCrAlY"),
CoCrW etc. can be mentioned. Of these, M
CrAlY is desirable because it has excellent heat resistance and corrosion resistance.

【0024】MCrAlY等は、生成するCr33
Al23 などの酸化被膜による保護作用およびY2
3 のくさび効果による酸化被膜の密着力の強化作用を有
するために、高温化での溶融軽金属、溶融塩,溶融アル
カリ等に対する耐久性に優れている。
MCrAlY and the like are generated Cr 3 O 3 ,
Protective action by oxide film such as Al 2 O 3 and Y 2 O
Since it has the effect of strengthening the adhesion of the oxide film by the wedge effect of 3 , it has excellent durability against molten light metal, molten salt, molten alkali, etc. at high temperatures.

【0025】従って、このCoCrAlY等からなる溶
射被膜は被膜構造が緻密なこともあり、セラミック基体
および遷移金属溶射被覆層を溶融軽金属あるいは溶融ア
ルカリ性塩類との接触による反応および劣化を防止す
る。
Therefore, the thermal sprayed coating made of CoCrAlY or the like may have a dense coating structure, so that the reaction and deterioration of the ceramic substrate and the transition metal thermal sprayed coating layer due to contact with molten light metal or molten alkaline salts are prevented.

【0026】この第一溶射被膜3の肉厚は、20〜50
μm、好ましくは50〜200μmとする。20μm未
満では、CoCrAlY等の有する優れた保護作用が充
分には発揮できない。また、500μmより厚いと、C
oCrAlY等に基づくセラミック基体に対する保護作
用が増大しない上、加熱・冷却(熱衝撃)に伴って発生
する熱応力のために被膜が剥離しやすくなる。
The thickness of the first sprayed coating 3 is 20 to 50.
μm, preferably 50 to 200 μm. If it is less than 20 μm, the excellent protective action of CoCrAlY or the like cannot be sufficiently exhibited. If it is thicker than 500 μm, C
The protective effect on the ceramic substrate based on oCrAlY or the like does not increase, and the coating film easily peels off due to the thermal stress generated by heating / cooling (thermal shock).

【0027】溶射方法は、特に限定されず、ガス式、爆
裂式等の火炎溶射、又はプラズマ溶射により、大気中ま
たは、減圧雰囲気中で行う。これらのうちで、プラズマ
溶射が、溶射材料の変質が少なく、且つ、非溶射体に対
する密着性も良好で望ましい。
The thermal spraying method is not particularly limited, and it is carried out in the air or in a reduced pressure atmosphere by flame spraying such as gas spraying or explosion spraying or plasma spraying. Of these, plasma spraying is desirable because the quality of the sprayed material is small and the adhesion to the non-sprayed material is good.

【0028】(4) 第一溶射被膜3の上に形成する第二溶
射被膜4は、溶融軽金属に対する濡れ性(付着性)を更
に低減させるためのもので、通常、熱伝導率が低く高融
点のジルコニア(ZrO2 )、またはアルミナ−ジルコ
ニア(Al23 −ZrO2)のセラミックスを使用す
る。特にジルコニアの内で、MgO,CaO,希土類酸
化物(例えば、Y23 )などを数%添加させて相転移
を起こさないようにした安定化ジルコニアが望ましい。
(4) The second thermal spray coating 4 formed on the first thermal spray coating 3 is for further reducing the wettability (adhesion) to the molten light metal, and usually has a low thermal conductivity and a high melting point. Zirconia (ZrO 2 ) or alumina-zirconia (Al 2 O 3 —ZrO 2 ) ceramics are used. In particular, among zirconia, stabilized zirconia in which MgO, CaO, a rare earth oxide (for example, Y 2 O 3 ) or the like is added by several% to prevent a phase transition is desirable.

【0029】第二溶射被膜4の肉厚は、10〜500μ
m,好ましくは、50〜500μmとする。10μm未
満では、第二溶射被膜の形成効果(付着性の低減)を奏
し難く、500μmを越えても、効果のそれ以上の増大
が期待できず、経済的に不利となる。
The thickness of the second sprayed coating 4 is 10 to 500 μm.
m, preferably 50 to 500 μm. If it is less than 10 μm, the effect of forming the second sprayed coating (reduction of adhesion) is difficult to be achieved, and if it exceeds 500 μm, further increase in the effect cannot be expected, which is economically disadvantageous.

【0030】この第二溶射被膜の溶射は、上記の第一溶
射被膜の場合と同様にして行なう。
Thermal spraying of this second thermal spray coating is carried out in the same manner as in the case of the above first thermal spray coating.

【0031】(5) 上記第一溶射被膜3または第二溶射被
膜4の上には、通常、微小孔を有するため、耐熱性高分
子材料で、封孔処理5を形成する。そして、耐熱性高分
子材料としては、ポリメタロカルボシラン、ポリポロシ
ロキサン、ジフェニルシリコーン等を挙げることができ
る。これらにおいて、ポリメタロカルボシランが、耐熱
性及びセラミックまたは金属に対する密着性に優れ望ま
しい。
(5) Since the first sprayed coating 3 or the second sprayed coating 4 usually has micropores, the sealing treatment 5 is formed of a heat-resistant polymer material. Examples of the heat resistant polymer material include polymetallocarbosilane, polypolosiloxane, diphenyl silicone and the like. Among these, polymetallocarbosilane is preferable because of its excellent heat resistance and adhesion to ceramics or metals.

【0032】封孔処理は、スプレ塗布後、浸漬塗装等に
より、樹脂処理液を含浸させたあと、焼き付けることが
望ましい。この焼き付け条件は、通常200〜500℃
×10〜60分とする。
In the sealing treatment, it is desirable that the resin treatment liquid is impregnated by spray coating after spray coating and then baked. This baking condition is usually 200 to 500 ° C.
× 10 to 60 minutes.

【0033】[0033]

【実施例】以下、本発明の効果を確認するために行なっ
た実施例及び比較例について説明する。
EXAMPLES Examples and comparative examples carried out to confirm the effects of the present invention will be described below.

【0034】(1) テストピースの調製:窒化ケイ素の丸
棒成形体(14mmφ×120mmL)に、表1に示す仕様
のセラミック成形体を調製した(図1参照)。なお、各
溶射被膜の形成条件及び封孔処理の条件は、下記の通り
である。
(1) Preparation of test piece: A silicon nitride round bar molded body (14 mmφ × 120 mmL) was prepared as a ceramic molded body having the specifications shown in Table 1 (see FIG. 1). The conditions for forming each sprayed coating and the conditions for the sealing treatment are as follows.

【0035】混合焼結体被膜;フツ化カルシウム10
0gと金属Co粉末(平均粒径10μm)100gを純
水200gに加え、充分に混合、撹拌したスラリー混合
物をスプレーにて、付着量(固形分換算)が50g/m
2 になるように塗布し、室温で6h放置して乾燥させ
た。次いで、大気中にて800℃で2h加熱し、炉内で
放置冷却した。
Mixed sinter coating: calcium fluoride 10
0 g and 100 g of metal Co powder (average particle size 10 μm) were added to 200 g of pure water, and the slurry mixture was thoroughly mixed and stirred, and the amount of adhesion (solid content conversion) was 50 g / m by spraying.
It was applied so as to be 2, and left to dry at room temperature for 6 hours. Then, it was heated in the atmosphere at 800 ° C. for 2 hours, and left to cool in the furnace.

【0036】第一溶射被膜…CoCrAlY合金粉末
を膜厚180〜220μmとなるように、プラズマ溶射
(プラズマガス:Ar/H2 )した。
First thermal spray coating: CoCrAlY alloy powder was plasma sprayed (plasma gas: Ar / H 2 ) to a film thickness of 180 to 220 μm.

【0037】第二溶射被膜…安定化ジルコニア粉末
(ZrO2 /Y23 ,Y:8wt%)またはアルミナ−
ジルコニア粉末(Al23 /ZrO2 、ZrO2 :3
0wt%)を、膜厚100〜150μmとなるようにCo
CrAlY合金粉末をプラズマ溶射(プラズマガス、A
r/H2 )した。
Second thermal spray coating: stabilized zirconia powder (ZrO 2 / Y 2 O 3 , Y: 8 wt%) or alumina-
Zirconia powder (Al 2 O 3 / ZrO 2 , ZrO 2 : 3
0 wt%) so that the film thickness becomes 100 to 150 μm.
Plasma spraying of CrAlY alloy powder (plasma gas, A
r / H 2 ).

【0038】(4) 封孔処理…ポリチタノカルボシラン系
塗料(アルコキシドタイプ)を乾燥膜厚30〜40μm
となるように塗布し、250〜300℃×30min の条
件で焼き付け処理した。
(4) Sealing treatment: dry coating of polytitanocarbosilane coating (alkoxide type) with a film thickness of 30 to 40 μm
And was baked under the condition of 250 to 300 ° C. × 30 min.

【0039】(2) 評価試験:上記で調製した各実施例・
比較例のテストピースについて、フラックスを添加した
下記仕様のアルミニウム溶湯に連続して、500h浸
漬し、ノロ付着状態及びノロ強制除去後の被膜状態を黙
視観察した。
(2) Evaluation test: each example prepared above
With respect to the test piece of the comparative example, it was continuously immersed in an aluminum molten metal having the following specifications with a flux for 500 hours, and the state of adhered slag and the state of the film after forced removal of the slag were visually observed.

【0040】材質:AC2B(JIS H 5202)、溶湯温
度:700℃、フラックス(Na塩)添加量:〜0.5
wt% 結果は、各実施例は、容易に除去可能な状態でノロが付
着し、ノロを強制除去した場合、被膜層の剥離がほとん
ど見られなかったのに対し、比較例は、強固に付着し
て、強制的に剥すと、被膜(第一・第二溶射被膜)がほ
とんど剥離してしまった。
Material: AC2B (JIS H 5202), Melt temperature: 700 ° C, Flux (Na salt) addition amount: ~ 0.5
wt% shows that in each of the examples, the slag adhered in an easily removable state, and when the slag was forcibly removed, almost no peeling of the coating layer was observed. Then, when it was forcibly peeled off, the coating (first and second thermal spray coatings) was almost peeled off.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【発明の作用・効果】本発明のセラミック積層体は、上
記のような構成により、下記のような作用・効果を奏す
る。
The ceramic laminate of the present invention has the following actions and effects due to the above constitution.

【0043】金属フッ化物と高融点金属粉末の混合焼結
体被膜は、セラミック基体と耐高温酸化合金からなる第
一溶射被膜との密着性を改善する作用を有する。また、
耐高温酸化合金の第一溶射被膜は、セラミック基体を溶
融軽金属あるいはフラックス成分(アルカリ・アルカリ
土類塩類)との接触による反応および劣化を防止する作
用を有する。さらに、セラミックスの第二溶射被膜は、
アルカリ性金属塩が混在する溶融軽金属に対する非濡れ
性を増大させる作用を有する。また、第一溶射被膜/第
二溶射被膜の上の封孔処理膜は、さらに、溶射被膜の内
部結合力を増大させ、溶融軽金属やフラックスのアタッ
クに対する非濡れ性および耐久力を増大させる作用を有
する。
The mixed sintered body coating of metal fluoride and refractory metal powder has the function of improving the adhesion between the ceramic substrate and the first thermal spray coating made of a high temperature oxidation resistant alloy. Also,
The first thermal spray coating of the high temperature oxidation resistant alloy has a function of preventing reaction and deterioration due to contact of the ceramic substrate with molten light metal or flux components (alkali / alkaline earth salts). Furthermore, the second thermal spray coating of ceramics is
It has the effect of increasing the non-wetting property with respect to molten light metal in which an alkaline metal salt is mixed. Further, the sealing treatment film on the first sprayed coating / second sprayed coating further increases the internal bonding force of the sprayed coating, thereby increasing the non-wetting ability and durability against the attack of molten light metal or flux. Have.

【0044】上記各作用により、本発明のセラミック積
層体はフラックスが混在する溶融軽金属に長時間接触し
ても、充分な耐久性を示す。従って、本発明は、アルミ
ニウム鋳造などにおける溶融軽金属の接触部位を有する
製品、例えば、ヒータチューブ,温度計保護管,炉壁,
湯口入れ子などに最適である。
Due to the above-mentioned actions, the ceramic laminate of the present invention exhibits sufficient durability even when it is in contact with a molten light metal mixed with flux for a long time. Therefore, the present invention provides a product having a contact portion of molten light metal such as aluminum casting, for example, a heater tube, a thermometer protection tube, a furnace wall,
It's ideal for spruce inserts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセラミック積層体の一構造例を示すモ
デル断面図である。
FIG. 1 is a model cross-sectional view showing one structural example of a ceramic laminate of the present invention.

【符号の説明】[Explanation of symbols]

1:セラミック基体 2:金属フッ化物と高融点金属粉末の混合物の塗布・焼
成被膜 3:第一溶射被膜 4:第二溶射被膜 5:封孔処理膜
1: Ceramic substrate 2: Coating and firing coating of mixture of metal fluoride and refractory metal powder 3: First thermal spray coating 4: Second thermal spray coating 5: Sealing treatment film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F27D 21/00 G 7141−4K (72)発明者 升田 隆一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 林 芳郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 西原 義夫 山口県宇部市藤山区文京台(無番地)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location F27D 21/00 G 7141-4K (72) Inventor Ryuichi Masuda 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto Car Co., Ltd. (72) Inventor Yoshiro Hayashi 1 Toyota-cho, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Yoshio Nishihara Bunkyodai, Fujiyama-ku, Ube City, Yamaguchi Prefecture (no address)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 セラミック基体の上に、金属フッ化物と
高融点金属粉末の混合焼結体被膜と、その上層に耐高温
酸化合金からなる溶射被膜が形成されてなることを特徴
とするセラミック積層体。
1. A ceramic laminate comprising a ceramic substrate, a mixed sintered body coating of a metal fluoride and a refractory metal powder, and a thermal spray coating made of a high temperature oxidation resistant alloy formed on the mixed sintered body coating. body.
【請求項2】 請求項1のセラミック積層体において、
前記金属フッ化物が、Li,Na,K,Mg,Ca,A
lの金属のフッ化物の群から1種又は2種以上が選択さ
れ、前記高融点金属が、Mo,Cu,Co,Niの金属
の群から1種又は2種以上が選択され、また、前記耐高
温金属合金がCoCrAlYまたはNiCrAlYであ
ることを特徴とするセラミック積層体。
2. The ceramic laminate according to claim 1, wherein
The metal fluoride is Li, Na, K, Mg, Ca, A
1 or 2 or more selected from the group of metal fluorides, the refractory metal is 1 or 2 or more selected from the group of metals of Mo, Cu, Co, and Ni. A ceramic laminate, wherein the high temperature resistant metal alloy is CoCrAlY or NiCrAlY.
【請求項3】 請求項1のセラミック積層体において、
前記耐高温酸化合金の第一溶射被膜の上に、溶融軽金属
に対して非濡れ性のセラミックからなる第二溶射被膜が
形成され、さらに、第二溶射被膜の上に、耐熱性高分子
材料からなる封孔処理膜が形成されていることを特徴と
するセラミック積層体。
3. The ceramic laminate according to claim 1, wherein
On the first thermal spray coating of the high temperature oxidation resistant alloy, a second thermal spray coating made of a ceramic that is non-wetting to molten light metal is formed, and further on the second thermal spray coating, from a heat resistant polymer material. A ceramic laminated body having a sealing treatment film formed thereon.
【請求項4】 請求項3のセラミック積層体において、
前記第二溶射被膜を形成するセラミックが安定化ジルコ
ニアであることを特徴とするセラミック積層体。
4. The ceramic laminate according to claim 3,
A ceramic laminate, wherein the ceramic forming the second thermal spray coating is stabilized zirconia.
【請求項5】 請求項1に記載のセラミック積層体を製
造する方法において、セラミック基体の上に前記の金属
フッ化物と高融点金属粉末のスラリー混合物を塗布・焼
成後、次いで耐高温酸化合金を溶射することを特徴とす
るセラミック積層体の製造方法。
5. The method for producing a ceramic laminate according to claim 1, wherein after the slurry mixture of the metal fluoride and the refractory metal powder is applied and fired on the ceramic substrate, a high temperature oxidation resistant alloy is then added. A method for manufacturing a ceramic laminate, which comprises spraying.
【請求項6】 請求項2のセラミック積層体の製造方法
において、前記の金属フッ化物と高融点金属粉末のスラ
リー混合物を塗布・焼成後、耐高温酸化物,次いで溶融
軽金属に対して非濡れ性のセラミックを溶射し、更に、
耐熱性高分子材料により封孔処理をすることを特徴とす
るセラミック積層体の製造方法。
6. The method for producing a ceramic laminate according to claim 2, wherein after the slurry mixture of the metal fluoride and the refractory metal powder is applied and fired, the non-wetting property with respect to the high temperature oxide and then the molten light metal is improved. Spraying the ceramic of
A method for producing a ceramic laminate, which comprises performing a sealing treatment with a heat-resistant polymer material.
JP4296160A 1992-11-05 1992-11-05 Ceramic laminate and manufacturing method thereof Expired - Lifetime JP2981806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296160A JP2981806B2 (en) 1992-11-05 1992-11-05 Ceramic laminate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296160A JP2981806B2 (en) 1992-11-05 1992-11-05 Ceramic laminate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06144972A true JPH06144972A (en) 1994-05-24
JP2981806B2 JP2981806B2 (en) 1999-11-22

Family

ID=17829939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296160A Expired - Lifetime JP2981806B2 (en) 1992-11-05 1992-11-05 Ceramic laminate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2981806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238807B1 (en) * 1997-07-25 2001-05-29 Chubu Sukegawa Enterprise Co., Ltd. Thermal spraying composite material containing molybdenum boride and a coat formed by thermal spraying
JP2001234322A (en) * 1999-12-20 2001-08-31 United Technol Corp <Utc> Turbine blade for gas turbine engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238807B1 (en) * 1997-07-25 2001-05-29 Chubu Sukegawa Enterprise Co., Ltd. Thermal spraying composite material containing molybdenum boride and a coat formed by thermal spraying
US6361581B2 (en) 1997-07-25 2002-03-26 Chubu Sukegawa Enterprise Co., Ltd Thermal spraying composite material containing molybdenum boride and a coat formed by thermal spraying
JP2001234322A (en) * 1999-12-20 2001-08-31 United Technol Corp <Utc> Turbine blade for gas turbine engine

Also Published As

Publication number Publication date
JP2981806B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
US6096432A (en) Glazing layer-forming composition for hot-coating of furnace refractories and method of forming glazing layer
JP3955919B2 (en) Protective coating for refractory material elements of metal continuous casting molds and refractory material elements protected by it
JP3399650B2 (en) Heat and oxidation resistant coating method
JP3723753B2 (en) Method for producing a coating on a fire-resistant component and use of such a coating
JP2981806B2 (en) Ceramic laminate and manufacturing method thereof
JP3066812B2 (en) Low melting metal casting tool with two or more coatings
JPH06144971A (en) Ceramic laminate and its production
JP2002274957A (en) Vessel for firing
US3464839A (en) Coating composition
JP3357701B2 (en) Method for improving molten aluminum resistance of refractory and refractory
JP2673330B2 (en) Method for forming composite protective coating on ceramic compact
JP2003511341A (en) Carbon-containing heat-resistant article having protective coating
JP2000064060A (en) Member for nonferrous molten metal
JP2002277175A (en) Incinerating container
JPH1053479A (en) Coating material for refractory material containing carbon
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
JP3009815B2 (en) Aluminum titanate-alumina spray material
JP3549099B2 (en) Manufacturing method of electronic component firing jig
JPS593083A (en) Graphite crucible
JP4005650B2 (en) Coating agent for hot silicate alkali construction and hot construction method using the same
KR100355140B1 (en) A method of producing and using MgO-C based refractory bricks with a coated back side for prevention of oxidation
JP3297337B2 (en) Method of manufacturing hot water supply ladle for molten aluminum alloy
JPH09122882A (en) Coating material for aluminum alloy casting parts
JP2012056813A (en) Molded, fired product of refractory material
JP2004238215A (en) Silicon carbide sintered member having non-reactive thermally sprayed film and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990727