JPH06140074A - Lithium ion conductive solid electrolyte material - Google Patents

Lithium ion conductive solid electrolyte material

Info

Publication number
JPH06140074A
JPH06140074A JP4306455A JP30645592A JPH06140074A JP H06140074 A JPH06140074 A JP H06140074A JP 4306455 A JP4306455 A JP 4306455A JP 30645592 A JP30645592 A JP 30645592A JP H06140074 A JPH06140074 A JP H06140074A
Authority
JP
Japan
Prior art keywords
lithium ion
electrolyte material
solid electrolyte
ion conductive
conductive solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4306455A
Other languages
Japanese (ja)
Inventor
Takahisa Masashiro
尊久 正代
Hideaki Otsuka
秀昭 大塚
Masahiro Ichimura
雅弘 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4306455A priority Critical patent/JPH06140074A/en
Publication of JPH06140074A publication Critical patent/JPH06140074A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a lithium ion conductive solid electrolyte material which has high lithium ion conductivity and by which a ring rate of a lithium ion becomes large and decomposition voltage becomes high and which is stable chemically and thermally. CONSTITUTION:A lithium ion conductive solid electrolyte material is composed of a constituent expressed by (x/2)Li2SO4-yMgSO4-(z/2)Al2(SO4)3 (provided that, 0<x<1, 0<y<1, 0<z<1 and x+Y+z=1). As a result, high lithium ion conductivity can be exhibited, and decomposition voltage becomes high, and electron conductivity becomes very small, and it is stable chemically and thermally. Thereby, when this lithium ion conductive solid electrolyte material is applied to an electrolyte material of a solid battery or the like, characteristic improvement in the solid battery or the like can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウムイオン導電性固
体電解質材料に関し、さらに詳しくは固体電池、固体電
気二重層キャパシタ、固体エレクトロクロミック表示素
子等に利用されるリチウムイオン導電性固体電解質材料
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion conductive solid electrolyte material, and more particularly to a lithium ion conductive solid electrolyte material used for solid batteries, solid electric double layer capacitors, solid electrochromic display devices and the like.

【0002】[0002]

【従来の技術および問題点】負極活物質としてリチウム
を用い、電解質としてリチウムイオン導電性の固体電解
質を用いたリチウム固体電池は、高エネルギー密度であ
り、液漏れがないため信頼性・安全性が高く、さらに電
池材料がすべて固体であるため小型および薄型にできる
等の点で、非常に利点が多い。このような固体電池への
応用を目的として、高いリチウムイオン導電性を有し、
かつ化学的に安定な固体電解質材料の開発が望まれてい
る。
2. Description of the Related Art Lithium solid state batteries using lithium as a negative electrode active material and a lithium ion conductive solid electrolyte as an electrolyte have high energy density and have no liquid leakage, so that they are reliable and safe. It has many advantages in that it is expensive and that the battery material is solid and can be made small and thin. With high lithium ion conductivity for the purpose of application to such solid state batteries,
Further, development of a chemically stable solid electrolyte material is desired.

【0003】リチウムイオン導電性固体電解質材料は、
現在までのところ、40mol%のAl23を添加した
LiIのみがリチウム固体電池に応用され、実用されて
いるにすぎない。この他にリチウムイオン導電性固体電
解質材料としてLi3N、LiTi2(PO43系、Li
4Zn(GeO44、LiI−Li2S−MSx系等が知
られている。Li3Nは分解電圧が0.5V以下と非常
に低く、LiTi2(PO43系はリチウムと反応し、
正極活物質材料として働き、Li4Zn(GeO44
溶融リチウムと激しく反応し不安定であり、LiI−L
2S−MSx系は10−4S/cm程度と高いリチウム
イオン導電性を示すが、分解電圧が3.0V以下である
という問題点を持っており、いずれも固体電池への適用
はなされていない。
The lithium ion conductive solid electrolyte material is
So far, only LiI added with 40 mol% of Al 2 O 3 has been applied to a lithium solid state battery and is in practical use. In addition, lithium ion conductive solid electrolyte materials such as Li 3 N, LiTi 2 (PO 4 ) 3 system, Li
4 Zn (GeO 4) 4, LiI-Li 2 S-MS x system and the like are known. Li 3 N has a very low decomposition voltage of 0.5 V or less, and LiTi 2 (PO 4 ) 3 system reacts with lithium,
Acting as a positive electrode active material, Li 4 Zn (GeO 4 ) 4 reacts violently with molten lithium and is unstable, and LiI-L
The i 2 S-MS x system exhibits high lithium ion conductivity of about 10 −4 S / cm, but has a problem that the decomposition voltage is 3.0 V or less, and both are not applied to solid-state batteries. Not not.

【0004】[0004]

【発明の目的】本発明は上述の現状に鑑みなされたもの
で、リチウムイオン導電性が高く、リチウムイオンの輸
率が大きく、しかも分解電圧が高く、化学的・熱的に安
定なリチウムイオン導電性固体電解質材料を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has a high lithium ion conductivity, a high lithium ion transport number, a high decomposition voltage, and a chemically and thermally stable lithium ion conductive material. The purpose of the present invention is to provide a solid electrolyte material.

【0005】[0005]

【問題点を解決するための手段】上記問題点を解決する
ため、本発明によるリチウムイオン導電性固体電解質材
料は、(x/2)Li2SO4−yMgSO4−(z/
2)Al2(SO43(ただし、0<x<1、0<y<
1、0<z<1、x+y+z=1)で示される組成物よ
りなることを特徴としている。
Means for Solving the Problems] To solve the above problems, a lithium ion conductive solid electrolyte material according to the invention, (x / 2) Li 2 SO 4 -yMgSO 4 - (z /
2) Al 2 (SO 4 ) 3 (where 0 <x <1, 0 <y <
1, 0 <z <1, x + y + z = 1).

【0006】本発明をさらに詳しく説明する。ナトリウ
ムイオン導電性の固体電解質材料として知られているN
ASICON(Na1+xZr2Six3-x12)は、三次
元の網目構造をしており、この網目構造中にはリチウム
イオンの拡散が容易なトンネルが多数存在すると考えら
れている。そこで本発明では、比較的高いリチウムイオ
ン導電性を持つ材料を合成するためには、このNASI
CON系材料と類似の三次元の網目構造を持つ材料を合
成すればよいと考えた。三次元の網目構造を形成する可
能性がある陰イオンとして、(PO43-、(SiO4
4-、(SO42 -等が挙げられ、本発明では硫酸イオン
((SO42-)に着目し、(x/2)Li2SO4−y
MgSO4−(z/2)Al2(SO43(ただし、0<
x<1、0<y<1、0<z<1、x+y+z=1)で
示される固体電解質材料を合成したところ、高いリチウ
ムイオン導電性を示すことを見い出した。
The present invention will be described in more detail. N known as a solid electrolyte material having sodium ion conductivity
ASIC (Na 1 + x Zr 2 Si x P 3-x O 12 ) has a three-dimensional network structure, and it is considered that many tunnels in which lithium ions can easily diffuse exist in this network structure. There is. Therefore, in the present invention, in order to synthesize a material having a relatively high lithium ion conductivity, this NASI is used.
It was thought that a material having a three-dimensional network structure similar to the CON-based material should be synthesized. As anions that may form a three-dimensional network structure, (PO 4 ) 3- , (SiO 4 )
4- , (SO 4 ) 2-, and the like. In the present invention, attention is paid to sulfate ion ((SO 4 ) 2- ) and (x / 2) Li 2 SO 4 -y
MgSO 4 - (z / 2) Al 2 (SO 4) 3 ( where 0 <
When a solid electrolyte material represented by x <1, 0 <y <1, 0 <z <1, x + y + z = 1) was synthesized, it was found that it exhibits high lithium ion conductivity.

【0007】また、固体電解質の構成元素に、遷移金属
を含む材料は、リチウムイオンによって遷移金属が還元
され電子伝導性が大きくなったり、リチウムと反応し分
解する危険性があるが、本発明の固体電解質材料は、構
成元素をすべて典型元素にすることにより、電子伝導性
を非常に小さく、かつリチウムとの反応性を低くするこ
とができた。
Further, in a material containing a transition metal as a constituent element of the solid electrolyte, there is a risk that the transition metal is reduced by lithium ions to increase the electron conductivity or react with lithium to decompose. The solid electrolyte material was able to have extremely low electron conductivity and low reactivity with lithium by using all the constituent elements as typical elements.

【0008】さらに、本発明の固体電解質材料は、通常
の焼成法によって合成することができるため、600℃
付近までは熱的に安定である。
Further, since the solid electrolyte material of the present invention can be synthesized by a usual firing method, it is 600 ° C.
It is thermally stable up to the vicinity.

【0009】以上説明したように、本発明によるリチウ
ムイオン導電性固体電解質材料によれば、高いリチウム
イオン導電性を示すとともに、分解電圧も高く、電子伝
導性も非常に小さく、化学的・熱的に安定であるという
利点があり、このため本発明のリチウムイオン導電性固
体電解質材料を固体電池等の電解質材料に適用すること
によって、固体電池等の特性改善が達成しえるという利
点がある。
As described above, the lithium ion conductive solid electrolyte material according to the present invention exhibits high lithium ion conductivity, high decomposition voltage, very low electron conductivity, and chemical / thermal properties. Therefore, there is an advantage that by applying the lithium ion conductive solid electrolyte material of the present invention to an electrolyte material such as a solid battery, improvement of characteristics of the solid battery can be achieved.

【0010】[0010]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0011】本発明によるリチウムイオン導電性固体電
解質材料は通常の磁器焼成法により作製できる。市販の
特級試薬のLi2SO4・H2O、MgSO4、Al2(S
43を原料とし、これらの原料を所定の秤量式に基づ
いて秤量し、充分混合した。次に、これらをアルミナる
つぼに移して、550℃で24時間、大気中で、電気炉
を用いて仮焼した。その後、この仮焼粉末を1〜2to
n/cm2の圧力で成形し、600℃で6時間、大気中
で、電気炉を用いて焼成した。
The lithium ion conductive solid electrolyte material according to the present invention can be produced by a usual porcelain firing method. Commercially available special grade reagents Li 2 SO 4 .H 2 O, MgSO 4 , Al 2 (S
O 4 ) 3 was used as a raw material, and these raw materials were weighed according to a predetermined weighing formula and mixed sufficiently. Next, these were transferred to an alumina crucible and calcined at 550 ° C. for 24 hours in the air using an electric furnace. After that, the calcined powder is added to 1 to 2 to
It was molded at a pressure of n / cm 2 and baked at 600 ° C. for 6 hours in the air using an electric furnace.

【0012】得られた焼結体の全導電率の測定は、試料
の両面に金を蒸着し、これを電極として、インピーダン
スアナライザーを用いて交流二端子法により求めた。ま
た試料の両面にリチウム金属を圧着し、直流二端子法に
よる測定からも全導電率を求めた。リチウムイオンの輸
率は直流法を用いて電子導電率を測定し、全導電率と電
子導電率の比から算出した。また、分解電圧は、直流法
を用い、電流−電位曲線により求めた。
The total conductivity of the obtained sintered body was measured by depositing gold on both sides of the sample and using this as an electrode by an AC two-terminal method using an impedance analyzer. Further, the total conductivity was also obtained by pressing lithium metal on both sides of the sample and measuring by the DC two-terminal method. The transport number of lithium ion was calculated from the ratio of the total conductivity to the electronic conductivity by measuring the electronic conductivity using the direct current method. Further, the decomposition voltage was obtained from the current-potential curve using the direct current method.

【0013】上記の条件で作製した試料(実施例1〜1
9)の導電率を表1に示す。全試料とも高いリチウムイ
オン導電性を示した。また本発明におけるリチウムイオ
ン導電性固体電解質材料の電子輸率はすべて1×10-5
以下であり、電子伝導性は無視できる。しかも、交流法
から求めた全導電率と直流法から求めた全導電率は一致
した。このことから、これらの試料の可動イオンはリチ
ウムイオンであることを確認した。また、電流−電位曲
線は、全試料とも印加電圧が10Vまで、比例関係が認
められ、分解による電流の急増は見られなかった。した
がって、分解電圧は10V以上であることがわかる。
Samples produced under the above conditions (Examples 1 to 1)
The conductivity of 9) is shown in Table 1. All samples showed high lithium ion conductivity. Further, the electron transport numbers of the lithium ion conductive solid electrolyte materials in the present invention are all 1 × 10 −5.
Below, electronic conductivity is negligible. Moreover, the total conductivity determined by the AC method and the total conductivity determined by the DC method were in agreement. From this, it was confirmed that the mobile ions of these samples were lithium ions. In addition, the current-potential curve showed a proportional relationship up to an applied voltage of 10 V in all samples, and no rapid increase in current due to decomposition was observed. Therefore, it can be seen that the decomposition voltage is 10 V or more.

【0014】さらに、熱天秤を用いて、本発明の固体電
解質材料とリチウム金属の反応性を調べたが、リチウム
金属の溶融温度まで反応の形跡は認められなかった。ま
た試料の両面にリチウム金属を圧着し、これを電極とし
て電極間に5Vの電圧を印加し、その時の電流を100
0時間測定したが、急激な変化は認められなかった。こ
のことから、本発明のリチウムイオン導電性固体電解質
材料は、リチウム金属に対して化学的・熱的に安定であ
る。
Furthermore, the reactivity of the solid electrolyte material of the present invention with lithium metal was examined using a thermobalance, but no evidence of reaction was observed up to the melting temperature of lithium metal. Lithium metal was pressure-bonded to both surfaces of the sample, and this was used as an electrode to apply a voltage of 5 V between the electrodes.
The measurement was performed for 0 hours, but no rapid change was observed. From this, the lithium ion conductive solid electrolyte material of the present invention is chemically and thermally stable to lithium metal.

【0015】表1 Table 1

【0016】[0016]

【発明の効果】上説明したように、本発明によるリチウ
ムイオン導電性固体電解質材料は、高いリチウムイオン
導電性を示すとともに、分解電圧も高く、電子伝導性も
非常に小さく、化学的・熱的に安定であるという特徴を
有している。したがって、このリチウムイオン導電性固
体電解質材料を固体電池等の電解質材料に適用すること
によって、固体電池等の特性改善が達成できるという利
点がある。
As described above, the lithium ion conductive solid electrolyte material according to the present invention exhibits high lithium ion conductivity, high decomposition voltage, very low electron conductivity, and chemical / thermal property. It has the characteristic of being stable. Therefore, by applying this lithium ion conductive solid electrolyte material to an electrolyte material such as a solid battery, there is an advantage that the characteristics of the solid battery or the like can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(x/2)Li2SO4−yMgSO4
(z/2)Al2(SO43(ただし、0<x<1、0
<y<1、0<z<1、x+y+z=1)で示される組
成物よりなることを特徴とするリチウムイオン導電性固
体電解質材料。
[Claim 1] (x / 2) Li 2 SO 4 -yMgSO 4 -
(Z / 2) Al 2 (SO 4 ) 3 (where 0 <x <1, 0
<Y <1, 0 <z <1, x + y + z = 1), which is a lithium ion conductive solid electrolyte material.
JP4306455A 1992-10-20 1992-10-20 Lithium ion conductive solid electrolyte material Pending JPH06140074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4306455A JPH06140074A (en) 1992-10-20 1992-10-20 Lithium ion conductive solid electrolyte material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4306455A JPH06140074A (en) 1992-10-20 1992-10-20 Lithium ion conductive solid electrolyte material

Publications (1)

Publication Number Publication Date
JPH06140074A true JPH06140074A (en) 1994-05-20

Family

ID=17957215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4306455A Pending JPH06140074A (en) 1992-10-20 1992-10-20 Lithium ion conductive solid electrolyte material

Country Status (1)

Country Link
JP (1) JPH06140074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152324A (en) * 2016-02-26 2017-08-31 富士通株式会社 All-solid-state battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152324A (en) * 2016-02-26 2017-08-31 富士通株式会社 All-solid-state battery

Similar Documents

Publication Publication Date Title
JP3744665B2 (en) Lithium ion conductive solid electrolyte and battery
EP0994071B1 (en) Lithium ion-conductive solid electrolyte and method for producing the same
Zhang et al. High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped NASICON-type LiTi2 (PO4) 3
JP5721540B2 (en) Lithium ion conductive inorganic material
US4009092A (en) Substituted lithium phosphates and solid electrolytes therefrom
Zhang et al. Water-stable lithium ion conducting solid electrolyte of the Li1. 4Al0. 4Ti1. 6− xGex (PO4) 3 system (x= 0–1.0) with NASICON-type structure
CN110176628A (en) Lithium lanthanum zirconium oxygroup solid electrolyte material of surface-stable and its preparation method and application
Zhang et al. Tape-cast water-stable NASICON-type high lithium ion conducting solid electrolyte films for aqueous lithium-air batteries
JPH0357060B2 (en)
JPH0654687B2 (en) Glassy oxidation-phosphorus sulfide solid lithium electrolyte
JP3012211B2 (en) Lithium ion conductive glass ceramics and batteries and gas sensors using the same
JP2014229579A (en) Lithium ion conductive inorganic solid composite
JPS59151770A (en) Solid electrolyte battery
Chakraborty et al. Mg-doped NASICON-type electrolyte for rechargeable solid-state sodium-ion batteries
JP2991256B2 (en) Lithium ion conductive solid electrolyte material
JP3134595B2 (en) Sulfide-based lithium ion conductive solid electrolyte and its synthesis method
Osterheld Liquidus diagram for the system lithium orthophosphate-lithium metaphosphate
Vinod et al. Materials for all-solid-state thin-film rechargeable lithium batteries by sol-gel processing
Chen et al. High Li-ionic conductivity of Li29Zr9Nb3O40 ceramic sintered in oxygen-deficient atmosphere
Wu et al. Self‐densified ultrathin solid electrolyte membrane fabricated from monodispersed sulfide electrolyte nanoparticles
JP7022616B2 (en) Manufacturing method of positive electrode active material
CN106785016A (en) A kind of lithium sulfide system solid electrolyte material for adding Li-Si alloy powder and preparation method thereof
JPH02162605A (en) Lithium ion conductive solid electrolyte and manufacture thereof
JPH06140074A (en) Lithium ion conductive solid electrolyte material
WO2021215403A1 (en) Lithium ion-conductive glass ceramic