JPH0614094B2 - Insulation deterioration diagnosis method for power cables - Google Patents

Insulation deterioration diagnosis method for power cables

Info

Publication number
JPH0614094B2
JPH0614094B2 JP59081472A JP8147284A JPH0614094B2 JP H0614094 B2 JPH0614094 B2 JP H0614094B2 JP 59081472 A JP59081472 A JP 59081472A JP 8147284 A JP8147284 A JP 8147284A JP H0614094 B2 JPH0614094 B2 JP H0614094B2
Authority
JP
Japan
Prior art keywords
cable
insulation deterioration
component
water tree
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59081472A
Other languages
Japanese (ja)
Other versions
JPS60225072A (en
Inventor
謙一郎 杣
誠 柴田
順夫 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP59081472A priority Critical patent/JPH0614094B2/en
Publication of JPS60225072A publication Critical patent/JPS60225072A/en
Publication of JPH0614094B2 publication Critical patent/JPH0614094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は、ゴム・プラスチック絶縁電力ケーブル、主と
して架橋ポリエチレン絶縁電力ケーブル(以下「CVケ
ーブル」と言う。)の絶縁劣化診断方法に関するもので
ある。
Description: BACKGROUND AND OBJECT OF THE INVENTION The present invention relates to a method for diagnosing insulation deterioration of rubber / plastic insulated power cables, mainly crosslinked polyethylene insulated power cables (hereinafter referred to as “CV cables”). .

CVケーブルの絶縁劣化は、主として水トリーによるこ
とが明らかになっている。従って、CVケーブルの絶縁
劣化による絶縁破壊事故を未然に防ぐには、この水トリ
ーの発生を知ることが重要である。従来、この水トリー
の検出方法として、直流もれ電流法、残留電圧法、逆吸
収電流法等が用いられている。これらの方法は、いずれ
も、線路停止後に水トリーを検知するものであり、活線
路の水トリーによる絶縁破壊事故を確実に防ぐことはで
きなかった。このため、最近では、活線状態でのケーブ
ル絶縁診断法として、ケーブルの接地線に流れる接地線
電流の中から水トリーからの劣化信号である直流電流成
分(以下「直流成分」という。)を検出し、その極性及
び大きさから、ケーブルの絶縁劣化状態を診断する方法
が検討されている。
It has been revealed that the insulation deterioration of the CV cable is mainly due to the water tree. Therefore, in order to prevent a dielectric breakdown accident due to insulation deterioration of the CV cable, it is important to know the occurrence of this water tree. Conventionally, a DC leakage current method, a residual voltage method, a reverse absorption current method, etc. have been used as a method for detecting this water tree. All of these methods detect the water tree after the track is stopped, and it was not possible to reliably prevent a dielectric breakdown accident due to the water tree on the live track. For this reason, recently, as a cable insulation diagnosis method in a live state, a DC current component (hereinafter referred to as "DC component"), which is a deterioration signal from a water tree, is included in the ground wire current flowing in the ground wire of the cable. A method of detecting and diagnosing the insulation deterioration state of the cable from the polarity and the size thereof is being studied.

ところで、CVケーブルの絶縁体中に水トリーが発生す
ると、接地線電流の中から直流成分が検出されるが、こ
の時、次のことが言える。
By the way, when a water tree is generated in the insulator of the CV cable, a DC component is detected from the ground wire current. At this time, the following can be said.

(1) 直流成分の発生は、水トリーの発生に起因し、ケー
ブルの内部半導電層側より発生する水トリー、いわゆる
内導水トリーが発生した場合は負極性の直流成分が発生
し、ケーブルの外部半導電層側より発生する水トリー、
いわゆる外導水トリーが発生した場合は正極性の直流成
分が発生する。
(1) The generation of the DC component is caused by the generation of the water tree, and when a water tree generated from the inner semiconductive layer side of the cable, a so-called inner water conduction tree is generated, a negative DC component is generated and the cable Water tree generated from the external semiconductive layer side,
When a so-called external water-conducting tree is generated, a direct current component of positive polarity is generated.

(2) 直流成分の絶対値が大きいほど、水トリーがケーブ
ル絶縁体に占める体積が大きい。
(2) The larger the absolute value of the DC component, the larger the volume occupied by the water tree in the cable insulator.

(3) 直流成分の絶対値が大きいほど、長い水トリーが発
生している。
(3) The larger the absolute value of the DC component, the longer the water tree is generated.

以上のことから、直流成分の極性及び大きさを検出する
ことにより、ケーブル中の水トリーの有無、大きさ及び
発生方向を知ることができ、ケーブルの運転中の絶縁破
壊事故を未然に防ぐことができる。(特願昭58−76885
号参照。) しかしながら、この方法を実布設ケーブルに適用する
際、次のような問題がある。すなわち、被測定線路内に
測定部所以外の接地線が存在したり、ケーブルのシース
の損傷あるいは劣化等によりその絶縁抵抗が低下してい
る場合に、測定部所の接地線、ケーブルの金属遮へい
層、大地及び他の接地線あるいはシースの絶縁抵抗低下
部により閉回路が形成され、その結果、これらの閉回路
に大地から迷走電流が流入し、水トリーからの劣化信号
と重畳して測定され、劣化信号を判別できなくなる。
From the above, by detecting the polarity and size of the DC component, it is possible to know the presence, size, and direction of the water tree in the cable, and prevent dielectric breakdown accidents during cable operation. You can (Japanese Patent Application Sho 58-76885
See issue. However, there are the following problems when applying this method to an actual cable. In other words, if there is a ground wire in the measured line other than the measurement area, or if the insulation resistance of the cable is reduced due to damage or deterioration of the cable sheath, the metal shield of the ground wire of the measurement area and the cable Closed circuits are formed by layers, ground and other ground lines or sheaths with reduced insulation resistance.As a result, stray currents flow from these ground circuits into the closed circuit, and are measured in combination with the deterioration signal from the water tree. , The deterioration signal cannot be discriminated.

本発明の目的は、前述した従来技術の欠点を解消し、よ
り正確に水トリーの発生したケーブルからの劣化信号で
ある直流成分を測定し、ケーブルの絶縁劣化検出の精度
を著しく向上させる新規な方法を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, measure the DC component, which is a deterioration signal from a cable in which a water tree is generated more accurately, and significantly improve the accuracy of cable insulation deterioration detection. To provide a method.

[発明の概要] すなわち、本発明の要旨は、活線路で絶縁劣化診断の対
象とする電力ケーブル線路の接地変圧器の中性点と大地
間から直流成分を検出して、その極性及び大きさを解析
し、水トリーの有無、大きさ及び発生方向を検出し、上
記ケーブルの使用継続の可否を判定することにある。
[Summary of the Invention] That is, the gist of the present invention is to detect the DC component from the neutral point and the ground of the grounding transformer of the power cable line, which is the target of the insulation deterioration diagnosis in the live line, and detect its polarity and magnitude. The presence or absence of water trees, their size, and their generation direction are analyzed to determine whether or not the cable can be continuously used.

[実施例] 以下、添付図面を参照して本発明の一実施例を詳細に説
明する。
[Embodiment] An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図に被測定線路内に接続部を含み、その遮へい層が
接地されている場合の一例を示す。
FIG. 1 shows an example of the case where the measured line includes a connection part and the shielding layer is grounded.

なお、図中、1は接地用変圧器、2はケーブル端末接続
部、3はCVケーブル、4はケーブル接地部、5はケー
ブル接地線、6は接続部接地線、7は高圧母線である。
In the figure, 1 is a grounding transformer, 2 is a cable terminal connecting portion, 3 is a CV cable, 4 is a cable grounding portion, 5 is a cable grounding wire, 6 is a connecting portion grounding wire, and 7 is a high voltage busbar.

また、図中のは、接地線、ケー
ブル金属遮へい層、大地からなる閉回路に流れる迷走電
流であり、はCVケーブルからの接地線電流
である。は接地用変圧器1の接地線の流れる電流で
ある。
Further, in the figure, 4 , 5 , 6 , and 7 are stray currents flowing in a closed circuit composed of a ground wire, a cable metal shielding layer, and the ground, and 1 and 2 are ground wire currents from the CV cable. 3 is a current flowing through the ground wire of the grounding transformer 1.

一方、迷走電流は、図に示すよ
うに閉回路を流れていることから、接地用変圧器1の接
地線に流れる電流は、に等しい。
On the other hand, the stray currents 4 , 5 , 6 , 7 flow in the closed circuit as shown in the figure, and therefore the current 3 flowing in the ground wire of the grounding transformer 1 is equal to 1 + 2 .

従って、の中から直流成分を検出し、その大きさ及
び極性からケーブル絶縁体中の水トリーの有無、大き
さ、発生方向を知り、ケーブルの使用継続の可否を判定
することができる。
Therefore, it is possible to detect the DC component from 3 and know the presence or absence, size, and generation direction of the water tree in the cable insulator from the size and polarity, and determine whether or not to continue using the cable.

次に、第2図により、第1図に示す被測定線路の絶縁劣
化診断手順について説明すると、まず、接地用変圧器1
の接地線8の途中に開閉器9を設置する。開閉器9は、
非測定時には閉じており、絶縁劣化診断時には解放され
る。次いで、上記開閉器9設置部所の両接地線端に、直
流成分測定装置10を接続する。直流成分測定装置10
は、地絡時安全装置11、瀘波回路12、増幅回路1
3、演算回路14、表示装置15から成っている。しか
して、接地変圧器1の中性点から接地線8に流れるI
から直流成分を検出して、その極性及び大きさを解析
し、ケーブル絶縁体中の水トリーの有無、大きさ、発生
方向を検知する。
Next, the insulation deterioration diagnosis procedure of the measured line shown in FIG. 1 will be described with reference to FIG.
A switch 9 is installed in the middle of the ground wire 8 of. The switch 9 is
It is closed during non-measurement and released during insulation deterioration diagnosis. Next, the DC component measuring device 10 is connected to both ground wire ends of the switch 9 installation part. DC component measuring device 10
Is a ground fault safety device 11, a filtering circuit 12, and an amplifying circuit 1.
3, an arithmetic circuit 14, and a display device 15. Then, I 3 flowing from the neutral point of the grounding transformer 1 to the grounding wire 8
The direct current component is detected from the data, the polarity and the size of the direct current component are analyzed, and the presence, size, and direction of the water tree in the cable insulator are detected.

[発明の効果] 以上のように、本発明の接地用変圧器の中性点に流れる
電流のうちの直流成分を検出することにより、当初問題
とした迷走電流等とケーブルからの劣化信号である直流
成分を区別でき、ケーブルの絶縁劣化状況を正確に知る
ことができる。
[Effects of the Invention] As described above, by detecting the DC component of the current flowing through the neutral point of the grounding transformer of the present invention, the stray current and the deterioration signal from the cable, which are initially problematic, can be obtained. The DC component can be distinguished, and the cable insulation deterioration condition can be accurately known.

従って、ケーブルの破壊事故を、延いては停電事故を未
然に防ぐことができ、電力需要家への損害の大巾な低減
をはかることができる。
Therefore, it is possible to prevent a cable breakage accident and a power failure accident in advance, and it is possible to significantly reduce damage to electric power consumers.

【図面の簡単な説明】[Brief description of drawings]

図は、本発明電力ケーブルの絶縁劣化診断法の一実施例
説明図にして、第1図は被測定線路の全体説明図、第2
図は本発明の実施例説明図である。 1:接地用変圧器、 2:ケーブル端末接続部、 3:CVケーブル、 4:ケーブル接続部、 5:ケーブル接地線、 6:接続部接地線、 7:高圧母線、 8:接地用変圧器接地線、 9:開閉器、 10:直流成分測定装置、 11:地絡時安全装置、 12:瀘波回路、 13:増巾回路、 14:演算回路、 15:表示装置。
FIG. 1 is an explanatory view of an embodiment of a method for diagnosing insulation deterioration of a power cable of the present invention, and FIG. 1 is an overall explanatory view of a measured line,
The figure is an illustration of an embodiment of the present invention. 1: Grounding transformer, 2: Cable terminal connection part, 3: CV cable, 4: Cable connection part, 5: Cable grounding wire, 6: Connection part grounding wire, 7: High voltage bus bar, 8: Grounding transformer grounding Wire, 9: Switch, 10: DC component measuring device, 11: Ground fault safety device, 12: Filter circuit, 13: Widening circuit, 14: Arithmetic circuit, 15: Display device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】運転状態にある電力ケーブル系統の接地変
圧器の中性点から直流電流成分を検出して、その極性及
び大きさを解析し、ケーブル絶縁体中の水トリーの有
無、大きさ、発生方向を検知して、上記ケーブルの使用
継続の可否を判定することを特徴とする電力ケーブルの
絶縁劣化診断法。
1. A direct current component is detected from a neutral point of a grounding transformer of a power cable system in an operating state, its polarity and size are analyzed, and the presence or absence of a water tree in the cable insulator and its size. A method for diagnosing insulation deterioration of a power cable, characterized by detecting the direction of occurrence and determining whether or not the cable can be continuously used.
JP59081472A 1984-04-23 1984-04-23 Insulation deterioration diagnosis method for power cables Expired - Lifetime JPH0614094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081472A JPH0614094B2 (en) 1984-04-23 1984-04-23 Insulation deterioration diagnosis method for power cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081472A JPH0614094B2 (en) 1984-04-23 1984-04-23 Insulation deterioration diagnosis method for power cables

Publications (2)

Publication Number Publication Date
JPS60225072A JPS60225072A (en) 1985-11-09
JPH0614094B2 true JPH0614094B2 (en) 1994-02-23

Family

ID=13747340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081472A Expired - Lifetime JPH0614094B2 (en) 1984-04-23 1984-04-23 Insulation deterioration diagnosis method for power cables

Country Status (1)

Country Link
JP (1) JPH0614094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435281A (en) * 1987-07-29 1989-02-06 Hitachi Cable Method for diagnosing dielectric breakdown of power cable

Also Published As

Publication number Publication date
JPS60225072A (en) 1985-11-09

Similar Documents

Publication Publication Date Title
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
JPH0614094B2 (en) Insulation deterioration diagnosis method for power cables
JPH0429982B2 (en)
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JP3010367B2 (en) Insulation resistance measurement method of cable sheath under hot wire
JPH05133995A (en) Method for diagnosing insulation deterioration of power cable
JPS629277A (en) Diagnostic method for cable insulation under hotline
JPS5848872A (en) Detecting device for cable deterioration
JPH062518U (en) Power cable with tree detector
JPH0119105B2 (en)
JPH0378588B2 (en)
JP2665935B2 (en) Measuring method of dielectric loss of cable
JPS60216273A (en) Detection of sheath damage of power cable under live condition
JPS5856116B2 (en) Method for locating defective points of corrosion protection layer insulation under live wires
JPH07260849A (en) Hot-line diagnosing method for power cable, and diagnosing ground circuit
JPH0376431B2 (en)
JPS63281073A (en) Detecting method for water tree current of cv cable
JPH0442779Y2 (en)
JPH0820476B2 (en) Water tree current detection method for CV cable
JP2612648B2 (en) Deterioration judgment method for insulation of three-phase power cable
JPS60216276A (en) Diagnosis of insulating deterioration of power cable
JPS59195167A (en) Detection of defective linear connection of high tension power cable
Simpson et al. Tests on Wiring Installations and Fault Location in Cables
JPH0619415B2 (en) Water tree current detector for CV cable
JPH065125A (en) External flaw detecting type cable