JP2991256B2 - Lithium ion conductive solid electrolyte material - Google Patents

Lithium ion conductive solid electrolyte material

Info

Publication number
JP2991256B2
JP2991256B2 JP3237251A JP23725191A JP2991256B2 JP 2991256 B2 JP2991256 B2 JP 2991256B2 JP 3237251 A JP3237251 A JP 3237251A JP 23725191 A JP23725191 A JP 23725191A JP 2991256 B2 JP2991256 B2 JP 2991256B2
Authority
JP
Japan
Prior art keywords
lithium ion
solid electrolyte
conductivity
electrolyte material
ion conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3237251A
Other languages
Japanese (ja)
Other versions
JPH0554712A (en
Inventor
秀昭 大塚
尊久 正代
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3237251A priority Critical patent/JP2991256B2/en
Publication of JPH0554712A publication Critical patent/JPH0554712A/en
Application granted granted Critical
Publication of JP2991256B2 publication Critical patent/JP2991256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、リチウムイオン導電性
固体電解質材料に関するものである。
[0001] The present invention relates to a lithium ion conductive solid electrolyte material.

【0002】[0002]

【従来の技術及び問題点】リチウムを負極活物質として
用い、電解質としてリチウムイオン導電性の固体電解質
を用いた全固体電池は高エネルギ密度を有し、液漏れが
なく小型薄型にできる等の点で非常に利点が多い。この
ような固体電池の工業的応用を目的として、リチウムイ
オン導電性の固体電解質材料の開発が注目されている。
これまで、40mol%のAl23を添加したLiI、
Li−β−Al23、Li3N、Li4Zn(GeO44
等がリチウムイオン導電体として報告されている。しか
し、これらは必ずしも固体電池に必要な特性を充分満足
しているとは言い難い状況である。40mol%のAl
23を添加したLiI、Li−β−Al23、Li3
等は大気中の水分に対し不安定であり、取扱が難しい。
2. Description of the Related Art An all-solid-state battery using lithium as a negative electrode active material and a lithium ion conductive solid electrolyte as an electrolyte has a high energy density, has no liquid leakage, and can be made small and thin. There are many advantages. For the purpose of industrial application of such solid batteries, attention has been paid to the development of lithium ion conductive solid electrolyte materials.
Up to now, LiI to which 40 mol% of Al 2 O 3 has been added,
Li-β-Al 2 O 3 , Li 3 N, Li 4 Zn (GeO 4 ) 4
Are reported as lithium ion conductors. However, these situations are not necessarily sufficient to satisfy the characteristics required for a solid-state battery. 40 mol% Al
LiI, Li-β-Al 2 O 3 , Li 3 N to which 2 O 3 is added
Are unstable to atmospheric moisture and difficult to handle.

【0003】また、Li3Nは分解電圧が低いこと、L
4Zn(GeO44は溶融リチウムと激しく反応し不
安定であることなどの理由で固体電池への適用は難し
い。このようなわけで、これらの欠点を除去した固体電
解質材料、特に化学的に安定であり、かつ導電率の高い
材料が望まれている。
Further, Li 3 N has a low decomposition voltage, and L 3
It is difficult to apply i 4 Zn (GeO 4 ) 4 to solid-state batteries because it reacts violently with molten lithium and is unstable. For this reason, a solid electrolyte material that eliminates these disadvantages, particularly a material that is chemically stable and has high conductivity, is desired.

【0004】[0004]

【発明の目的】本発明は上述の現状に鑑みてなされたも
ので、導電率が大きく、かつ化学的に安定なリチウムイ
オン導電性固体電解質材料を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a lithium ion conductive solid electrolyte material having high conductivity and being chemically stable.

【0005】[0005]

【問題点を解決するための手段】上記問題点を解決する
ため、本発明によるリチウムイオン導電性固体電解質材
料は、一般式、Li2+x1-x+yx3+2y(但し、0.
03≦x≦0.7、0≦y≦0.2)で示される組成物
よりなることを特徴としている。
[Means for Solving the Problems] To solve the above problems, the lithium ion conductive solid electrolyte material according to the present invention has a general formula: Li 2 + x C 1-x + y B x O 3 + 2y ( However, 0.
03 ≦ x ≦ 0.7, 0 ≦ y ≦ 0.2).

【0006】本発明をさらに詳しく説明する。The present invention will be described in more detail.

【0007】Li2CO3は大気中で安定なLi化合物で
あり、例えば、Li2Oは大気中に放置すればLi2CO
3あるいはLiOHに変わることが知られている。しか
しLi23はリチウムイオン導電性は非常に小さく固体
電解質材料ではない。本発明はLi2CO3とLi3BO3
の固溶体からなるものである。その主成分はLi2CO3
であり、その結晶構造はLi2CO3と同様であり、化学
的に安定である。また、Li2BO3との固溶体にするこ
とによりそのリチウムイオン導電性が著しく改善され、
室温においても比較的高いリチウムイオン導電率を示す
ことを見い出した。
[0007] Li 2 CO 3 is a stable Li compound in the atmosphere include, for example, Li 2 O is Li 2 CO if left in the atmosphere
It is known to change to 3 or LiOH. However, Li 2 O 3 has very low lithium ion conductivity and is not a solid electrolyte material. The present invention relates to Li 2 CO 3 and Li 3 BO 3
Consisting of a solid solution of Its main component is Li 2 CO 3
And its crystal structure is similar to Li 2 CO 3 and is chemically stable. Further, by forming a solid solution with Li 2 BO 3 , the lithium ion conductivity is significantly improved,
It has been found that even at room temperature it shows relatively high lithium ion conductivity.

【0008】本発明の固体電解質材料は次式の反応に従
って合成される。
The solid electrolyte material of the present invention is synthesized according to the following reaction.

【0009】(1+x/2)Li2CO3+(x/2)B
23→Li2+x1-x+yx3+2y+(3x/2−y)C
2
(1 + x / 2) Li 2 CO 3 + (x / 2) B
2 O 3 → Li 2 + x C 1-x + y B x O 3 + 2y + (3x / 2-y) C
O 2

【0010】この式において、xはBの添加量、yは未
反応Li2CO3を示している。
In this formula, x indicates the amount of B added, and y indicates unreacted Li 2 CO 3 .

【0011】この式のxの値が小さいときはy=0とな
りLi2CO3構造の固溶体Li2+x1-xx3が容易に
得られる。xの値が大きいときLi3BO3相が混じって
くるだけでなくLi2CO3の分解が不十分となり未反応
物が混じりやすい。すなわち、本発明の固体電解質材料
の一般式Li2+x1-x+yx3+2yにおいてxの範囲が
0<x≦0.4のときにLi2CO3構造の固溶体の単相
が得られる。0.4<x≦1.0の範囲ではLi2CO3
相とLi3BO3相とその他未反応物との混合物となりや
すい。xの範囲がx<0.03、および0.7<xのと
きは導電率が小さく好ましくなく、xが0.03≦x≦
0.7の範囲で室温におけるイオン導電率が比較的高い
値を示す。特に、0.1≦x≦0.4の範囲で10-5
(S/m)以上のイオン導電率を示し、より好ましい。
yに関しては、y=0のときLi2CO3とB23の反応
が完了していることを示しており、最も好ましい。上記
式においてxが大きくなるにつれ、作製条件によりy>
0となりやすい。y>0(≠0)の場合、未反応のLi
2CO3が混ざっており、導電率が低下するが、y≦0.
2の範囲であれば導電率の低下の度合いが小さく許容で
きる。
When the value of x in this formula is small, y = 0, and a solid solution Li 2 + x C 1-x B x O 3 having a Li 2 CO 3 structure can be easily obtained. When the value of x is large, not only the Li 3 BO 3 phase is mixed, but also the decomposition of Li 2 CO 3 becomes insufficient and unreacted substances are easily mixed. That is, when the range of x is 0 <x ≦ 0.4 in the general formula Li 2 + x C 1-x + y B x O 3 + 2y of the solid electrolyte material of the present invention, the solid solution having the Li 2 CO 3 structure A single phase is obtained. In the range of 0.4 <x ≦ 1.0, Li 2 CO 3
Phase, a Li 3 BO 3 phase, and other unreacted materials. When the range of x satisfies x <0.03 and 0.7 <x, the electric conductivity is small, which is not preferable, and x is 0.03 ≦ x ≦
In the range of 0.7, the ionic conductivity at room temperature shows a relatively high value. In particular, 10 −5 in the range of 0.1 ≦ x ≦ 0.4.
It shows an ionic conductivity of (S / m) or more, and is more preferable.
As for y, when y = 0, it indicates that the reaction between Li 2 CO 3 and B 2 O 3 has been completed, which is the most preferable. As x increases in the above formula, y>
It tends to be 0. When y> 0 (≠ 0), unreacted Li
Although 2 CO 3 is mixed, the conductivity is lowered, but y ≦ 0.
If it is in the range of 2, the degree of decrease in conductivity is small and acceptable.

【0012】[0012]

【実施例1〜6】以下、本発明を実施例により説明す
る。
Embodiments 1 to 6 The present invention will be described below with reference to embodiments.

【0013】本発明によるリチウムイオン導電性固体電
解質材料は通常の磁器焼成法により作製できる。市販の
特級試薬のLi2CO3およびB23を原料とし、所定の
秤量式に基づいて秤量し、混合した。次に、B量に応じ
て600〜650℃の温度で24時間大気中で仮焼し
た。次に、この仮焼粉末を1〜2t/cm2の圧力で成
形し、B量に応じて620〜700℃の温度で6時間酸
素雰囲気中で焼成した。
The lithium ion conductive solid electrolyte material according to the present invention can be produced by a usual porcelain firing method. Using commercially available special-grade reagents, Li 2 CO 3 and B 2 O 3, were weighed and mixed based on a predetermined weighing formula. Next, it was calcined in the air at a temperature of 600 to 650 ° C. for 24 hours depending on the amount of B. Next, this calcined powder was molded at a pressure of 1 to 2 t / cm 2 and fired in an oxygen atmosphere at a temperature of 620 to 700 ° C. for 6 hours depending on the amount of B.

【0014】得られた焼結体を粉砕し、X線回折により
結晶相を調べた。また、原子吸光、ICP他の方法によ
り組成分析を行なった。
The obtained sintered body was pulverized, and the crystal phase was examined by X-ray diffraction. The composition was analyzed by atomic absorption, ICP and other methods.

【0015】導電率の測定は円板状の試料の両面に金を
蒸着し、これを電極として、インピーダンスアナライザ
ーを用いて交流法により行なった。直流法により電子伝
導性を調べ、全導電率との比から電子輸率を求めた。
The conductivity was measured by depositing gold on both surfaces of a disk-shaped sample and using the electrode as an electrode by an alternating current method using an impedance analyzer. The electron conductivity was examined by a direct current method, and the electron transport number was determined from the ratio to the total conductivity.

【0016】出発原料のLi2CO3およびB23をモル
比で1.025:0.025(実施例1)、1.05:
0.05(実施例2)、1.1:0.1(実施例3)、
1.125:0.125(実施例4)、1.15:0.
15(実施例5)、1.2:0.2(実施例6)の割合
で混合して上記の条件で作製した。X線回折の結果これ
らはいずれもLi2CO3構造の固溶体の単相であった。
組成分析の結果は表1に示すように、上記一般式におけ
るyの値が0であり、Li2CO3型固溶体になってい
る。
The starting materials Li 2 CO 3 and B 2 O 3 were mixed in a molar ratio of 1.025: 0.025 (Example 1), 1.05:
0.05 (Example 2), 1.1: 0.1 (Example 3),
1.125: 0.125 (Example 4), 1.15: 0.
15 (Example 5) and 1.2: 0.2 (Example 6) were mixed under the above conditions. As a result of X-ray diffraction, each of them was a single phase of a solid solution having a Li 2 CO 3 structure.
As shown in Table 1, as a result of the composition analysis, the value of y in the above general formula was 0, and the composition was a Li 2 CO 3 type solid solution.

【0017】実施例1〜6の試料の室温における導電率
を表1に示す。本発明における固溶体の一般式”Li
2+x1-xx3”においてxの範囲が0.1≦x≦0.
4で10-5(S/m)以上の導電率を示している。図1
に実施例1〜6および以下で述べる実施例7、8、比較
例1。2を含めたこの系の室温における導電率の組成依
存性を示す。
Table 1 shows the electrical conductivity of the samples of Examples 1 to 6 at room temperature. The general formula “Li” of the solid solution in the present invention
2 + x C 1-x B x O 3 ″, the range of x is 0.1 ≦ x ≦ 0.
4 indicates a conductivity of 10 -5 (S / m) or more. FIG.
2 shows the composition dependency of the electrical conductivity at room temperature of this system including Examples 1 to 6 and Examples 7 and 8 described below and Comparative Example 1.2.

【0018】電子輸率は〜10-5で充分小さく、導電性
はイオンによるものである。
The electron transport number is sufficiently small at -10 -5 , and the conductivity is due to ions.

【0019】化学安定性は、焼結体を相対湿度50%の
大気中に3カ月放置し、その後の導電率の変化および結
晶相を調べることにより評価した。放置の前後でX線回
折パターンも導電率の値も変化していないことを確認し
た。
The chemical stability was evaluated by allowing the sintered body to stand in an atmosphere at a relative humidity of 50% for three months and then examining the change in conductivity and the crystal phase. It was confirmed that neither the X-ray diffraction pattern nor the conductivity value before and after standing was changed.

【0020】[0020]

【実施例7、8】Li2CO3およびB23をモル比で
1.3:0.3(実施例7)、1.4:0.4(実施例
8)の割合で混合し、実施例1〜6と同様の方法で作製
した。X線回折の結果は主にLi2CO3相とLi3BO3
相の混合物になっていた。組成分析の結果を表1に示
す。未反応物として余分のCO2が残っていることがわ
かる。
Examples 7 and 8 Li 2 CO 3 and B 2 O 3 were mixed at a molar ratio of 1.3: 0.3 (Example 7) and 1.4: 0.4 (Example 8). , And produced in the same manner as in Examples 1 to 6. The results of X-ray diffraction mainly consisted of Li 2 CO 3 phase and Li 3 BO 3
Phase mixture. Table 1 shows the results of the composition analysis. It can be seen that extra CO 2 remains as an unreacted substance.

【0021】室温における導電率を表1に示す。Table 1 shows the electrical conductivity at room temperature.

【0022】[0022]

【比較例1、2】Li2CO3を実施例1と同様に成形し
焼成して焼結体を作製した(比較例1)。また、Li2
CO3およびB23をモル比で3:1の割合で混合し、
実施例1と同様にして焼結体を作製した(比較例2)。
分析組成および室温における導電率を表1に示す。
Comparative Examples 1 and 2 Li 2 CO 3 was molded and fired in the same manner as in Example 1 to produce a sintered body (Comparative Example 1). In addition, Li 2
CO 3 and B 2 O 3 are mixed in a molar ratio of 3: 1;
A sintered body was produced in the same manner as in Example 1 (Comparative Example 2).
Table 1 shows the analytical composition and the electrical conductivity at room temperature.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明によるリチウムイオン導電性固体
電解質材料は、室温で高い導電率を示し、また化学的に
安定であるので、電解質材料として用いることにより、
リチウム固体電池などの固体電気化学素子の特性改善が
達成できる利点がある。
The lithium ion conductive solid electrolyte material according to the present invention shows high conductivity at room temperature and is chemically stable.
There is an advantage that the characteristics of a solid electrochemical device such as a lithium solid battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例および比較例のリチウムイオン
導電性固体電解質材料の室温における導電率と組成の関
係を示す。
FIG. 1 shows the relationship between the conductivity at room temperature and the composition of lithium ion conductive solid electrolyte materials of Examples and Comparative Examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−154106(JP,A) 特開 昭49−81898(JP,A) 特開 昭54−33299(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01B 1/06 - 1/08 C01B 35/12 H01M 6/18 H01M 10/36 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-154106 (JP, A) JP-A-49-81898 (JP, A) JP-A-54-33299 (JP, A) (58) Field (Int.Cl. 6 , DB name) H01B 1/06-1/08 C01B 35/12 H01M 6/18 H01M 10/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式Li2+x1-x+yx3+2y(但し、
0.03≦x≦0.7、0≦y≦0.2)で示される組
成物よりなることを特徴とするリチウムイオン導電性固
体電解質材料。
[Claim 1] The general formula Li 2 + x C 1-x + y B x O 3 + 2y (where,
0.03 ≦ x ≦ 0.7, 0 ≦ y ≦ 0.2) A lithium ion conductive solid electrolyte material, characterized by comprising a composition represented by the following formula:
JP3237251A 1991-08-23 1991-08-23 Lithium ion conductive solid electrolyte material Expired - Fee Related JP2991256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3237251A JP2991256B2 (en) 1991-08-23 1991-08-23 Lithium ion conductive solid electrolyte material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3237251A JP2991256B2 (en) 1991-08-23 1991-08-23 Lithium ion conductive solid electrolyte material

Publications (2)

Publication Number Publication Date
JPH0554712A JPH0554712A (en) 1993-03-05
JP2991256B2 true JP2991256B2 (en) 1999-12-20

Family

ID=17012641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3237251A Expired - Fee Related JP2991256B2 (en) 1991-08-23 1991-08-23 Lithium ion conductive solid electrolyte material

Country Status (1)

Country Link
JP (1) JP2991256B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035702A (en) * 2011-08-04 2013-02-21 Ulvac Japan Ltd Method of manufacturing lithium borate powder
JP6119469B2 (en) * 2013-07-05 2017-04-26 株式会社豊田中央研究所 Ion conductive solid, method for producing the same, and solid battery
JP6090290B2 (en) * 2014-11-21 2017-03-08 株式会社豊田中央研究所 COMPOSITE, BATTERY, COMPOSITE MANUFACTURING METHOD AND ION CONDUCTIVE SOLID MANUFACTURING METHOD
JP2016219130A (en) * 2015-05-15 2016-12-22 セイコーエプソン株式会社 Solid electrolyte battery, electrode assembly, composite solid electrolyte, and method for manufacturing solid electrolyte battery
JP6597172B2 (en) * 2015-10-23 2019-10-30 セイコーエプソン株式会社 Electrode composite manufacturing method, electrode composite, and battery
CN108370029B (en) * 2015-10-23 2021-08-24 精工爱普生株式会社 Method for producing electrode assembly, and battery
JP6597183B2 (en) * 2015-10-29 2019-10-30 セイコーエプソン株式会社 Electrode composite manufacturing method, electrode composite, and battery
JP6763965B2 (en) * 2015-12-21 2020-09-30 ジョンソン・アイピー・ホールディング・エルエルシー Solid-state batteries, separators, electrodes and manufacturing methods
JP6766376B2 (en) * 2016-03-01 2020-10-14 株式会社豊田中央研究所 Electrode, battery and electrode manufacturing method
EP3951981A4 (en) * 2019-03-26 2022-11-23 NGK Insulators, Ltd. All-solid-state secondary battery
KR102656983B1 (en) * 2019-03-26 2024-04-11 국립대학법인 나고야공업대학 Solid electrolyte and method for producing solid electrolyte
WO2022181653A1 (en) 2021-02-25 2022-09-01 キヤノン株式会社 Solid electrolyte, active material layer, electrolyte layer and secondary battery

Also Published As

Publication number Publication date
JPH0554712A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
EP0017400B1 (en) Electrochemical cell and method of making ion conductors for said cell
Jang et al. Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/Li x Mn2 O 4 rechargeable cells
Sudo et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal
Tukamoto et al. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping
Mizushima et al. LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density
Takahashi et al. Solid‐State Ionics: A New High Ionic Conductivity Solid Electrolyte Ag6 I 4 WO 4 and Use of This Compound in a Solid‐Electrolyte Cell
Choi et al. Effects of lithium content on the electrochemical lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes
EP3726635B1 (en) Sulfide-based solid electrolyte particles
JP2991256B2 (en) Lithium ion conductive solid electrolyte material
EP4167310A1 (en) Solid electrolyte, electrode mixture and battery
Morzilli et al. Iron oxide electrodes in lithium organic electrolyte rechargeable batteries
Hunger et al. Cathodic discharge of graphite intercalation compounds in organic electrolytes
CN112838264A (en) Solid electrolyte material, preparation method thereof and solid lithium battery
EP0722194B1 (en) Fluorite structure type ceria type solid electrolyte
Halankar et al. Optimization of lithium content in LiFePO 4 for superior electrochemical performance: the role of impurities
JP3706718B2 (en) Lithium ion secondary battery positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US5141827A (en) Ion conductor or electrolyte for a galvanic element
Bonino et al. Electrochemical behavior of solid cathode materials in organic electrolyte lithium batteries: Copper sulfides
JP7022616B2 (en) Manufacturing method of positive electrode active material
Fey et al. Dopant effects and conductivity studies on a new high voltage cathode material with inverse spinel structure
Hikima et al. Li 4 SiO 4 Doped-Li 7 P 2 S 8 I solid electrolytes with high lithium stability synthesised using liquid-phase shaking
Telli et al. Elaboration of a new anode material for all-solid state Zn/MnO2 protonic cells
Boccoli et al. Electrochemical behaviour of tungsten oxides in lithium-organic electrolyte cells
CN117105197B (en) Mixed ion conductor material, preparation method and application
WO2024047912A1 (en) Method for evaluating all-solid-state lithium ion batteries

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees