JPH06144076A - Traveling controller of vehicle - Google Patents

Traveling controller of vehicle

Info

Publication number
JPH06144076A
JPH06144076A JP4300099A JP30009992A JPH06144076A JP H06144076 A JPH06144076 A JP H06144076A JP 4300099 A JP4300099 A JP 4300099A JP 30009992 A JP30009992 A JP 30009992A JP H06144076 A JPH06144076 A JP H06144076A
Authority
JP
Japan
Prior art keywords
vehicle
car
traveling
steering angle
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4300099A
Other languages
Japanese (ja)
Inventor
Yasuo Imai
康夫 今井
Junji Takahashi
淳二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP4300099A priority Critical patent/JPH06144076A/en
Publication of JPH06144076A publication Critical patent/JPH06144076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE:To actualize smooth following travel without following in the wake of a preceding car at an adjacent lane even in a curved traveling road with a single radar unit, in a traveling controller following the preceding car as keeping a running distance intact with the preceding car. CONSTITUTION:An engine control unit 16 controls a throttle actuator 18 and a brake actuator 20 on the basis of each detection signal out of a lader unit 10 and a car speed sensor 12, following in the wake of a preceding car. In addition, the engine control unit 16 calculates a curve rarius R on the basis of its own car speed and a steering angle detected by a steering angle sensor 14, and further evaluates the probability KGAIN of the preceding car being situated on its own car lane from the curve radius R and a detected car-to-car distance DIS. On the basis of this evaluation, a control gain G for following travel is adjusted by G=KGAIN.G0 (G0 is following control gain in time of rectilinear traveling).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車両用走行制御装置、特
にカーブ走路における追従走行性能の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle running control device, and more particularly to improvement of follow-up running performance on a curved road.

【0002】[0002]

【従来の技術】従来より、運転者の運転操作低減及び安
全性向上を図るべく、種々の走行制御装置が開発、搭載
されている。例えば、先行車との車間距離を検出し、こ
の車間距離に応じて自車速を制御して安全車間距離を保
ちながら自車を先行車に自動追従させる走行制御装置も
その1つである(例えば特開昭55−86000号公
報)。言うまでもなく、このような走行制御装置におい
ては、先行車との車間距離を精度良く検出することが重
要な課題となっており、レーダ装置の改善などが図られ
ている。
2. Description of the Related Art Conventionally, various traveling control devices have been developed and mounted in order to reduce the driving operation of a driver and improve safety. For example, a travel control device that detects the inter-vehicle distance to a preceding vehicle and controls the own vehicle speed according to the inter-vehicle distance to automatically follow the own vehicle to the preceding vehicle while maintaining a safe inter-vehicle distance is one of them (for example, JP-A-55-86000). Needless to say, in such a travel control device, it is an important subject to detect the inter-vehicle distance with respect to the preceding vehicle with high accuracy, and improvement of the radar device has been attempted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、レーダ
装置としてミリ波やマイクロ波などの電磁波、あるいは
レーザ光を用いた場合でも、これらのレーダビームは高
い直線指向性を有するため、先行車の測距エリアは自車
の進行方向前方に限られる。従って、先行車及び自車が
共に直線走路ではなくカーブ走路を走行している場合に
おいては、自車の進行方向前方に位置する隣接車線先行
車を自車線上の先行車と誤検出してしまう可能性があ
り、この隣接車線先行車に追従して走行制御されてしま
う問題があった。
However, even when an electromagnetic wave such as a millimeter wave or a microwave or a laser beam is used as a radar device, since these radar beams have high linear directivity, the distance measurement of the preceding vehicle is performed. The area is limited to the front of the vehicle. Therefore, when the preceding vehicle and the own vehicle are both traveling on a curved road instead of a straight road, the preceding vehicle in the adjacent lane located ahead of the own vehicle in the traveling direction is erroneously detected as the preceding vehicle on the own lane. There is a possibility that there is a possibility that the vehicle is controlled to follow the preceding vehicle in the adjacent lane.

【0004】そこで、従来においては、例えば特開昭6
1−30428号公報に開示された車両走行制御装置の
ように、一対のレーダ装置を自車に搭載し、それぞれの
レーダ装置により自車の進行方向に放射した電磁波の反
射体までの距離を検出すると共に、この反射体の自車に
対する移動によるドプラー信号を得て、このドプラー信
号の位相差を距離で微分した位相差微分値について自車
が走行している自車線の曲率に応じて設定される距離に
対応する基準値に対する大小を比較することにより、こ
の反射体が自車線上に位置するか否かを判断している。
Therefore, in the prior art, for example, Japanese Patent Laid-Open No.
As in the vehicle running control device disclosed in Japanese Laid-Open Patent Publication No. 1-30428, a pair of radar devices are mounted on a vehicle, and each radar device detects a distance to a reflector of electromagnetic waves emitted in the traveling direction of the vehicle. At the same time, the Doppler signal due to the movement of this reflector with respect to the own vehicle is obtained, and the phase difference differential value obtained by differentiating the phase difference of this Doppler signal by the distance is set according to the curvature of the own lane in which the own vehicle is traveling. Whether or not this reflector is located in the own lane is determined by comparing the magnitude with respect to the reference value corresponding to the distance.

【0005】しかしながら、このように自車に一対のレ
ーダ装置を搭載することは、自車の重量増大を招くと共
に、走行制御システムの複雑化を招き、コスト増加につ
ながる問題があった。
However, mounting a pair of radar devices in the vehicle as described above not only causes an increase in the weight of the vehicle, but also complicates the traveling control system, resulting in an increase in cost.

【0006】本発明は上記従来技術の有する課題に鑑み
なされたものであり、その目的は単一のレーダ装置など
の車間距離検出手段を用いてカーブ走路においても安全
かつ円滑に先行車に追従可能な車両用走行制御装置を提
供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to safely and smoothly follow a preceding vehicle even on a curved road by using an inter-vehicle distance detecting means such as a single radar device. Another object of the present invention is to provide a vehicle traveling control device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る車両用走行制御装置は、先行車との車
間距離に基づき自車速を制御し、先行車に所定の制御ゲ
インでスロットルまたはブレーキ制御して先行車に追従
走行する走行制御装置において、先行車との車間距離を
検出する車間距離検出手段と、自車の操舵角を検出する
操舵角検出手段と、自車の速度を検出する速度検出手段
と、前記操舵角と前記速度に基づき自車が走行している
走行路のカーブ半径を算出するカーブ半径算出手段と、
算出された前記カーブ半径と前記車間距離に基づき走行
車が自車線上を走行している確率を評価する評価手段
と、前記評価に基づき前記制御ゲインを調節してスロッ
トルまたはブレーキ制御する制御手段とを有することを
特徴とする。
In order to achieve the above object, a vehicle traveling control device according to the present invention controls a vehicle speed based on a distance between a preceding vehicle and a preceding vehicle with a predetermined control gain. In a travel control device that follows a preceding vehicle by controlling a throttle or a brake, an inter-vehicle distance detecting means for detecting an inter-vehicle distance to the preceding vehicle, a steering angle detecting means for detecting a steering angle of the own vehicle, and a speed of the own vehicle. A speed detecting means for detecting, a curve radius calculating means for calculating a curve radius of a traveling path on which the vehicle is traveling based on the steering angle and the speed,
Evaluation means for evaluating the probability that the traveling vehicle is traveling on its own lane based on the calculated curve radius and the inter-vehicle distance; and control means for adjusting the control gain based on the evaluation to control the throttle or brake. It is characterized by having.

【0008】[0008]

【作用】このように、本発明の車両用走行制御装置にお
いては、自車の操舵角と速度とから自車が走行している
カーブ走路のカーブ半径を算出し、カーブ半径と検出さ
れた先行車との車間距離に基づいて先行車が自車線上に
位置するか否かを評価するものである。
As described above, in the vehicle travel control device of the present invention, the curve radius of the curve track on which the vehicle is traveling is calculated from the steering angle and the speed of the vehicle, and the curve radius is detected as the preceding value. It is to evaluate whether or not the preceding vehicle is located on the own lane based on the distance between the vehicle and the vehicle.

【0009】本発明は、誤検出の可能性がカーブ半径と
検出車間距離に依存するという知見に基づき誤検出の可
能性を量的に評価し、制御ゲインをこの誤検出の可能
性、すなわち検出先行車が自車線上に位置する確率に応
じて調整し、先行車への追従特性を適宜変化させる。
The present invention quantitatively evaluates the possibility of erroneous detection based on the knowledge that the possibility of erroneous detection depends on the curve radius and the detected inter-vehicle distance, and determines the control gain as the possibility of erroneous detection. Adjustment is made according to the probability that the preceding vehicle is located on the own lane, and the follow-up characteristic to the preceding vehicle is appropriately changed.

【0010】これにより、例えば誤検出の可能性が高い
先行車に対しては追従時の制御ゲインが低く設定され、
接車線先行車の影響を除去するものである。
As a result, for example, the control gain at the time of following is set low for a preceding vehicle with a high possibility of false detection,
This is to eliminate the influence of vehicles in front of the lane.

【0011】[0011]

【実施例】以下、図面を用いながら本発明に係る車両用
走行制御装置の好適な実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a vehicle travel control device according to the present invention will be described below with reference to the drawings.

【0012】図1には、本実施例の構成ブロック図が示
されている。マイクロ波あるいはレーザ光などのレーダ
装置10が車両前部の所定位置に搭載され、自車の進行
方向前方を探知して先行車を捕捉する。レーダ装置10
からの検出信号は自動追従走行用の電子制御装置ECU
16に供給される。一方、車速センサ12及び操舵角セ
ンサ14もそれぞれ車両の所定位置に設けられ、それぞ
れ検出した車速信号及び操舵角信号をECU16に供給
する。なお、操舵角センサ14としては、ステアリング
シャフトに圧入されたスリット板とフォトインタラプタ
の組み合わせで構成することができる。すなわち、スリ
ット板がステアリングの操舵に応じて回転し、フォトイ
ンタラプタの光を遮光することで信号を出力し、操舵角
を検出する。ECU16はこれらレーダ装置10からの
検出信号、車速信号、操舵角信号に基づき追従用制御ゲ
インを調節し、スロットルアクチュエータ18またはブ
レーキアクチュエータ20を制御して車速を増減し、先
行車との安全車間距離を保ちつつ自動追従する構成であ
る。なお、ブレーキアクチュエータ20は制御せず、ス
ロットルアクチュエータ18のみを制御して追従走行を
行うこともできる。
FIG. 1 is a block diagram showing the configuration of this embodiment. A radar device 10 such as a microwave or a laser beam is mounted at a predetermined position on the front of the vehicle to detect the front of the vehicle in the traveling direction and capture the preceding vehicle. Radar device 10
The detection signal from the ECU is an electronic control unit for automatic follow-up running.
16 are supplied. On the other hand, the vehicle speed sensor 12 and the steering angle sensor 14 are also provided at predetermined positions of the vehicle, and supply the detected vehicle speed signal and steering angle signal to the ECU 16, respectively. The steering angle sensor 14 can be configured by a combination of a slit plate press-fitted into the steering shaft and a photo interrupter. That is, the slit plate rotates in response to the steering of the steering wheel, and the light of the photo interrupter is shielded to output a signal and detect the steering angle. The ECU 16 adjusts the tracking control gain based on the detection signal, the vehicle speed signal, and the steering angle signal from the radar device 10, controls the throttle actuator 18 or the brake actuator 20 to increase or decrease the vehicle speed, and measures the safe inter-vehicle distance from the preceding vehicle. It is a configuration that automatically follows while maintaining. The brake actuator 20 may not be controlled, and only the throttle actuator 18 may be controlled to perform follow-up travel.

【0013】以下、図2のフローチャートを用いてEC
U16の動作を詳細に説明する。まず、レーダ装置10
から供給された検出信号に基づき、先行車との車間距離
を検出し、DISとしてこの検出距離を読み込む(S1
01)。具体的には、ECU16内のI/Oを介してR
AMに格納する。次に、車速センサ12からの車速信号
Vを読み込み(S102)、さらに操舵角センサ14か
ら供給された操舵角信号θを読み込む(S103)。そ
して、車速V及び操舵角θをRAMから読み出し、CP
Uに供給してこれら(θ,V)に基づき自車が走行して
いるであろうカーブ走路のカーブ半径Rを算出する(S
104)。
The EC will be described below with reference to the flowchart of FIG.
The operation of U16 will be described in detail. First, the radar device 10
The inter-vehicle distance to the preceding vehicle is detected based on the detection signal supplied from the vehicle, and the detected distance is read as DIS (S1
01). Specifically, R via the I / O in the ECU 16
Store in AM. Next, the vehicle speed signal V from the vehicle speed sensor 12 is read (S102), and further the steering angle signal θ supplied from the steering angle sensor 14 is read (S103). Then, the vehicle speed V and the steering angle θ are read from the RAM and CP
It is supplied to U and the curve radius R of the curve course on which the vehicle is likely to travel is calculated based on these (θ, V) (S
104).

【0014】一般に、カーブ半径Rが小さいほど、操舵
角θは大きくなり、また同一カーブ半径Rでも車速Vが
大なるほど操舵角θも大きくなる。図3には、横軸に操
舵角θ(deg)、縦軸にカーブ半径R(m)をとり、
車速Vをパラメータとした場合のRとθとの関係が示さ
れている。ECU16は、このような関係をマップとし
てROM乃至RAMに格納し、このカーブ半径Rと操舵
角θとのデータに基づきセンサから読み込んだ操舵角
θ、車速Vに対応する最も適当なカーブ半径Rを算出す
る。なお、図3に示される関係を関数式R=R(θ,
V)としてメモリに格納しておき、この関係式から読み
込んだ(θ,V)に対応するカーブ半径Rを算出するこ
ともできる。
In general, the smaller the curve radius R, the larger the steering angle θ, and the larger the vehicle speed V, the larger the steering angle θ even at the same curve radius R. In FIG. 3, the horizontal axis represents the steering angle θ (deg) and the vertical axis represents the curve radius R (m).
The relationship between R and θ when the vehicle speed V is used as a parameter is shown. The ECU 16 stores such a relationship in the ROM or RAM as a map, and based on the data of the curve radius R and the steering angle θ, the most appropriate curve radius R corresponding to the steering angle θ and the vehicle speed V read from the sensor. calculate. The relationship shown in FIG. 3 can be expressed by the functional expression R = R (θ,
It is also possible to store it in a memory as V) and calculate the curve radius R corresponding to (θ, V) read from this relational expression.

【0015】S104にて自車が走行しているであろう
カーブ走路のカーブ半径Rが算出された後、このカーブ
半径Rと検出された先行車との車間距離DISに基づき
追従用の制御ゲインGを算出する。制御ゲインGの算出
は2つのステップから構成され、まず検出された先行車
が自車線上を走行している確率を評価するステップと、
この評価に基づき制御ゲインを調整するステップであ
る。検出先行車が自車線上を走行している確率を評価す
るステップがS105であり、この確率KGAINは前
述のカーブ半径Rと車間距離DISにより決定される。
レーダ装置10は自車の進行方向前方を探知するが、先
行車との車間距離が小さい場合には先行車及び自車が共
にカーブ走路を走行している場合でも検出先行車が自車
線上を走行している可能性が高く、検出車間距離が大き
くなるほど検出先行車が隣接車線を走行している可能性
が高くなる。一方、同一検出車間距離でも、カーブ半径
が大きく、直線路に近づくほど検出先行車が自車線上を
走行している可能性が高く、カーブ半径が小さくなり、
カーブがきついほど隣接車線を走行している可能性も高
くなる。このように、検出先行車が自車線上を走行して
いるか、あるいは隣接車線上を走行しているかの可能性
はカーブ半径Rと検出距離に依存することになる。図4
には横軸にカーブ半径R(m)、縦軸に検出距離DIS
(m)をとった場合の先行車が自車線上を走行している
場合及び隣接車線上を走行している場合の確率が示され
ている。図中イで示された破線より下の領域では検出先
行車が自車線上を走行している自車線車両の確率が1で
あることを示し、図中ロで示される破線より上の領域で
は検出先行車が隣接車線を走行している確率が1、すな
わち自車線車両である確率が0である領域を示してい
る。これらの領域に属するデータ(R,DIS)の場合
には、追従走行を行うか否かを判定することが容易であ
るが、これらの領域以外の領域に検出先行車が位置する
場合に問題が生じる。そこで、本実施例においては、こ
の不確定な領域を量的に評価すべく、得られたデータ
(R,DIS)から比例配分により自車線車両である確
率KGAINを算出している。例えば、S104にて算
出されたカーブ半径RがR=1000(m)であり、検
出距離DISがDIS=50(m)であった場合、図4
においてR=1000(m)ではDIS=40(m)の
ときKGAIN=1.0、DIS=80(m)のときK
GAIN=0であることから、 KGAIN=1−(50−40)/(80−40)=0.75 となり、検出距離DIS=50(m)の時の検出先行車
が自車線車両である確率KGAINが0.75と評価さ
れる。
After the curve radius R of the curve course on which the own vehicle is supposed to travel is calculated in S104, the following control gain is set based on the curve radius R and the detected inter-vehicle distance DIS. Calculate G. The calculation of the control gain G includes two steps. First, a step of evaluating the probability that the detected preceding vehicle is traveling in the own lane, and
This is a step of adjusting the control gain based on this evaluation. The step of evaluating the probability that the detected preceding vehicle is traveling on the own lane is S105, and this probability KGAIN is determined by the curve radius R and the inter-vehicle distance DIS.
The radar device 10 detects the front of the vehicle in the traveling direction, but when the distance between the vehicle and the preceding vehicle is small, the detected preceding vehicle is on the same lane even when both the preceding vehicle and the vehicle are traveling on a curved lane. There is a high possibility that the detected preceding vehicle is traveling in the adjacent lane as the detected inter-vehicle distance increases. On the other hand, even with the same detected inter-vehicle distance, the curve radius is large, and the closer the vehicle is to a straight road, the higher the possibility that the detected preceding vehicle is traveling on the own lane and the smaller the curve radius becomes.
The tighter the curve, the more likely it is to drive in an adjacent lane. As described above, the possibility that the detected preceding vehicle is traveling in the own lane or in the adjacent lane depends on the curve radius R and the detection distance. Figure 4
Shows the curve radius R (m) on the horizontal axis and the detection distance DIS on the vertical axis.
When (m) is taken, the probabilities are shown when the preceding vehicle is traveling on its own lane and when traveling on an adjacent lane. In the area below the broken line indicated by B in the figure, the probability that the detected preceding vehicle is traveling in its own lane is 1, and in the area above the broken line indicated by B in the figure. The region in which the probability that the detected preceding vehicle is traveling in the adjacent lane is 1, that is, the probability that the vehicle is in the own lane is 0 is shown. In the case of data (R, DIS) belonging to these areas, it is easy to determine whether or not to follow-up, but there is a problem when the detected preceding vehicle is located in an area other than these areas. Occurs. Therefore, in the present embodiment, in order to quantitatively evaluate the uncertain region, the probability KGAIN of the own lane vehicle is calculated from the obtained data (R, DIS) by proportional distribution. For example, when the curve radius R calculated in S104 is R = 1000 (m) and the detection distance DIS is DIS = 50 (m), FIG.
At R = 1000 (m), KGAIN = 1.0 when DIS = 40 (m) and K when DIS = 80 (m)
Since GAIN = 0, KGAIN = 1- (50-40) / (80-40) = 0.75, and the probability that the detected preceding vehicle is the own lane vehicle when the detection distance DIS = 50 (m). KGAIN is evaluated as 0.75.

【0016】具体的には、図4に示されるデータをEC
U16内のROM乃至RAMに格納し、CPUによりこ
れら格納データを読み出して比例演算を行えば良い。
Specifically, the data shown in FIG.
The data may be stored in the ROM or RAM in U16, and the stored data may be read by the CPU to perform the proportional calculation.

【0017】このようにして検出先行車が自車線車両で
ある確率KGAINが算出された後、この評価結果に応
じて追従走行用の制御ゲインGを調整するステップに移
行する。このステップは、直線路を走行している場合の
制御ゲインG0 に算出された確率KGAINを乗じるこ
とにより行われる(S106)。従って、前述のR=1
000(m)、DIS=50(m)の場合においては、
KGAIN=0.75であるので、制御ゲインGはG=
0.75G0 となり、直線時の75%のゲインで追従走
行が行われることになる。また、検出距離DIS=70
(m)の場合には、同様の演算によりKGAIN=0.
25となり、従って直線路の追従走行より25%ゲイン
の低下した追従走行が行われることになる。制御ゲイン
Gが決定された後、ECU16はこの制御ゲインGにて
スロットルアクチュエータ18を制御して先行車との車
間距離を制御し、追従走行を行う(S107)。
After the probability KGAIN that the detected preceding vehicle is the vehicle in its own lane is calculated in this way, the process proceeds to the step of adjusting the control gain G for following travel according to the evaluation result. This step is performed by multiplying the control gain G 0 when traveling on a straight road by the calculated probability KGAIN (S106). Therefore, the above R = 1
In the case of 000 (m) and DIS = 50 (m),
Since KGAIN = 0.75, the control gain G is G =
This is 0.75G 0 , and the follow-up running is performed with a gain of 75% of that when the vehicle is straight. Further, the detection distance DIS = 70
In the case of (m), KGAIN = 0.
Therefore, the follow-up running with a gain of 25% lower than that of the follow-up running on the straight road is performed. After the control gain G is determined, the ECU 16 controls the throttle actuator 18 with this control gain G to control the inter-vehicle distance to the preceding vehicle and perform follow-up travel (S107).

【0018】このように、本実施例においては検出先行
車が自車線上を走行している確率をカーブ半径と検出距
離に基づいて評価し、この確率に基づいて追従走行時の
制御ゲインを調整しているので、検出先行車が隣接車線
を走行している可能性が高い状況においてもこの先行車
に追従走行してしまうような事態を回避し、運転者に無
用な不安を与えることなく円滑な追従走行を行うことが
できる。
As described above, in the present embodiment, the probability that the detected preceding vehicle is traveling on its own lane is evaluated based on the curve radius and the detected distance, and the control gain during follow-up traveling is adjusted based on this probability. Therefore, even if the detected preceding vehicle is likely to be traveling in the adjacent lane, it avoids the situation of following the preceding vehicle and smooths the vehicle without giving unnecessary anxiety to the driver. It is possible to perform follow-up running.

【0019】[0019]

【発明の効果】以上説明したように、本発明に係る車両
用走行制御装置によれば、カーブ走路を走行している場
合においても、検出された先行車との位置関係に基づい
た追従走行が行われるため、検出された先行車が隣接車
線上を走行している場合にも自車線上の先行車と同様の
追従走行が行われる事態を回避し、安全かつ円滑な追従
走行が可能となる。
As described above, according to the vehicle travel control device of the present invention, the follow-up travel based on the detected positional relationship with the preceding vehicle is performed even when the vehicle travels on the curved road. Therefore, even if the detected preceding vehicle is traveling on the adjacent lane, it is possible to avoid the situation where the same following traveling as the preceding vehicle on the own lane is performed, and safe and smooth following traveling is possible. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成ブロック図である。FIG. 1 is a configuration block diagram of an embodiment of the present invention.

【図2】同実施例におけるECUの動作フローチャート
である。
FIG. 2 is an operation flowchart of an ECU in the same embodiment.

【図3】同実施例における操舵角とカーブ半径との関係
を示す図である。
FIG. 3 is a diagram showing a relationship between a steering angle and a curve radius in the same embodiment.

【図4】同実施例におけるカーブ半径、検出距離と先行
車が自車線車両である確率の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a curve radius, a detection distance, and a probability that a preceding vehicle is a vehicle in its own lane in the embodiment.

【符号の説明】[Explanation of symbols]

10 レーダ装置 12 車速センサ 14 操舵角センサ 16 ECU 18 スロットルアクチュエータ 20 ブレーキアクチュエータ 10 radar device 12 vehicle speed sensor 14 steering angle sensor 16 ECU 18 throttle actuator 20 brake actuator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 淳二 兵庫県神戸市兵庫区御所通1丁目2番28号 富士通テン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Junji Takahashi 1-2-2 Goshodori, Hyogo-ku, Kobe-shi, Hyogo Within Fujitsu Ten Limited

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 先行車との車間距離に基づき自車速を制
御し、先行車に所定の制御ゲインでスロットルまたはブ
レーキ制御して先行車に追従走行する走行制御装置にお
いて、 先行車との車間距離を検出する車間距離検出手段と、 自車の操舵角を検出する操舵角検出手段と、 自車の速度を検出する速度検出手段と、 前記操舵角と前記速度に基づき自車が走行している走行
路のカーブ半径を算出するカーブ半径算出手段と、 算出された前記カーブ半径と前記車間距離に基づき先行
車が自車線上を走行している確率を評価する評価手段
と、 前記評価に基づき前記制御ゲインを調節してスロットル
またはブレーキ制御する制御手段と、 を有することを特徴とする車両用走行制御装置。
1. A travel control device for controlling the own vehicle speed based on the distance to the preceding vehicle and controlling the throttle or brake of the preceding vehicle with a predetermined control gain so as to follow the preceding vehicle. Vehicle-to-vehicle distance detecting means for detecting the vehicle speed, steering angle detecting means for detecting the steering angle of the vehicle, speed detecting means for detecting the speed of the vehicle, and the vehicle is traveling based on the steering angle and the speed. A curve radius calculating means for calculating a curve radius of the traveling road; an evaluating means for evaluating a probability that the preceding vehicle is traveling on the own lane based on the calculated curve radius and the inter-vehicle distance; A vehicle travel control device comprising: a control unit that adjusts a control gain to control a throttle or a brake.
JP4300099A 1992-11-10 1992-11-10 Traveling controller of vehicle Pending JPH06144076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4300099A JPH06144076A (en) 1992-11-10 1992-11-10 Traveling controller of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4300099A JPH06144076A (en) 1992-11-10 1992-11-10 Traveling controller of vehicle

Publications (1)

Publication Number Publication Date
JPH06144076A true JPH06144076A (en) 1994-05-24

Family

ID=17880703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4300099A Pending JPH06144076A (en) 1992-11-10 1992-11-10 Traveling controller of vehicle

Country Status (1)

Country Link
JP (1) JPH06144076A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710565A (en) * 1995-04-06 1998-01-20 Nippondenso Co., Ltd. System for controlling distance to a vehicle traveling ahead based on an adjustable probability distribution
EP0890470A2 (en) 1997-07-07 1999-01-13 Honda Giken Kogyo Kabushiki Kaisha Vehicle control system for lane changing
KR100210939B1 (en) * 1996-10-29 1999-07-15 정몽규 Auto cruise control system of a car
KR100231563B1 (en) * 1996-11-25 1999-11-15 류정열 Auto speed control system of a car
JP2009126190A (en) * 2007-11-19 2009-06-11 Toyota Motor Corp Vehicular follow up device
JP2013209085A (en) * 2002-07-15 2013-10-10 Automotive Systems Lab Inc Road curvature estimation system and automotive target state estimation system
CN111605537A (en) * 2019-02-06 2020-09-01 大陆汽车有限责任公司 Vehicle and method for autonomous maneuvering of vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710565A (en) * 1995-04-06 1998-01-20 Nippondenso Co., Ltd. System for controlling distance to a vehicle traveling ahead based on an adjustable probability distribution
KR100210939B1 (en) * 1996-10-29 1999-07-15 정몽규 Auto cruise control system of a car
KR100231563B1 (en) * 1996-11-25 1999-11-15 류정열 Auto speed control system of a car
EP0890470A2 (en) 1997-07-07 1999-01-13 Honda Giken Kogyo Kabushiki Kaisha Vehicle control system for lane changing
US6311119B2 (en) 1997-07-07 2001-10-30 Honda Giken Kojyo Kabushiki Kaisha Vehicle control system
JP2013209085A (en) * 2002-07-15 2013-10-10 Automotive Systems Lab Inc Road curvature estimation system and automotive target state estimation system
JP2009126190A (en) * 2007-11-19 2009-06-11 Toyota Motor Corp Vehicular follow up device
CN111605537A (en) * 2019-02-06 2020-09-01 大陆汽车有限责任公司 Vehicle and method for autonomous maneuvering of vehicle
CN111605537B (en) * 2019-02-06 2024-04-05 大陆智行德国有限公司 Vehicle and method for autonomously maneuvering a vehicle

Similar Documents

Publication Publication Date Title
US7373237B2 (en) Speed regulator with distance regulating function
JP2799375B2 (en) Anti-collision device
JP3232724B2 (en) Inter-vehicle distance control device
JPH0347209B2 (en)
JPH11314537A (en) Preceding vehicle follow-up control device
JPH08249598A (en) Vehicle front monitoring device
JP2882061B2 (en) Vehicle preceding vehicle detection device
JPH06144076A (en) Traveling controller of vehicle
JP2002175599A (en) Lane position estimating device for precedent vehicle or target
JP3223700B2 (en) Vehicle obstacle warning device
JP2000180537A (en) Method for identifying target to be controlled of scan- type radar
JP3719691B2 (en) Vehicle recognition device
JPH1068777A (en) On-vehicle preceding car detecting device
JPH0836697A (en) Rear-end collision danger judgement method in rear-end collision prevention system
JPH11144198A (en) Object identifying device for vehicle
JPH06150200A (en) Travelling controller for vehicle
KR100469773B1 (en) Method and apparatus for correcting a curve radius
JP3209671B2 (en) Curved road judgment device
JP3786094B2 (en) Vehicle travel control device
JP3979931B2 (en) Target speed calculation device and vehicle control device using the same
JP3589742B2 (en) Automotive radar equipment
JPH0749380A (en) On-board radar system
JP2848055B2 (en) Travel control device for vehicles
JP2501517B2 (en) Inter-vehicle distance alarm device
JP2503681B2 (en) Vehicle drive controller

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000801