JPH06142505A - Production of monodisperse fine spherical particle - Google Patents

Production of monodisperse fine spherical particle

Info

Publication number
JPH06142505A
JPH06142505A JP4295193A JP29519392A JPH06142505A JP H06142505 A JPH06142505 A JP H06142505A JP 4295193 A JP4295193 A JP 4295193A JP 29519392 A JP29519392 A JP 29519392A JP H06142505 A JPH06142505 A JP H06142505A
Authority
JP
Japan
Prior art keywords
particles
organic solvent
spherical particles
polyamino acid
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4295193A
Other languages
Japanese (ja)
Inventor
Chuichi Hirayama
忠一 平山
Hirotaka Ihara
博隆 伊原
Makoto Iwatsuki
誠 岩月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP4295193A priority Critical patent/JPH06142505A/en
Publication of JPH06142505A publication Critical patent/JPH06142505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To efficiently produce fine spherical particles large in monodispersibility. CONSTITUTION:O/W emulsion is produced by using the organic solvent solution (oil phase, dispersed phase) of hydrophobia polyamino acid or hydrophobic cellulose and an aqueous medium (aqueous phase, continuous phase) as material and applying the same to membrane emulsification by means of a microporous glass tube. The organic solvent is vaporized and removed from the emulsion to obtain a dispersing element in the aqueous medium of fine spherical particles of polyamino acid or cellulose. Monodisperse fine spherical particles are produced by separating the fine spherical particles from the dispersing element in accordance with desire. An additive for making the fine spherical particles porous may be added to the organic solvent solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、そのままでもカラムク
ロマトグラフィーの充填剤等種々の用途を有し、また表
面を化学修飾することにより発熱物質吸着剤(例えば、
特開平4-156943参照)等の用途を付与し得るポリアミノ
酸又はセルロースの微小球粒子の製造法に関する。
BACKGROUND OF THE INVENTION The present invention has various uses such as a packing material for column chromatography as it is, and further, by chemically modifying the surface thereof, a heat-generating substance adsorbent (eg
Japanese Patent Application Laid-Open No. 4-16943), etc., and to a method for producing microsphere particles of polyamino acid or cellulose that can be used.

【0002】[0002]

【従来の技術】上記のような用途を有するポリアミノ酸
又はセルロースの微小球粒子は、単分散系に近い程、例
えばカラムクロマトグラフィーの充填剤として使用した
ときに充填圧損が小さい等の利点がある。
2. Description of the Related Art Polyamino acid or cellulose microspheres having the above-mentioned applications have the advantage that the closer they are to a monodisperse system, the smaller the packing pressure loss when used as a packing material for column chromatography. .

【0003】これをそのような微小球粒子の製造段階で
みると、得られる微小球粒子の粒径分布が狭い程、単分
散性粒子を分級取得する際のロスが少なくなり、極めて
好ましい。換言すれば、得られる微小球粒子の粒径を容
易に制御することのできる製造法が好ましい。
Looking at this in the production stage of such fine spherical particles, the narrower the particle size distribution of the obtained fine spherical particles, the less the loss in classifying monodisperse particles becomes, which is extremely preferable. In other words, a production method that can easily control the particle size of the obtained microsphere particles is preferable.

【0004】このような製造法として、ポリアミノ酸に
関しては、既に、例えば、平山らにより「疎水性ポリア
ミノ酸が有機溶媒に溶かされた溶液を水性媒体に加え撹
拌を行なうことにより、前記有機溶媒を蒸発させつつ、
前記ポリアミノ酸の球状粒子が前記水性媒体に分散され
た分散体を得る工程、および、該分散体からポリアミノ
酸の球状粒子を取り出す工程を含むことを特徴とするポ
リアミノ酸の球状粒子の製造法」が提案されている(特
開昭62-1728 号公報特許請求の範囲第4項及び第3頁右
上欄から左下欄にかかる段落参照)。
As for such polyamino acids as such a production method, for example, Hirayama et al. Have already described, "By adding a solution in which a hydrophobic polyamino acid is dissolved in an organic solvent to an aqueous medium and stirring the mixture, the organic solvent is removed. While evaporating
A method for producing spherical particles of polyamino acid, which comprises a step of obtaining a dispersion in which the spherical particles of the polyamino acid are dispersed in the aqueous medium, and a step of taking out spherical particles of the polyamino acid from the dispersion " Has been proposed (see JP-A-62-1728, Claims 4 and paragraphs from page 3, upper right column to lower left column).

【0005】しかしながら、単分散性の更に向上した製
造法の開発が望まれている。
However, there is a demand for the development of a production method having further improved monodispersity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、更に向上し
た単分散性を実現できるポリアミノ酸又はセルロースの
微小球粒子の製造法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing microsphere particles of polyamino acid or cellulose which can realize further improved monodispersity.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究の結果、本発明を完成した。
The present inventors have completed the present invention as a result of earnest research to solve the above problems.

【0008】すなわち、本発明は、疎水性ポリアミノ酸
又は疎水性セルロースの有機溶媒溶液(油相、分散相)
及び水性媒体(水相、連続相)を材料とし、これをミク
ロ多孔ガラスチューブによる膜乳化に付してO/Wエマ
ルジョンを作成し、このエマルジョンから有機溶媒を蒸
発除去して該ポリアミノ酸又は該セルロースの微小球粒
子の該水性媒体における分散体を得、そして所望により
該微小球粒子を該分散体から分離することを特徴とする
単分散微小球粒子の製造法に関する。
That is, the present invention is a solution of a hydrophobic polyamino acid or hydrophobic cellulose in an organic solvent (oil phase, dispersed phase).
And an aqueous medium (aqueous phase, continuous phase) as a material, which is subjected to membrane emulsification with a microporous glass tube to prepare an O / W emulsion, and the organic solvent is removed from this emulsion by evaporation to remove the polyamino acid or the polyamino acid. It relates to a process for the production of monodisperse microspheres, characterized in that a dispersion of cellulose microspheres in the aqueous medium is obtained and, if desired, the microspheres are separated from the dispersion.

【0009】以下、本発明を詳述する。The present invention will be described in detail below.

【0010】本発明の方法は、O/Wエマルジョンの作
成をミクロ多孔ガラスチューブを使用する膜乳化法によ
る以外は全て前述の平山らの方法に準ずることができる
ことを先ず指摘しておく。
First of all, it should be pointed out that the method of the present invention can be applied to the method of Hirayama et al. Mentioned above except that the O / W emulsion is produced by the membrane emulsification method using a microporous glass tube.

【0011】すなわち、前出平山らの方法におけると同
じく、本発明の疎水性ポリアミノ酸には、本来的に疎水
性のポリアミノ酸(単一重合体及び共重合体)のみなら
ず、親水性ポリアミノ酸を部分的に又は完全に疎水化し
たものや、親水性アミノ酸と疎水性アミノ酸との共重合
体も包含される。有機溶媒も、1,2−ジクロルエタン
(EDC)等、平山らの方法におけると同じくすること
ができる。また、疎水性ポリアミノ酸の有機溶媒溶液と
しては、ポリアミノ酸製造の際の、重合溶液をそのまま
用いることもできることは平山らの方法におけると同じ
である。水性溶媒としては、水、適当な粘度調節剤(分
散安定剤)を溶解した水等を挙げることができる。以
上、前出特開昭62-1723 号公報第2頁左下欄下から第3
行から第3頁左下欄第7行参照。
That is, as in the method of Maeda Hirayama et al., The hydrophobic polyamino acids of the present invention include not only inherently hydrophobic polyamino acids (homopolymers and copolymers) but also hydrophilic polyamino acids. Partially or completely hydrophobized, and copolymers of hydrophilic amino acids and hydrophobic amino acids are also included. The organic solvent may be the same as in the method of Hirayama et al., Such as 1,2-dichloroethane (EDC). Also, as the organic solvent solution of the hydrophobic polyamino acid, the polymerization solution at the time of producing the polyamino acid can be used as it is, as in the method of Hirayama et al. Examples of the aqueous solvent include water and water in which a suitable viscosity modifier (dispersion stabilizer) is dissolved. As mentioned above, the above-mentioned JP-A-62-1723, page 2, lower left column, third to bottom
See line 7, bottom left column, line 7.

【0012】本発明の疎水性セルロースとしては、セル
ローストリアセテートのごときセルロースの疎水性誘導
体を挙げることができる。有機溶媒としては、塩化メチ
レン、クロロホルム、酢酸メチル、アセトンなどのセル
ロース誘導体の溶剤として使用される有機溶媒を挙げる
ことができる。
Examples of the hydrophobic cellulose of the present invention include hydrophobic derivatives of cellulose such as cellulose triacetate. Examples of the organic solvent include organic solvents used as solvents for cellulose derivatives such as methylene chloride, chloroform, methyl acetate and acetone.

【0013】本発明の方法の、前出平山らの方法との相
違点が乳化法にあることは前述したが、その本発明の方
法の乳化法の詳細は次の通りである。
The difference between the method of the present invention and the method of Maedai Hirayama et al. Lies in the emulsification method, but the details of the emulsification method of the method of the present invention are as follows.

【0014】ミクロ多孔チューブとしては、焼結金属製
及びセラミックス製があるが、ミクロ多孔ガラスチュー
ブとしては、近年宮崎工業試験場で開発されたシラス多
孔質ガラス(Siraus porous glass (SPG)、CaO
−Al2 3 −B2 3 −SiO2 系多孔質ガラス)チ
ューブを挙げることができる。このチューブは、細孔の
サイズが0.008 〜15μm程度の範囲内にあり、この範囲
内において細孔径は均一で、単分散に近い細孔分布をも
つ。そのため、細孔を通して油相を水相に押し出すこと
により極めて粒径分布の狭いO/Wエマルジョン(oi
l/water emulsion)を作成できる。こ
のことは新しい乳化技術として注目を集めていて、既に
多数の報告がされている。本発明の方法における、ミク
ロ多孔ガラスチューブによる膜乳化の方法自体には特別
の制限はなく、既にされている報告にみられる方法に準
ずることができる。因みに、SPGチューブはいわゆる
モジュールの形態で入手可能であり、その形態で使用さ
れ得ることはもちろんである。
Microporous tubes include sintered metal and ceramics, and microporous glass tubes include Siraus porous glass (SPG) and CaO, which have been recently developed at Miyazaki Industrial Research Institute.
-Al 2 O 3 -B 2 O 3 -SiO 2 based porous glass) can be mentioned tube. This tube has a pore size in the range of about 0.008 to 15 μm, and within this range, the pore size is uniform and the pore distribution is nearly monodisperse. Therefore, by pushing the oil phase into the water phase through the pores, an O / W emulsion (oi
l / water emulsion) can be created. This is attracting attention as a new emulsification technology, and many reports have already been made. In the method of the present invention, the method itself for emulsifying a membrane using a microporous glass tube is not particularly limited and can be based on the method already reported. Incidentally, the SPG tube is available in the form of a so-called module and, of course, can be used in that form.

【0015】その他、例えば、特公昭62−25618
号公報に開示されたCaO−B2 3 −SiO2 −Al
2 3 系多孔質ガラス、特開昭61-40841号公報(米国特
許第4,657,875 号明細書)に開示されたCaO−B2
3 −SiO2 −Al2 3 −Na2 O系多孔質ガラスお
よびCaO−B2 3 −SiO2 −Al2 3 −Na2
O−MgO系多孔質ガラスなどのチューブを挙げること
ができる。特開平2-95433 号公報第3頁右上欄参照。
In addition, for example, Japanese Examined Patent Publication No. 62-25618
Disclosed in JP-CaO-B 2 O 3 -SiO 2 -Al
2 O 3 -based porous glass, CaO-B 2 O disclosed in JP-A-61-40841 (US Pat. No. 4,657,875)
3 -SiO 2 -Al 2 O 3 -Na 2 O -based porous glass and CaO-B 2 O 3 -SiO 2 -Al 2 O 3 -Na 2
A tube made of O-MgO-based porous glass or the like can be used. See JP-A-2-95433, page 3, upper right column.

【0016】疎水性ポリアミノ酸又は疎水性セルロース
の有機溶媒溶液に、該ポリアミノ酸又は該セルロースに
非相溶性の、該有機溶媒に相溶性の、該水性媒体に非溶
解性の、かつ、該有機溶媒及び該水性媒体よりも沸点の
高い添加剤(多孔化用添加剤)を添加しておいて膜乳化
を行なうと、得られる微小球粒子が多孔質となることも
平山らと同様であり、多孔化用添加剤も平山らに同じく
することができる。前出特開昭62-1723 号公報第3頁左
下欄第8行から右下欄第14行参照。
A solution of a hydrophobic polyamino acid or hydrophobic cellulose in an organic solvent is incompatible with the polyamino acid or the cellulose, compatible with the organic solvent, insoluble in the aqueous medium, and organic. It is also the same as Hirayama et al. That when a solvent and an additive having a higher boiling point than the aqueous medium (additive for porosity) are added and the film is emulsified, the resulting microspheres become porous. The additive for porosity can be the same as Hirayama et al. See JP-A-62-1723, page 3, lower left column, line 8 to lower right column, line 14.

【0017】さて、上のようにして膜乳化に付して作成
されたO/Wエマルジョンのその後の処理は、再び前出
平山らの方法に準ずることができる。すなわち、例え
ば、エマルジョンを加熱下に又は非加熱下に撹拌するこ
とによりエマルジョンから有機溶媒を蒸発除去すること
ができる。有機溶媒を除去して得られる、疎水性ポリア
ミノ酸又は疎水性セルロースの球状粒子が水性媒体に分
散された分散体は、この状態で流通におくこともできる
が、適当な分離操作(例えば、濾過、遠心分離)によ
り、該分散体から該球状粒子を分離することもできる。
前出特開昭62-1723号公報第2頁右上欄第9行から左下
欄第17行及び実施例参照。
The subsequent treatment of the O / W emulsion prepared by the film emulsification as described above can be carried out again according to the method of Maede Hirayama et al. That is, for example, the organic solvent can be evaporated and removed from the emulsion by stirring the emulsion with or without heating. The dispersion obtained by removing the organic solvent, in which the spherical particles of the hydrophobic polyamino acid or the hydrophobic cellulose are dispersed in the aqueous medium, can be put into circulation in this state, but an appropriate separation operation (for example, filtration , Centrifugation) to separate the spherical particles from the dispersion.
See JP-A-62-1723, page 2, upper right column, line 9 to lower left column, line 17 and Examples.

【0018】多孔化用添加剤を使用した場合における、
該多孔化用添加剤の微小球粒子からの除去もまた平山ら
の方法に準ずることができる。すなわち、上のようにし
て適当な分離操作により分散体から分離した疎水性ポリ
アミノ酸又は疎水性セルロースの微小球粒子を、該ポリ
アミノ酸又は該セルロースとは非相溶性のかつ多孔化用
添加剤とは相溶性の適当な有機溶剤により洗浄したり、
このような有機溶剤を用いるソックスレー抽出法に付し
たりするなどして除去することができる。前出特開昭62
-1728 号公報実施例4〜8参照。
When a porosity additive is used,
The removal of the porosifying additive from the microsphere particles can also be carried out according to the method of Hirayama et al. That is, the microsphere particles of the hydrophobic polyamino acid or the hydrophobic cellulose separated from the dispersion by the appropriate separation operation as described above are mixed with the polyamino acid or the cellulose and an additive for porosification. Is washed with a compatible organic solvent,
It can be removed by applying a Soxhlet extraction method using such an organic solvent. Japanese Patent Laid-Open No. 62
-1728, see Examples 4 to 8.

【0019】本発明の方法は、バッチ式でも連続式でも
実施できることは、いうまでもない。
It goes without saying that the method of the present invention can be carried out batchwise or continuously.

【0020】[0020]

【実施例】以下、実施例により本発明を更に説明する。EXAMPLES The present invention will be further described below with reference to examples.

【0021】実施例1(ポリアミノ酸、バッチ式) 図1に、本実施例で用いた微小球粒子製造装置の概略図
を示す。
Example 1 (polyamino acid, batch type) FIG. 1 is a schematic view of the apparatus for producing microsphere particles used in this example.

【0022】ミクロ多孔ガラスチューブとしては、平均
細孔径が 2.4μm、 4.2μm、 5.7μm、 7.5μm及び
11μmである計5種のSPGチューブ(モジュール)を
使用した。
The microporous glass tube has an average pore diameter of 2.4 μm, 4.2 μm, 5.7 μm, 7.5 μm and
A total of 5 types of SPG tubes (modules) having a size of 11 μm were used.

【0023】1,2−ジクロルエタン(EDC、有機溶
媒) 360mlとフタル酸ジ(2−エチルヘキシル)(DE
HP、多孔化用添加剤)10.1mlとをビーカーに入れ、ス
ターラーで約15分間撹拌し、これに市販のポリ(γ−メ
チルL−グルタメート)(PMLG、重合度 780、疎水
性ポリアミノ酸)の10wt%EDC溶液40mlを加え更に約
2時間撹拌した。油相には、このPMLG10wt%EDC
溶液を用いた。
360 ml of 1,2-dichloroethane (EDC, organic solvent) and di (2-ethylhexyl) phthalate (DE
HP, additive for porosity) 10.1 ml was put in a beaker and stirred for about 15 minutes with a stirrer, and commercial poly (γ-methyl L-glutamate) (PMLG, degree of polymerization 780, hydrophobic polyamino acid) was added thereto. 40 ml of a 10 wt% EDC solution was added and the mixture was further stirred for about 2 hours. In the oil phase, this PMLG 10 wt% EDC
The solution was used.

【0024】ポリビニルアルコール(PVA)24gを煮
沸水2400mlに溶かし、水相には、このPVA1wt%水溶
液を常温に戻して用いた。
24 g of polyvinyl alcohol (PVA) was dissolved in 2400 ml of boiling water, and the aqueous phase was prepared by returning the 1 wt% PVA aqueous solution to room temperature.

【0025】SPGチューブの内側に油相液、外側に水
相液を満たした後、油相液に圧力を加えることで油相液
が水相液を透過して、単分散O/Wエマルジョンを形成
することができるようにする。
After filling the oil phase liquid inside the SPG tube and the water phase liquid outside, the oil phase liquid permeates the water phase liquid by applying pressure to the oil phase liquid to form a monodispersed O / W emulsion. To be able to form.

【0026】PVA1wt%水溶液2400mlを撹拌容器に入
れ、撹拌羽根を設置した後、脱気したSPGチューブを
容器内壁及び羽根に接触しないように固定した。この間
SPGチューブにはなるべく手を触れないようにし、ま
たチューブを長時間空気中にさらすことなく速やかに固
定した。
2400 ml of a 1 wt% PVA aqueous solution was placed in a stirring vessel, a stirring blade was installed, and then the degassed SPG tube was fixed so as not to contact the inner wall of the vessel and the blade. During this time, the SPG tube was touched as little as possible, and the tube was quickly fixed without exposing it to the air for a long time.

【0027】次に撹拌羽根をゆっくり回転(150rpm)さ
せながら、PMLG1wt%EDC溶液をギヤポンプ(電
圧設定器を 5.0Vに設定し、吐出量は約 4.5mlとした)
を用いてSPGチューブ内側に空気がたまらないように
送り込み、チューブの内側から外側のPVA水溶液に向
かって圧出分散させてO/Wエマルジョンを得た。この
乳化操作は約4時間続け、この間加熱はせずにすべて常
温で行った。連結管には、ポリエチレン(PE)チュー
ブを使用した。
Next, while slowly rotating (150 rpm) the stirring blade, PMLG 1 wt% EDC solution was gear pumped (voltage setting device was set to 5.0 V, discharge amount was about 4.5 ml).
Air was sent to the inside of the SPG tube so that it would not collect, and the mixture was squeezed out from the inside of the tube toward the PVA aqueous solution outside to obtain an O / W emulsion. This emulsification operation was continued for about 4 hours, and during this period, heating was performed at room temperature without heating. A polyethylene (PE) tube was used as the connecting pipe.

【0028】この乳化液を乳化時と同様にゆっくり撹拌
(150rpm)しながら加熱(50℃)し、約24時間EDCを
蒸発除去することにより球状粒子を調製した。
The emulsified liquid was heated (50 ° C.) while slowly stirring (150 rpm) as in the emulsification, and spherical particles were prepared by removing EDC by evaporation for about 24 hours.

【0029】粒子化終了後、粒子は布(東レシルク#87
00で、布の目のサイズは約10μm以下)を張ったブフナ
ロート上に回収し、40〜50℃の湯で十分に洗浄し、PV
Aを除去した。ただし10μm以下の小さな粒子は遠心分
離器(3000rpm 、30分)を用いてPVAの除去を行っ
た。
After the formation of particles, the particles are cloth (Toray Silk # 87
00, the size of the mesh is about 10 μm or less), and collect it on a Buchner funnel lined with water.
A was removed. However, for small particles of 10 μm or less, PVA was removed by using a centrifuge (3000 rpm, 30 minutes).

【0030】得られた5種の粒子はそれぞれ蒸留水中に
保存した。
The obtained 5 kinds of particles were respectively stored in distilled water.

【0031】実施例2(ポリアミノ酸、連続式) 図2に、本実施例で用いた連続微小球粒子化装置の概略
図を示す。
Example 2 (polyamino acid, continuous type) FIG. 2 shows a schematic view of the continuous microsphere particle-forming apparatus used in this example.

【0032】本実施例では、SPGチューブによる膜乳
化法と循環粒子化装置を組み合わせることにより連続粒
子化を行なった。SPGチューブによって生成したエマ
ルジョンは撹拌槽中で循環し、その間溶媒が蒸発除去さ
れ、ビーズ化される。ビーズ化したPMLG粒子は、撹
拌槽中にとどまることができず流出してくるため、連続
的に粒子化することができるのである。
In this embodiment, continuous particle formation was carried out by combining the membrane emulsification method using an SPG tube and a circulating particle formation device. The emulsion produced by the SPG tube circulates in the stirred tank, during which the solvent is evaporated off and beads are formed. Since the beaded PMLG particles cannot stay in the stirring tank and flow out, the particles can be continuously made into particles.

【0033】前実施例1におけると同様にして、油相液
のPMLG1wt%EDC溶液及び水相液のPVA1wt%
水溶液を調製した。SPGチューブ(モジュール)は平
均細孔径がそれぞれ 2.4μm、 4.2μm、 5.7μm、
7.5μm及び11μmのもの(計5種)を用いた。
In the same manner as in the previous Example 1, PMLG 1 wt% EDC solution of oil phase liquid and PVA 1 wt% of aqueous phase liquid.
An aqueous solution was prepared. SPG tubes (modules) have average pore sizes of 2.4 μm, 4.2 μm, 5.7 μm,
Those of 7.5 μm and 11 μm (5 types in total) were used.

【0034】膜乳化部は、コンデンサーのエマルジョン
入口よりも数cm高い位置に固定し、エマルジョンがスム
ーズに流れるようにした。また、コンデンサーと循環撹
拌槽の傾き約20°に設定し、撹拌槽を約150rpmで回転さ
せた。
The membrane emulsification section was fixed at a position several cm higher than the emulsion inlet of the condenser so that the emulsion could flow smoothly. The inclination of the condenser and the circulation stirring tank was set to about 20 °, and the stirring tank was rotated at about 150 rpm.

【0035】油相液と水相液をそれぞれの容器に入れ、
ポンプBの電圧を10.0V(約 9.0ml/min )に設定し、
1時間程度水相液を循環撹拌槽内へ流した。この時約55
℃に設定しておいた温水貯めのシャワーポンプを作動さ
せて循環撹拌槽内の温度を50℃に保ち、コンデンサーの
アスピレーターとクーラーを動かし始めた。
Put the oil phase liquid and the water phase liquid in their respective containers,
Set the voltage of pump B to 10.0V (about 9.0ml / min),
The aqueous phase liquid was allowed to flow into the circulation stirring tank for about 1 hour. At this time about 55
The shower pump for storing warm water, which had been set to ℃, was operated to maintain the temperature in the circulation stirring tank at 50 ℃, and the aspirator and cooler of the condenser were started to operate.

【0036】以上の操作が完了して初めて、膜乳化部に
SPGチューブを取り付け、前実施例と同様にポンプA
の電圧を 5.0V(約 4.5ml/min )として粒子化を開始
した。
Only after the above operation is completed, the SPG tube is attached to the membrane emulsification section, and the pump A is used as in the previous embodiment.
Particle formation was started with the voltage of 5.0 V (about 4.5 ml / min).

【0037】約5分間後には粒子が得られ始め、更に4
時間後にポンプAを止めた。その後SPGチューブを取
り外し、膜表面を水で洗い流してからクロロホルムにて
超音波洗浄を行った。しかし、膜を外した後もポンプB
は約1時間動かし、循環撹拌槽内の粒子を外へ出した。
Particles started to be obtained after about 5 minutes, and further 4
Pump A was stopped after a period of time. After that, the SPG tube was removed, the membrane surface was rinsed with water, and then ultrasonically washed with chloroform. However, even after removing the membrane, pump B
Was moved for about 1 hour, and the particles in the circulation stirring tank were discharged.

【0038】得られた5種の粒子は前実施例と同様にし
てPVAを除去し、蒸留水中に保存した。
PVA was removed from the obtained 5 kinds of particles in the same manner as in the previous example, and the particles were stored in distilled water.

【0039】比較例1(従来法) 本比較例では、従来の撹拌羽根を用いた懸濁蒸発法によ
りPMLG球状粒子化を行った。
Comparative Example 1 (Conventional Method) In this comparative example, PMLG spherical particles were formed by a conventional suspension evaporation method using a stirring blade.

【0040】図3に、装置の概略図を示す。FIG. 3 shows a schematic view of the apparatus.

【0041】実施例1におけると同様にして、フタル酸
ジ(2−ヘチルヘキシル)を含むPMLG1wt%EDC
溶液( 200ml)及びPVA1wt%水溶液(1200ml)を調
製した。
PMLG 1 wt% EDC containing di (2-hexylhexyl) phthalate as in Example 1.
A solution (200 ml) and a 1 wt% PVA aqueous solution (1200 ml) were prepared.

【0042】これらを撹拌容器内で懸濁させ、50℃にて
EDCを蒸発除去し、PMLG球状粒子を調製した。た
だし、撹拌速度は懸濁を始めてから15分間は800rpmで、
その後は約24時間400rpmを保った。
These were suspended in a stirring vessel and EDC was removed by evaporation at 50 ° C. to prepare PMLG spherical particles. However, the stirring speed is 800 rpm for 15 minutes after starting suspension,
After that, 400 rpm was maintained for about 24 hours.

【0043】得られた粒子はPVAを除去した後、蒸留
水中にて保存した。
The particles thus obtained were stored in distilled water after removing PVA.

【0044】評価検査例1(光学顕微鏡写真、粒径分
布) 上記実施例1(バッチ式)及び2(連続式)並びに比較
例1(バッチ式、従来法)で得られた微小球粒子につい
て、光学顕微鏡写真観察を行ない、また、粒径分布を検
査した。
Evaluation / Inspection Example 1 (optical micrograph, particle size distribution) Regarding the fine spherical particles obtained in the above Examples 1 (batch type) and 2 (continuous type) and Comparative Example 1 (batch type, conventional method), Optical micrograph observation was performed and the particle size distribution was also inspected.

【0045】(a)光学顕微鏡写真 実施例及び比較例で得られた合計11種の微小球粒子の、
光学顕微鏡「OLYMPUSネオパーク顕微鏡BHM31 2N
E」を使用して撮影した写真から、実施例1及び2で得
られた粒子(10種類)はいずれもそれぞれ均一な粒径を
有するものであるのに対し、比較例で得られた粒子は種
々の粒径のものがいりまじっていることが観察された。
また、粒子の形も、実施例のものと比較例のものとの間
にあまり差はなく、実施例2から連続的な粒子化を行な
うことによってPMLG微小球粒子の大量生産が可能で
あることが確認できた。
(A) Optical Microscope Photographs of a total of 11 kinds of microspherical particles obtained in Examples and Comparative Examples,
Optical microscope "OLYMPUS Neopark microscope BHM31 2N
From the photographs taken using "E", all the particles (10 types) obtained in Examples 1 and 2 have uniform particle diameters, while the particles obtained in Comparative Example It was observed that various particle sizes were mixed.
Also, the shape of the particles is not so different between the example and the comparative example, and it is possible to mass-produce PMLG microsphere particles by continuously forming particles from Example 2. Was confirmed.

【0046】(b)粒径分布 粒径の小さい粒子は、光散乱光度計にて粒径分布を測定
した。粒子を測定用セルにピペットを用いて入れ、約10
倍程度に濾過蒸留水で希釈してから測定部に設置した。
レーザー光を試料にあてコンピューター解析を行った。
なお、光学系には、ユニオン技研(株)社製「ダイナミ
ック光散乱光度計DLS−700 」を使用した。また、大
きい粒子は光学顕微鏡写真をノギスメーターで測定し、
分布図を作成した。
(B) Particle size distribution For particles having a small particle size, the particle size distribution was measured with a light scattering photometer. Place the particles in the measuring cell with a pipette and
The sample was diluted about twice with filtered distilled water and then installed in the measuring section.
Computer analysis was performed by applying laser light to the sample.
As the optical system, "Dynamic light scattering photometer DLS-700" manufactured by Union Giken Co., Ltd. was used. Also, for large particles, measure an optical micrograph with a caliper,
A distribution map was created.

【0047】図4の(a)及び(b)に、平均細孔径が
11μmであるSPGチューブを用いて、実施例1で調製
されたPMLG球状粒子及び比較例1で調製された粒子
の粒径分布をそれぞれ示す。また、図5の(a)及び
(b)に、平均細孔径が 2.4μmのSPGチューブを用
いて、実施例1で調製されたPMLG球状粒子及び比較
例1で調製された粒子の粒径分布をそれぞれ示す。
In FIGS. 4A and 4B, the average pore diameter is
The particle size distributions of the PMLG spherical particles prepared in Example 1 and the particles prepared in Comparative Example 1 are shown using an SPG tube of 11 μm, respectively. 5 (a) and 5 (b), the particle size distribution of the PMLG spherical particles prepared in Example 1 and the particles prepared in Comparative Example 1 was measured using an SPG tube having an average pore size of 2.4 μm. Are shown respectively.

【0048】図4及び図5から分るように、SPGチュ
ーブによる膜乳化法により調製されたPMLG球状粒子
は、従来の方法と比較して粒径分布が狭く均一性が高い
こと、すなわち、単分散性に優れていることが確認され
た。つまり、このことは調製された粒子の分級操作がほ
とんど必要ない(すなわち、収率が高い)ことを示して
いる。
As can be seen from FIGS. 4 and 5, the PMLG spherical particles prepared by the membrane emulsification method using the SPG tube have a narrow particle size distribution and high uniformity as compared with the conventional method. It was confirmed that the dispersibility was excellent. In other words, this indicates that the classification operation of the prepared particles is almost unnecessary (that is, the yield is high).

【0049】実施例3 本実施例は、SPGチューブの平均細孔径とPMLG球
状粒子の平均粒径との関係を調べるためのものである。
Example 3 This example is for investigating the relationship between the average pore size of SPG tubes and the average particle size of PMLG spherical particles.

【0050】平均細孔が 2.4μm、 4.2μm、 5.7μ
m、 7.5μm及び11μmの各SPGチューブを使用し、
実施例1の方法にてPMLG球状粒子を調製した。
Average pore size is 2.4 μm, 4.2 μm, 5.7 μm
m, 7.5 μm and 11 μm SPG tubes,
PMLG spherical particles were prepared by the method of Example 1.

【0051】この粒子の平均粒径と使用したSPGチュ
ーブの平均細孔径との関係を図6に示す。
The relationship between the average particle size of the particles and the average pore size of the SPG tube used is shown in FIG.

【0052】この図より、本発明の方法により調製され
たPMLG球状粒子の平均粒径は使用したSPGチュー
ブの細孔径に対応していることが分かった。つまり、本
発明によればPMLGの粒径を容易に制御できることが
確認できた。
From this figure, it was found that the average particle size of the PMLG spherical particles prepared by the method of the present invention corresponds to the pore size of the SPG tube used. That is, it was confirmed that the particle size of PMLG can be easily controlled according to the present invention.

【0053】実施例4 本実施例は、PMLGの球状粒子化における粘度調節剤
(分散安定剤)としてのPVAの濃度効果を調べるため
のものである。
Example 4 This example is for investigating the concentration effect of PVA as a viscosity modifier (dispersion stabilizer) in forming PMLG into spherical particles.

【0054】PMLGの球状粒子化(実施例1と同様の
装置で、平均細孔 2.4μmのSPGチューブ使用)にお
いて、分散安定剤であるPVA水溶液の濃度効果につい
て検討した結果を図7に示す。油相液には1wt%PML
G/EDC溶液を用いた。
FIG. 7 shows the results of studying the concentration effect of the PVA aqueous solution as the dispersion stabilizer in the formation of spherical particles of PMLG (using the same apparatus as in Example 1 and using an SPG tube having an average pore size of 2.4 μm). 1 wt% PML for oil phase liquid
A G / EDC solution was used.

【0055】この図から分かるように、O/Wエマルジ
ョンを単分散化させるには、分散安定剤であるPVAの
濃度を 0.5wt%以上にするとよい。つまり、分散安定剤
であるPVAが低濃度の場合、油相の水相に対する溶解
度が大きく、O/Wエマルジョンはその形成において不
安定で大きくなりやすい。しかし、PVAの濃度がある
一定値以上になると、O/Wエマルジョンは安定化し、
PMLG球状粒子の粒径は一定の大きさになると考えら
れる。
As can be seen from this figure, in order to monodisperse the O / W emulsion, the concentration of PVA as the dispersion stabilizer should be 0.5 wt% or more. That is, when the concentration of PVA, which is a dispersion stabilizer, is low, the solubility of the oil phase in the aqueous phase is large, and the O / W emulsion tends to be unstable and large in its formation. However, when the concentration of PVA exceeds a certain value, the O / W emulsion stabilizes,
It is considered that the PMLG spherical particles have a constant particle size.

【0056】実施例5(セルロース、バッチ式) 図1に示した装置を用いてセルローストリアセテート
(TAC)の球状粒子化を行った。SPGチューブは平
均細孔径が 4.2μmのものを使用し、実施例1と同様に
脱気を行っておいた。
Example 5 (Cellulose, Batch Type) Spherical particles of cellulose triacetate (TAC) were formed by using the apparatus shown in FIG. An SPG tube having an average pore diameter of 4.2 μm was used, and degassing was performed in the same manner as in Example 1.

【0057】水相には、1wt%PVA水溶液を同実施例
と同様にして2400ml調製した。
In the aqueous phase, 2400 ml of a 1 wt% PVA aqueous solution was prepared in the same manner as in the same example.

【0058】油相には、TAC5.06g及び塩化メチレン
400mlをビーカーに入れ、約2時間よく撹拌し、更に5
〜9μmのガラスフィルターで濾過したものをTAC1
wt%塩化メチレン溶液として用いた。
The oil phase contains 5.06 g of TAC and methylene chloride.
Add 400 ml to a beaker and stir well for about 2 hours, then add 5 more
TAC1 filtered through a ~ 9μm glass filter
Used as a wt% methylene chloride solution.

【0059】膜乳化操作は同実施例と同様にして約4時
間行ったが、連結管にはテフロン製チューブを用いた。
The membrane emulsification operation was carried out for about 4 hours in the same manner as in the same example, but a Teflon tube was used as the connecting tube.

【0060】粒子化は30℃で約24時間かけて溶媒を蒸発
除去し、TAC球状粒子を調製した。
The particles were formed by removing the solvent by evaporation at 30 ° C. for about 24 hours to prepare TAC spherical particles.

【0061】得られた粒子は蒸留水中にて保存した。The obtained particles were stored in distilled water.

【0062】なお、このようにしてSPGチューブを使
用して調製したTAC球状粒子の粒径分布及び光学顕微
鏡写真と市販されているセルロースのそれらとを比較検
討したところ、SPGチューブを用いて調製したTAC
球状粒子は、市販のセルロース粒子に比べて粒径分布が
狭いことが確認された。
The particle size distribution and optical micrograph of TAC spherical particles thus prepared using the SPG tube were compared and examined with those of commercially available cellulose, and it was prepared using the SPG tube. TAC
It was confirmed that the spherical particles had a narrower particle size distribution than the commercially available cellulose particles.

【0063】[0063]

【発明の効果】本発明によれば、以上に説明してきたよ
うに、ミクロ多孔ガラスチューブを用いた膜乳化を介す
る疎水性ポリアミノ酸及び疎水性セルロースの球状微粒
子化における特性として、1)そのようなチューブを用
いることにより粒径分布が狭く単分散性の高い粒子を得
ることが可能である、2)そのようなチューブの細孔径
により粒子径を容易に制御できる、及び3)連続的な粒
子化が可能である。
EFFECTS OF THE INVENTION According to the present invention, as described above, the characteristics in the formation of spherical fine particles of hydrophobic polyamino acid and hydrophobic cellulose through membrane emulsification using a microporous glass tube are 1) It is possible to obtain particles having a narrow particle size distribution and high monodispersity by using such a tube, 2) the particle size can be easily controlled by the pore size of such a tube, and 3) continuous particles. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で用いた微小球粒子製造装置の概略を
示す。
FIG. 1 shows an outline of an apparatus for producing microsphere particles used in Example 1.

【図2】実施例2で用いた連続微小球粒子化装置の概略
を示す。
FIG. 2 shows an outline of a continuous microsphere particle forming device used in Example 2.

【図3】比較例1で用いた微小球粒子製造装置の概略を
示す。
FIG. 3 shows an outline of an apparatus for producing microsphere particles used in Comparative Example 1.

【図4】本発明の方法で得られた微小球粒子と従来法で
得られたそれとの粒径分布の比較を示す。
FIG. 4 shows a comparison of the particle size distribution between the microsphere particles obtained by the method of the present invention and that obtained by the conventional method.

【図5】本発明の方法で得られた微小球粒子と従来法で
得られたそれとの粒径分布の他の比較を示す。
FIG. 5 shows another comparison of particle size distribution between microsphere particles obtained by the method of the present invention and those obtained by a conventional method.

【図6】ミクロ多孔ガラスチューブの細孔径と該チュー
ブを使用して得られる微小球粒子の平均粒径との関係を
示す。
FIG. 6 shows the relationship between the pore size of a microporous glass tube and the average particle size of microsphere particles obtained by using the tube.

【図7】粘度調節剤の濃度の、微小球粒子の粒径に対す
る影響を示す。
FIG. 7 shows the effect of viscosity modifier concentration on microsphere particle size.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊原 博隆 熊本県熊本市高平3−21−9 (72)発明者 岩月 誠 東京都中央区京橋1丁目15番1号 味の素 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirotaka Ihara 3-21-9 Takahira, Kumamoto-shi, Kumamoto Prefecture (72) Inventor Makoto Iwatsuki 1-15-1 Kyobashi, Chuo-ku, Tokyo Ajinomoto Co., Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 疎水性ポリアミノ酸又は疎水性セルロー
スの有機溶媒溶液(油相、分散相)及び水性媒体(水
相、連続相)を材料とし、これをミクロ多孔ガラスチュ
ーブによる膜乳化に付してO/Wエマルジョンを作成
し、このエマルジョンから有機溶媒を蒸発除去して該ポ
リアミノ酸又は該セルロースの微小球粒子の該水性媒体
における分散体を得、そして所望により該微小球粒子を
該分散体から分離することを特徴とする単分散微小球粒
子の製造法。
1. A solution of a hydrophobic polyamino acid or a hydrophobic cellulose in an organic solvent (oil phase, dispersed phase) and an aqueous medium (aqueous phase, continuous phase) are used as materials and subjected to membrane emulsification with a microporous glass tube. To form an O / W emulsion, from which the organic solvent is removed by evaporation to obtain a dispersion of the polyamino acid or the cellulose microspheres in the aqueous medium, and optionally the microspheres. A method for producing monodisperse microsphere particles, characterized in that
【請求項2】 該有機溶媒溶液に、該ポリアミノ酸又は
該セルロースに非相溶性の、該有機溶媒に相溶性の、該
水性媒体に非溶解性の、かつ、該有機溶媒及び該水性媒
体よりも沸点の高い添加剤(多孔化用添加剤)を添加し
ておくことを特徴とする請求項1記載の単分散微小球粒
子の製造法。
2. The organic solvent solution is incompatible with the polyamino acid or the cellulose, compatible with the organic solvent, insoluble in the aqueous medium, and more than the organic solvent and the aqueous medium. The method for producing monodisperse microsphere particles according to claim 1, wherein an additive having a high boiling point (additive for porosity) is also added.
JP4295193A 1992-11-04 1992-11-04 Production of monodisperse fine spherical particle Pending JPH06142505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4295193A JPH06142505A (en) 1992-11-04 1992-11-04 Production of monodisperse fine spherical particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4295193A JPH06142505A (en) 1992-11-04 1992-11-04 Production of monodisperse fine spherical particle

Publications (1)

Publication Number Publication Date
JPH06142505A true JPH06142505A (en) 1994-05-24

Family

ID=17817408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4295193A Pending JPH06142505A (en) 1992-11-04 1992-11-04 Production of monodisperse fine spherical particle

Country Status (1)

Country Link
JP (1) JPH06142505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207939A (en) * 2010-03-29 2011-10-20 Toppan Printing Co Ltd Cellulose dispersion and molding thereof
JP2021021045A (en) * 2019-07-30 2021-02-18 Jnc株式会社 Method for producing cellulose particles using porous membrane
CN115887285A (en) * 2022-11-11 2023-04-04 无锡萃纯生物材料科技有限公司 Process and equipment for preparing cellulose microspheres and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207939A (en) * 2010-03-29 2011-10-20 Toppan Printing Co Ltd Cellulose dispersion and molding thereof
JP2021021045A (en) * 2019-07-30 2021-02-18 Jnc株式会社 Method for producing cellulose particles using porous membrane
CN115887285A (en) * 2022-11-11 2023-04-04 无锡萃纯生物材料科技有限公司 Process and equipment for preparing cellulose microspheres and application

Similar Documents

Publication Publication Date Title
DK173005B1 (en) Process for the preparation of a water-insoluble polymer powder that can be redispersed in a liquid phase, together with a process for the preparation of a water- insoluble polymer in the form of a liquid dispersion
JP5390193B2 (en) Cellulose microparticles and dispersions and dispersions thereof
Bosma et al. Preparation of monodisperse, fluorescent PMMA–latex colloids by dispersion polymerization
US4833060A (en) Polymeric powders having a predetermined and controlled size and size distribution
EP0047064A1 (en) Process for preparing porous, spherical cellulose particles
Madan et al. Microencapsulation of a waxy solid: wall thickness and surface appearance studies
EP1819759B1 (en) Method and device for making polymer foam beads or balloons
WO2019037613A1 (en) A method for preparing monodispersed polymer microparticles
JPH06142505A (en) Production of monodisperse fine spherical particle
CN104226191A (en) Normal temperature preparation method of ethyl cellulose porous particles
JP2004002582A (en) Fine particle containing natural polysaccharides and method for producing the same
US4937081A (en) Process for producing porous, spherical particles
JPH082992B2 (en) Manufacturing method of porous spherical particles
CN105816440A (en) Preparing method for gelatin microspheres
Yoshizawa et al. Novel procedure for monodispersed polymeric microspheres with high electrifying additive content by particle-shrinking method via SPG membrane emulsification
JP7311258B2 (en) Method for producing spherical particles
CN112430335B (en) Structure-controllable anisotropic polymer microsphere and preparation method thereof
Douliez et al. One step generation of single-core double emulsions from polymer-osmose-induced aqueous phase separation in polar oil droplets
CN115260566B (en) Preparation method of agarose porous microspheres based on ZIF-8
CN109097837B (en) Universal synthesis method of nano organic crystal
JP2023080416A (en) Method for producing cellulose acetate fine particle
US20210301054A1 (en) Scalable Preparation Of Janus Particles With High Naturality
Abe et al. Preparation of Nanocapsules with Alginate/Polylysine Complex Wall
JP2794439B2 (en) Method for controlling micropore size of cellulosic material
Maron et al. Morphologic changes in gelled synthetic latices