JP6766376B2 - Electrode, battery and electrode manufacturing method - Google Patents

Electrode, battery and electrode manufacturing method Download PDF

Info

Publication number
JP6766376B2
JP6766376B2 JP2016038598A JP2016038598A JP6766376B2 JP 6766376 B2 JP6766376 B2 JP 6766376B2 JP 2016038598 A JP2016038598 A JP 2016038598A JP 2016038598 A JP2016038598 A JP 2016038598A JP 6766376 B2 JP6766376 B2 JP 6766376B2
Authority
JP
Japan
Prior art keywords
lithium
active material
mol
electrode
eutectic mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016038598A
Other languages
Japanese (ja)
Other versions
JP2017157359A (en
Inventor
許斐 一郎
一郎 許斐
将吾 駒形
将吾 駒形
賢彦 朝岡
賢彦 朝岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016038598A priority Critical patent/JP6766376B2/en
Publication of JP2017157359A publication Critical patent/JP2017157359A/en
Application granted granted Critical
Publication of JP6766376B2 publication Critical patent/JP6766376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電極、電池及び電極の製造方法に関し、より詳しくは全固体電池に用いられる電極、全固体電池及び全固体電池に用いられる電極の製造方法に関する。 The present invention relates to an electrode, a battery and a method for manufacturing an electrode, and more particularly to a method for manufacturing an electrode used for an all-solid-state battery, an all-solid-state battery and an electrode used for an all-solid-state battery.

従来、この種の電池としては、正極活物質を有する正極と、負極活物質を有する負極と、正極と負極との間に介在しリチウムイオンを伝導する固体電解質とを備える全固体型二次電池が提案されている(例えば、特許文献1参照)。この電池では、Li3BO3やLi2.358Al0.214BO3などを用いて活物質を固化することによって、気相法によらずに、エネルギー密度をより高めることができる。 Conventionally, as a battery of this type, an all-solid secondary battery including a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a solid electrolyte that is interposed between the positive electrode and the negative electrode and conducts lithium ions. Has been proposed (see, for example, Patent Document 1). In this battery, the energy density can be further increased by solidifying the active material using Li 3 BO 3 or Li 2.358 Al 0.214 BO 3 or the like, regardless of the vapor phase method.

国際公開第2012/176805号パンフレットInternational Publication No. 2012/176805 Pamphlet

しかしながら、上述の特許文献1の電池の製造方法では、加熱によって活物質層を固化するが、その温度がまだ高かった。エネルギー消費の観点からも、全固体電池の製造工程の観点からも、加熱温度をより低くすることが求められていた。 However, in the method for manufacturing a battery of Patent Document 1 described above, the active material layer is solidified by heating, but the temperature is still high. From the viewpoint of energy consumption and the manufacturing process of the all-solid-state battery, it has been required to lower the heating temperature.

本発明は、このような課題に鑑みなされたものであり、イオン伝導性を有しつつより低温で固化することができる電極、電池及び電極の製造方法を提供することを主目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide an electrode, a battery, and a method for manufacturing an electrode, which have ionic conductivity and can be solidified at a lower temperature.

上述した目的を達成するために鋭意研究したところ、本発明者らは、リチウムを含む複数種の融剤を用いるものとすると、イオン伝導性を有しつつ、より低温で固化することができることを見いだし、本発明を完成するに至った。 As a result of diligent research to achieve the above-mentioned object, the present inventors have found that if a plurality of kinds of fluxes containing lithium are used, they can be solidified at a lower temperature while having ionic conductivity. It was found and the present invention was completed.

即ち、本発明の電極は、
全固体電池に用いられる電極であって、
リチウムを吸蔵放出する活物質粒子と、
フッ化リチウム及び塩化リチウムのうち1以上と、リチウムとホウ素と元素A(C、Al、Si、Ga、Ge、In及びSnのうち1以上)とを含むリチウムホウ素含有酸化物と、を含み前記活物質粒子の周りに存在する共晶混合物と、
が混在する活物質層、を備えたものである。
That is, the electrode of the present invention is
An electrode used in all-solid-state batteries
Active material particles that occlude and release lithium,
The above includes 1 or more of lithium fluoride and lithium chloride, and a lithium boron-containing oxide containing lithium, boron and the element A (1 or more of C, Al, Si, Ga, Ge, In and Sn). With the eutectic mixture that exists around the active material particles,
It is provided with an active material layer in which

本発明の電池は、上述の電極と、前記電極に隣接した固体電解質層と、を備えたものである。 The battery of the present invention includes the above-mentioned electrode and a solid electrolyte layer adjacent to the electrode.

本発明の電極の製造方法は、
リチウムを吸蔵放出する活物質粒子と、共晶混合物となるフッ化リチウム及び塩化リチウムのうち1以上と、リチウムとホウ素と元素A(C、Al、Si、Ga、Ge、In及びSnのうち1以上)とを含み共晶混合物となるリチウムホウ素含有酸化物と、を含む混合物を400℃以上650℃以下の温度で焼成して活物質層を作製する活物質層作製工程、を含むものである。
The method for manufacturing an electrode of the present invention
Active material particles that absorb and release lithium, one or more of lithium fluoride and lithium chloride that are eutectic mixtures, and one of lithium, boron, and element A (C, Al, Si, Ga, Ge, In, and Sn). It includes a lithium boron-containing oxide which is a eutectic mixture containing the above) and a step of preparing an active material layer in which the mixture containing the above is fired at a temperature of 400 ° C. or higher and 650 ° C. or lower to prepare an active material layer.

本発明の電極、電池及び電極の製造方法は、イオン伝導性を有しつつ、より低温で固化することにより活物質層を作製することができる。このような効果が得られる理由は、例えば、共晶混合物はそれを構成する元の物質より融点が下がることから、特定の組み合わせによる低融点の共晶混合物の融剤を用いることによって、イオン伝導性を有しつつ、より低温で活物質を固化することができるものと推察される。 In the method for producing an electrode, a battery and an electrode of the present invention, an active material layer can be produced by solidifying at a lower temperature while having ionic conductivity. The reason for obtaining such an effect is that, for example, since the eutectic mixture has a lower melting point than the original substance constituting the eutectic mixture, ionic conduction is obtained by using a flux of the eutectic mixture having a low melting point in a specific combination. It is presumed that the active material can be solidified at a lower temperature while having the property.

全固体型のリチウム二次電池10の構造の一例を示す説明図。The explanatory view which shows an example of the structure of the all-solid-state lithium secondary battery 10. Li2.20.20.83へのLiX(Xはハロゲン)の添加量と融点との関係図。The relationship between the amount of LiX (X is a halogen) added to Li 2.2 B 0.2 C 0.8 O 3 and the melting point. Li2.20.20.83のDTA測定結果。DTA measurement result of Li 2.2 B 0.2 C 0.8 O 3 . Li2.20.20.83、LiF及びLiClの共晶混合物のDTA測定結果。DTA measurement results of eutectic mixture of Li 2.2 B 0.2 C 0.8 O 3 , LiF and LiCl. Li2.20.20.83、LiF及びLiClの共晶混合物のDTA測定結果。DTA measurement results of eutectic mixture of Li 2.2 B 0.2 C 0.8 O 3 , LiF and LiCl. Li2.20.20.83、LiF及びLiClの共晶混合物のナイキストプロット。Nyquist plot of a eutectic mixture of Li 2.2 B 0.2 C 0.8 O 3 , LiF and LiCl. 共晶混合物を含む全固体リチウム二次電池のサイクリックボルタモグラム。Cyclic voltamogram of all-solid-state lithium secondary battery containing eutectic mixture.

(電極)
本発明の電極は、活物質粒子と、活物質粒子の周りに存在する共晶混合物とが混在する活物質層を備えている。この電極は、全固体型電池の電極に適しており、全固体型電池を構成する固体電解質層の基材上に作製されたものとしてもよい。また、この電極は、活物質粒子として正極活物質を用いた正極としてもよいし、活物質粒子として負極活物質を用いた負極としてもよい。また、この電極は活物質層に隣接した集電体を備えているものとしてもよい。この電極は、活物質粒子が共晶混合物中に分散したものとしてもよい。この電極では、活物質粒子同士の間にリチウムイオンの伝導性を有する共晶混合物が存在することで、活物質粒子同士の間のリチウムイオンの伝導経路をより確保しやすい。
(electrode)
The electrode of the present invention includes an active material layer in which active material particles and a eutectic mixture existing around the active material particles are mixed. This electrode is suitable for an electrode of an all-solid-state battery, and may be made on a base material of a solid electrolyte layer constituting the all-solid-state battery. Further, the electrode may be a positive electrode using a positive electrode active material as the active material particles, or a negative electrode using a negative electrode active material as the active material particles. Further, the electrode may be provided with a current collector adjacent to the active material layer. The electrode may have active material particles dispersed in a eutectic mixture. In this electrode, the presence of a eutectic mixture having lithium ion conductivity between the active material particles makes it easier to secure a lithium ion conduction path between the active material particles.

活物質は、リチウムを吸蔵放出するものであり、正極活物質としてもよい。正極活物質としては、リチウムと遷移金属元素とを含む化合物が挙げられ、例えば、リチウムと遷移金属元素とを含む酸化物や、リチウムと遷移金属元素とを含むリン酸化合物などが挙げられる。具体的には、基本組成式をLi(1-x)MnO2(0<x<1など、以下同じ)やLi(1-x)Mn24などとするリチウムマンガン複合酸化物、基本組成式をLi(1-x)CoO2などとするリチウムコバルト複合酸化物、基本組成式をLi(1-x)NiO2などとするリチウムニッケル複合酸化物、基本組成式をLi(1-x)Ni1/3Co1/3Mn1/32などとするリチウムニッケルコバルトマンガン複合酸化物、基本組成式をLiV23などとするリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などが挙げられる。また、基本組成式をLiFePO4などのリン酸化合物なども挙げられる。これらのうちで、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2などがより好ましい。なお、例示する化学式には、化学量論組成のものに限定する意図はなく、一部の元素が欠損していてもよいし、過剰でもよいし、一部の元素が他の元素に置換されていてもよい(以下同じ)。 The active material occludes and releases lithium, and may be used as a positive electrode active material. Examples of the positive electrode active material include compounds containing lithium and a transition metal element, and examples thereof include oxides containing lithium and a transition metal element, and phosphoric acid compounds containing lithium and a transition metal element. Specifically, a lithium manganese composite oxide having a basic composition formula of Li (1-x) MnO 2 (0 <x <1, etc., the same applies hereinafter) or Li (1-x) Mn 2 O 4, etc., basic composition Lithium cobalt composite oxide whose formula is Li (1-x) CoO 2, etc., Lithium nickel composite oxide whose basic composition formula is Li (1-x) NiO 2, etc., Basic composition formula is Li (1-x) Lithium nickel cobalt manganese composite oxides such as Ni 1/3 Co 1/3 Mn 1/3 O 2 and lithium vanadium composite oxides with a basic composition formula of LiV 2 O 3 and transition metals such as V 2 O 5 Oxides and the like can be mentioned. In addition, a phosphoric acid compound such as LiFePO 4 as a basic composition formula can also be mentioned. Of these, lithium transition metal composite oxides, such as LiCoO 2 , LiNiO 2 , and LiMnO 2 , are more preferred. It should be noted that the illustrated chemical formula is not intended to be limited to a stoichiometric composition, and some elements may be deleted or excessive, and some elements may be replaced with other elements. It may be (the same applies hereinafter).

あるいは、活物質は、負極活物質としてもよい。負極活物質としては、リチウムと遷移金属元素とを含む酸化物などが挙げられる。具体的には、基本組成式をLi4Ti512とするチタン酸リチウムなどが挙げられる。 Alternatively, the active material may be a negative electrode active material. Examples of the negative electrode active material include oxides containing lithium and a transition metal element. Specific examples thereof include lithium titanate having a basic composition formula of Li 4 Ti 5 O 12 .

共晶混合物は、フッ化リチウム及び塩化リチウムのうち1以上と、リチウムとホウ素と元素A(C、Al、Si、Ga、Ge、In及びSnのうち1以上)とを含むリチウムホウ素含有酸化物と、を含む。この共晶混合物は、活物質粒子同士の隙間に充填され、リチウムイオンを伝導すると共に、活物質粒子を固定する緻密体である。共晶混合物に含まれるフッ化リチウム及び塩化リチウムは、リチウムイオンの伝導性は低いが焼成温度の低下効果が高い融剤である。共晶混合物には、フッ化リチウム及び塩化リチウムの両方が含まれることが、焼成温度をより低下することができ、好ましい。リチウムホウ素含有酸化物は、活物質粒子よりも融解温度が低い融剤であり、リチウムイオン伝導性を有するものである。元素Aは、Li3BO3のリチウムの一部を置換していてもよいし、ホウ素の一部を置換していてもよいし、両方を置換していてもよい。両方を置換する場合、同種の元素で置換してもよいし、異種の元素で置換してもよい。このリチウムホウ素含有酸化物は、例えば、Li+ s(B1-t,Atu+2- wで表されるものとしてもよい。式中、tは0≦t<1を満たし、uは(B1-t,At)の平均価数であり、s,u,vはs+u=v/2の関係式を満たす。リチウムホウ素含有酸化物は、例えば、Li2+xx1-x3(式中、xは0<x≦1を満たす)で表されるものとしてもよい。このようにホウ素を炭素で置換したものは、イオン導電率が増加するため、好適である。xは0.1≦x≦0.6を満たすことが好ましく、0.2≦x≦0.4を満たすことがより好ましい。イオン導電率がより大きくなるからである。 The eutectic mixture is a lithium boron-containing oxide containing one or more of lithium fluoride and lithium chloride, lithium, boron, and element A (one or more of C, Al, Si, Ga, Ge, In, and Sn). And, including. This eutectic mixture is a compact body that is filled in the gaps between the active material particles, conducts lithium ions, and fixes the active material particles. Lithium fluoride and lithium chloride contained in the eutectic mixture are fluxes having low lithium ion conductivity but high effect of lowering the firing temperature. It is preferable that the eutectic mixture contains both lithium fluoride and lithium chloride because the firing temperature can be further lowered. The lithium boron-containing oxide is a flux having a lower melting temperature than the active material particles and has lithium ion conductivity. The element A may be substituted with a part of lithium of Li 3 BO 3 , a part of boron may be substituted, or both may be substituted. When both are replaced, they may be replaced with the same kind of element or different kinds of elements. The lithium-boron-containing oxide, for example, Li + s (B 1- t, A t) may be represented by the u + O 2- w. Wherein, t satisfies 0 ≦ t <1, u is (B 1-t, A t ) is the average valence of, s, u, v satisfies the relation s + u = v / 2. The lithium boron-containing oxide may be represented by, for example, Li 2 + x B x C 1-x O 3 (in the formula, x satisfies 0 <x ≦ 1). Such a material in which boron is replaced with carbon is suitable because the ionic conductivity increases. x preferably satisfies 0.1 ≦ x ≦ 0.6, and more preferably 0.2 ≦ x ≦ 0.4. This is because the ionic conductivity becomes higher.

共晶混合物には、リチウムホウ素含有酸化物が共晶混合物の全体に対して15mol%以上70mol%以下の範囲で含まれることが好ましい。リチウムホウ素含有酸化物は、リチウムイオンの伝導性を考慮するとより多く共晶混合物に含まれることが好ましく、30mol%以上がより好ましく、40mol%以上が更に好ましい。また、リチウムホウ素含有酸化物は、焼成温度の低下を考慮するとより少なく共晶混合物に含まれることが好ましく、60mol%以下がより好ましく、50mol%以下が更に好ましい。また、共晶混合物には、フッ化リチウムが共晶混合物の全体に対して15mol%以上70mol%以下の範囲で含まれることが好ましい。フッ化リチウムは、焼成温度の低下を考慮するとより多く共晶混合物に含まれることが好ましく、30mol%以上がより好ましく、40mol%以上が更に好ましい。また、フッ化リチウムは、リチウムイオンの伝導性を考慮するとより少なく共晶混合物に含まれることが好ましく、60mol%以下がより好ましく、50mol%以下が更に好ましい。また、共晶混合物には、塩化リチウムが共晶混合物の全体に対して15mol%以上70mol%以下の範囲で含まれることが好ましい。塩化リチウムは、焼成温度の低下を考慮するとより多く共晶混合物に含まれることが好ましく、30mol%以上がより好ましく、40mol%以上が更に好ましい。また、塩化リチウムは、リチウムイオンの伝導性を考慮するとより少なく共晶混合物に含まれることが好ましく、60mol%以下がより好ましく、50mol%以下が更に好ましい。この共晶混合物には、リチウムホウ素含有酸化物が必ず含まれるが、フッ化リチウム及び塩化リチウムの両方が更に含まれるものとしてもよい。こうすれば、活物質層の焼成温度をより低下することができ好ましい。このとき、共晶混合物の全体に対して、リチウムホウ素含有酸化物を20mol%以上40mol%以下の範囲、フッ化リチウムを20mol%以上40mol%以下の範囲、塩化リチウムを20mol%以上40mol%以下の範囲で含むことが好ましい。 The eutectic mixture preferably contains a lithium boron-containing oxide in the range of 15 mol% or more and 70 mol% or less with respect to the entire eutectic mixture. The lithium boron-containing oxide is preferably contained in a larger amount in the eutectic mixture in consideration of the conductivity of lithium ions, more preferably 30 mol% or more, still more preferably 40 mol% or more. Further, the lithium boron-containing oxide is preferably contained in the eutectic mixture in a smaller amount in consideration of a decrease in the calcination temperature, more preferably 60 mol% or less, still more preferably 50 mol% or less. Further, the eutectic mixture preferably contains lithium fluoride in a range of 15 mol% or more and 70 mol% or less with respect to the entire eutectic mixture. Lithium fluoride is preferably contained in a larger amount in the eutectic mixture in consideration of a decrease in the firing temperature, more preferably 30 mol% or more, still more preferably 40 mol% or more. Further, lithium fluoride is preferably contained in the eutectic mixture in a smaller amount in consideration of the conductivity of lithium ions, more preferably 60 mol% or less, still more preferably 50 mol% or less. Further, the eutectic mixture preferably contains lithium chloride in a range of 15 mol% or more and 70 mol% or less with respect to the entire eutectic mixture. Lithium chloride is preferably contained in a larger amount in the eutectic mixture in consideration of a decrease in the calcination temperature, more preferably 30 mol% or more, still more preferably 40 mol% or more. Further, lithium chloride is preferably contained in the eutectic mixture in a smaller amount in consideration of the conductivity of lithium ions, more preferably 60 mol% or less, still more preferably 50 mol% or less. The eutectic mixture always contains a lithium boron-containing oxide, but may further contain both lithium fluoride and lithium chloride. By doing so, the firing temperature of the active material layer can be further lowered, which is preferable. At this time, the lithium boron-containing oxide is in the range of 20 mol% or more and 40 mol% or less, the lithium fluoride is in the range of 20 mol% or more and 40 mol% or less, and the lithium chloride is in the range of 20 mol% or more and 40 mol% or less with respect to the whole eutectic mixture. It is preferable to include it in a range.

活物質層には、活物質粒子が50体積%以上85体積%以下の範囲で含まれ、共晶混合物が15体積%以上50体積%以下の範囲で含まれるものとしてもよい。活物質粒子は、電池容量の観点からは、より多く活物質層に含まれることが好ましく、60体積%以上がより好ましく、75体積%以上が更に好ましい。このとき、共晶混合物は、それぞれ40体積%以下、25体積%以下である。また、共晶混合物は、活物質粒子の固着性の観点からは、より多く活物質層に含まれることが好ましく、30体積%以上がより好ましく、40体積%以上が更に好ましい。このとき、活物質粒子は、それぞれ70体積%以下、60体積%以下である。 The active material layer may contain active material particles in the range of 50% by volume or more and 85% by volume or less, and may contain a eutectic mixture in the range of 15% by volume or more and 50% by volume or less. From the viewpoint of battery capacity, more active material particles are preferably contained in the active material layer, more preferably 60% by volume or more, still more preferably 75% by volume or more. At this time, the eutectic mixture is 40% by volume or less and 25% by volume or less, respectively. Further, from the viewpoint of the adhesiveness of the active material particles, the eutectic mixture is preferably contained in a larger amount in the active material layer, more preferably 30% by volume or more, still more preferably 40% by volume or more. At this time, the active material particles are 70% by volume or less and 60% by volume or less, respectively.

集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタンや銀などで処理したものを用いることができる。これらについては、表面を酸化処理することも可能である。また、集電体は、上記活物質層に印刷や蒸着などにより形成するものとしてもよい。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。 Collectors include aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymers, conductive glass, etc., as well as aluminum, copper, etc. for the purpose of improving adhesiveness, conductivity, and oxidation resistance. The surface of the material treated with carbon, nickel, titanium, silver, or the like can be used. For these, it is also possible to oxidize the surface. Further, the current collector may be formed on the active material layer by printing, vapor deposition, or the like. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous body, foam, and fiber group forming body.

(電池)
本発明の電池は、上述した電極と、電極に隣接した固体電解質層と、を備えたものである。この電池は、全固体リチウム二次電池であるものとしてもよい。この電池は、活物質粒子と共晶混合物とを含む活物質層を備えた電極を正極として備えてもよいし、負極として備えてもよいし、正極及び負極に備えるものとしてもよい。上述の電極を正極と負極とする場合は、正極及び負極の一体焼成時に焼成温度をより低下することができ好ましい。なお、正極を上述した電極とし、負極をLi金属やLi合金としてもよい。
(battery)
The battery of the present invention includes the above-mentioned electrode and a solid electrolyte layer adjacent to the electrode. This battery may be an all-solid-state lithium secondary battery. This battery may be provided with an electrode having an active material layer containing active material particles and a eutectic mixture as a positive electrode, a negative electrode, or a positive electrode and a negative electrode. When the above-mentioned electrodes are used as a positive electrode and a negative electrode, the firing temperature can be further lowered during the integral firing of the positive electrode and the negative electrode, which is preferable. The positive electrode may be the above-mentioned electrode, and the negative electrode may be a Li metal or a Li alloy.

固体電解質層は、固体電解質からなり、例えば、リチウムホウ素含有酸化物よりもリチウムイオン伝導度の高いものである。固体電解質は、酸化物系の無機固体電解質であることが好ましく、例えば、ガーネット型リチウムイオン伝導性酸化物などが挙げられる。ガーネット型リチウムイオン伝導性酸化物は、例えば、基本組成Li5+xLa3Zrx2-x12(式中、Mは、Sc,Ti,V,Y,Nb,Hf,Ta,Al,Si,GaおよびGeからなる群より選ばれた1種類以上の元素,xは1.4≦x<2)で表されるものとしてもよい。こうしたものでは、リチウムイオン伝導率が高く、電極のリチウムイオン伝導率をより高めることができる。また、xが1.6≦x≦1.95を満たせば伝導率がより高く、好ましい。更に、xが1.65≦x≦1.9を満たせば、伝導率がほぼ極大となるため、一層好ましい。具体的には、Li6.75La3Zr1.75Nb0.2512などが挙げられる。なお、基本組成Li5+xLa3Zrx2-x12で表されるガーネット型リチウムイオン伝導性酸化物の詳細は、例えば、特開2010−202499号公報などに記載されている。また、固体電解質としては、例えば、ガラスセラミックスや、Liの窒化物、ハロゲン化物、酸素酸塩などが挙げられる。具体的には、Li1.5Al0.5Ge1.5(PO43、Li1+XTi2SiX3-X12・AlPO4、Li3.25Ge0.250.254、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4−(1−x)Li4SiO4、Li2SiS3、Li3PO4−Li2S−SiS2、硫化リン化合物などが挙げられる。 The solid electrolyte layer is composed of a solid electrolyte and has higher lithium ion conductivity than, for example, a lithium boron-containing oxide. The solid electrolyte is preferably an oxide-based inorganic solid electrolyte, and examples thereof include a garnet-type lithium ion conductive oxide. The garnet-type lithium ion conductive oxide has, for example, a basic composition Li 5 + x La 3 Zr x M 2-x O 12 (in the formula, M is Sc, Ti, V, Y, Nb, Hf, Ta, Al. , Si, Ga, and one or more elements selected from the group consisting of Ge, x may be represented by 1.4 ≦ x <2). In such a case, the lithium ion conductivity is high, and the lithium ion conductivity of the electrode can be further increased. Further, when x satisfies 1.6 ≦ x ≦ 1.95, the conductivity is higher, which is preferable. Further, if x satisfies 1.65 ≦ x ≦ 1.9, the conductivity becomes almost maximum, which is more preferable. Specific examples thereof include Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 . Details of the garnet-type lithium ion conductive oxide represented by the basic composition Li 5 + x La 3 Zr x M 2-x O 12 are described in, for example, Japanese Patent Application Laid-Open No. 2010-202499. Examples of the solid electrolyte include glass ceramics, Li nitrides, halides, and oxidates. Specifically, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 1 + X Ti 2 Si X P 3-X O 12 · AlPO 4 , Li 3.25 Ge 0.25 P 0.25 S 4 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4 - (1-x) Li 4 SiO 4, Li 2 SiS 3, Li 3 PO 4 -Li 2 S-SiS 2, and the like phosphorus sulfide compound.

電極や電極が形成された固体電解質では、活物質粒子及び固体電解質が、変質したり、反応生成物を生じてないことが好ましい。例えば、電極や固体電解質を、CuKα線を用いてXRD測定した場合、リチウムホウ素含有酸化物と、活物質及び固体電解質との反応生成物のピークが確認されないことが好ましい。このようなものであれば、リチウムイオンの伝導率を低減させるような変質層や第三相の生成が抑制されており、好ましい。 In the electrode or the solid electrolyte on which the electrode is formed, it is preferable that the active material particles and the solid electrolyte do not deteriorate or generate a reaction product. For example, when the electrode and the solid electrolyte are XRD-measured using CuKα rays, it is preferable that the peak of the reaction product between the lithium boron-containing oxide and the active material and the solid electrolyte is not confirmed. Such a case is preferable because the formation of an altered layer or a third phase that reduces the conductivity of lithium ions is suppressed.

電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、こうした電池を複数直列に接続して電気自動車等に用いる大型のものなどに適用してもよい。 The shape of the battery is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Further, a plurality of such batteries may be connected in series and applied to a large-sized battery used for an electric vehicle or the like.

この電池の構造は、特に限定されないが、例えば図1に示す構造が挙げられる。図1は、全固体型リチウム二次電池10の構造の一例を示す説明図である。この全固体型リチウム二次電池は、固体電解質層11と、この固体電解質層11の片面に形成された正極活物質層13と、この固体電解質層11のもう片面に形成された負極活物質層16とを有する。正極活物質層13の表面には、集電体14が形成されており、負極活物質層16の表面には、集電体17が形成されている。正極活物質層13及び集電体14が正極12であり、負極活物質層16及び集電体17が負極15である。正極活物質層13には、複合酸化物の活物質粒子21と、活物質粒子21の周りに存在する共晶混合物22とを含む。 The structure of this battery is not particularly limited, and examples thereof include the structure shown in FIG. FIG. 1 is an explanatory diagram showing an example of the structure of the all-solid-state lithium secondary battery 10. This all-solid-state lithium secondary battery has a solid electrolyte layer 11, a positive electrode active material layer 13 formed on one side of the solid electrolyte layer 11, and a negative electrode active material layer formed on the other side of the solid electrolyte layer 11. It has 16. A current collector 14 is formed on the surface of the positive electrode active material layer 13, and a current collector 17 is formed on the surface of the negative electrode active material layer 16. The positive electrode active material layer 13 and the current collector 14 are the positive electrode 12, and the negative electrode active material layer 16 and the current collector 17 are the negative electrode 15. The positive electrode active material layer 13 contains the active material particles 21 of the composite oxide and the eutectic mixture 22 existing around the active material particles 21.

(電極の製造方法)
本発明の電極の製造方法は、活物質層を作製する活物質層作製工程、を含む。この工程では、リチウムを吸蔵放出する活物質粒子と、共晶混合物となるフッ化リチウム及び塩化リチウムのうち1以上と、リチウムとホウ素と元素A(C、Al、Si、Ga、Ge、In及びSnのうち1以上)とを含み共晶混合物となるリチウムホウ素含有酸化物と、を含む混合物を400℃以上650℃以下の温度で焼成する。この工程では、フッ化リチウム及び塩化リチウムのうち1以上とリチウムホウ素含有酸化物とを含むため、焼成温度をより低くすることができる。活物質粒子やリチウムホウ素含有酸化物などは、上述したものを用いることができる。また、この工程では、上記活物質層の原料に溶媒や結着材を加えてペースト状あるいは坏土状にし、固体電解質の基材上や集電体上に形成するものとしてもよい。
(Method of manufacturing electrodes)
The method for producing an electrode of the present invention includes a step of preparing an active material layer for producing an active material layer. In this step, active material particles that absorb and release lithium, one or more of lithium fluoride and lithium chloride as a eutectic mixture, lithium, boron, and elements A (C, Al, Si, Ga, Ge, In, and A mixture containing a lithium boron-containing oxide containing 1 or more of Sn) and forming a eutectic mixture is fired at a temperature of 400 ° C. or higher and 650 ° C. or lower. In this step, since one or more of lithium fluoride and lithium chloride and a lithium boron-containing oxide are contained, the firing temperature can be lowered. As the active material particles, lithium boron-containing oxide, and the like, those described above can be used. Further, in this step, a solvent or a binder may be added to the raw material of the active material layer to form a paste or clay, which may be formed on a base material of a solid electrolyte or a current collector.

この工程では、リチウムホウ素含有酸化物のほか、フッ化リチウムと、塩化リチウムとを用い、540℃以下の温度で焼成するものとしてもよい。リチウムホウ素含有酸化物と、フッ化リチウムと、塩化リチウムとは、上述した電極での配合比で配合すればよい。例えば、共晶混合物の全体に対して、リチウムホウ素含有酸化物、フッ化リチウム及び塩化リチウムのそれぞれを20mol%以上40mol%以下の範囲で配合することが好ましく、25mol%以上36mol%以下の範囲で配合することがより好ましい。このような範囲では、焼成温度を500℃以下、更には、450℃以下にすることができ、好ましい。また、活物質粒子と共晶混合物の原料とは、上述した電極での配合比で配合すればよい。焼成温度は、例えば、共晶混合物の原料をDTA測定して融点を求め、その融点よりも高い温度とすればよい。DTA測定は、例えば、リファレンスとしてアルミナを用い、試料量を10mgとし、大気中、昇温速度10℃/分で行うものとしてもよい。 In this step, in addition to the lithium boron-containing oxide, lithium fluoride and lithium chloride may be used and calcined at a temperature of 540 ° C. or lower. The lithium boron-containing oxide, lithium fluoride, and lithium chloride may be blended in the above-mentioned blending ratio of the electrodes. For example, it is preferable to add lithium boron-containing oxide, lithium fluoride and lithium chloride in the range of 20 mol% or more and 40 mol% or less, and in the range of 25 mol% or more and 36 mol% or less, respectively, with respect to the entire eutectic mixture. It is more preferable to blend. In such a range, the firing temperature can be 500 ° C. or lower, more preferably 450 ° C. or lower, which is preferable. Further, the active material particles and the raw material of the eutectic mixture may be blended in the blending ratio of the electrodes described above. The firing temperature may be, for example, a temperature higher than the melting point of the raw material of the eutectic mixture obtained by DTA measurement. The DTA measurement may be performed, for example, by using alumina as a reference, setting the sample amount to 10 mg, and performing the DTA measurement in the atmosphere at a heating rate of 10 ° C./min.

以上説明した電極、電池及び電極の製造方法によれば、イオン伝導性を有しつつ、より低温で固化することにより活物質層を作製することができる。このような効果が得られる理由は、例えば、共晶混合物はそれを構成する元の物質より融点が下がることから、特定の組み合わせによる低融点の共晶混合物の融剤を用いることによって、イオン伝導性を有しつつ、より低温で活物質を固化することができるものと推察される。 According to the electrode, the battery, and the method for manufacturing the electrode described above, the active material layer can be produced by solidifying at a lower temperature while having ionic conductivity. The reason for obtaining such an effect is that, for example, since the eutectic mixture has a lower melting point than the original substance constituting the eutectic mixture, ionic conduction is obtained by using a flux of the eutectic mixture having a low melting point in a specific combination. It is presumed that the active material can be solidified at a lower temperature while having the property.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various aspects as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、電池は、全固体型リチウム二次電池を主として説明したが、特にこれに限定されない。例えば、電池は、液体を含んでいてもよいし、一次電池としてもよい。 For example, in the above-described embodiment, the battery is mainly described as an all-solid-state lithium secondary battery, but the battery is not particularly limited thereto. For example, the battery may contain a liquid or may be a primary battery.

以下には、本発明の電極及び電池を具体的に作製した例について説明する。なお、本発明は、以下の実施例に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の態様で実施しうることはいうまでもない。 Hereinafter, an example in which the electrode and the battery of the present invention are specifically manufactured will be described. It goes without saying that the present invention is not limited to the following examples, and can be carried out in various embodiments as long as it belongs to the technical scope of the present invention.

[融剤の検討]
活物質を固定する充填材(融剤を兼ねる)として、リチウム伝導性を有するLi2.20.20.83粒子(以下LBCO粒子とも称する)を用い、更に融点を降下させる融剤としてハロゲン化リチウム(LiX)を用い、添加量(モル%)と融点の関係について検討した。LBCOにLiF、LiCl、LiBr及びLiIのうちいずれか1つを所定のモル比で加えて乳鉢で混合し、DTA測定器(リガク社製Thermo plus EVO2)にて融点を測定した。DTA測定は、リファレンスとしてアルミナを用い、試料量を10mgとし、大気中、昇温速度10℃/分で行った。図2は、Li2.20.20.83へのLiX(Xはハロゲン)の添加量と融点との関係図である。また、表1にハロゲン化リチウムの種別、添加量及び融点をまとめた。LBCOとLiFとを混合した場合、LiFを50〜70mol%含むと、融点が約640℃まで降下した。また、LBCOとLiClとを混合した場合、LiClを60〜70mol%含むと、融点が約520℃に降下した。一方、LBCOとLiBrとを混合した場合、単体と比べてあまり融点が下がらず500℃以上であった。LBCOとLiIとを混合した場合、LiIを60〜90mol%含むときに融点が420℃まで低下した。しかしながら、LiIの系では固相のLi5IO6が生成したため、不適当であった。したがって、LiFとLiClとが融点を降下する融剤として有効であることがわかった。
[Examination of flux]
Lithium 2.2 B 0.2 C 0.8 O 3 particles (hereinafter also referred to as LBCO particles) having lithium conductivity are used as a filler (also serving as a flux) for fixing the active material, and lithium halide is used as a flux for further lowering the melting point. Using (LiX), the relationship between the amount added (mol%) and the melting point was examined. Any one of LiF, LiCl, LiBr and LiI was added to LBCO at a predetermined molar ratio, mixed in a mortar, and the melting point was measured with a DTA measuring device (Thermo plus EVO2 manufactured by Rigaku Co., Ltd.). The DTA measurement was carried out in the air at a heating rate of 10 ° C./min using alumina as a reference and setting the sample amount to 10 mg. FIG. 2 is a diagram showing the relationship between the amount of LiX (X is a halogen) added to Li 2.2 B 0.2 C 0.8 O 3 and the melting point. Table 1 summarizes the types, amounts and melting points of lithium halide. When LBCO and LiF were mixed, the melting point dropped to about 640 ° C. when LiF was contained in an amount of 50 to 70 mol%. Further, when LBCO and LiCl were mixed, the melting point decreased to about 520 ° C. when LiCl was contained in an amount of 60 to 70 mol%. On the other hand, when LBCO and LiBr were mixed, the melting point did not decrease much as compared with the simple substance, and the temperature was 500 ° C. or higher. When LBCO and LiI were mixed, the melting point decreased to 420 ° C. when 60 to 90 mol% of LiI was contained. However, the Li I system was unsuitable because solid phase Li 5 IO 6 was produced. Therefore, it was found that LiF and LiCl are effective as a flux that lowers the melting point.

Figure 0006766376
Figure 0006766376

[比較例1]
LBCO粒子のみでDTA測定を行い、その融点を求めた。図3は、Li2.20.20.83のDTA測定結果である。図3に示すように、図中の矢印で示した点が融点であり696℃であった。
[Comparative Example 1]
The DTA measurement was performed only on the LBCO particles, and the melting point thereof was determined. FIG. 3 shows the DTA measurement results of Li 2.2 B 0.2 C 0.8 O 3 . As shown in FIG. 3, the point indicated by the arrow in the figure was the melting point, which was 696 ° C.

[実施例1]
LBCO粒子とLiF粒子とLiCl粒子とを乳鉢混合した。モル比率はLBCO:LiF:LiCl=32:32:36とした。この共晶混合物のDTA測定を行った。図4は、Li2.20.20.83、LiF及びLiClの共晶混合物のDTA測定結果である。この実施例1では、融点が445℃であり、LBCO粒子単独に比して極めて大きな融点の降下が得られることが明らかとなった。
[Example 1]
LBCO particles, LiF particles and LiCl particles were mixed in a mortar. The molar ratio was LBCO: LiF: LiCl = 32: 32: 36. The DTA measurement of this eutectic mixture was performed. FIG. 4 shows the DTA measurement results of a eutectic mixture of Li 2.2 B 0.2 C 0.8 O 3 , Li F and Li Cl. In this Example 1, it was clarified that the melting point was 445 ° C., and an extremely large decrease in melting point was obtained as compared with the LBCO particles alone.

[実施例2]
LBCO粒子とLiF粒子とLiCl粒子とを乳鉢混合した。モル比率はLBCO:LiF:LiCl=41:41:18とした。この共晶混合物のDTA測定を行った。図5は、Li2.20.20.83、LiF及びLiClの共晶混合物のDTA測定結果である。この実施例2では、融点が522℃であり、LBCO粒子単独に比して大きな融点の降下が得られることが明らかとなった。
[Example 2]
LBCO particles, LiF particles and LiCl particles were mixed in a mortar. The molar ratio was LBCO: LiF: LiCl = 41: 41: 18. The DTA measurement of this eutectic mixture was performed. FIG. 5 shows the DTA measurement results of a eutectic mixture of Li 2.2 B 0.2 C 0.8 O 3 , Li F and Li Cl. In this Example 2, it was clarified that the melting point was 522 ° C., and a large decrease in melting point was obtained as compared with the LBCO particles alone.

(電気伝導度)
実施例1の配合比でLBCO、LiF及びLiClを配合し、加熱固化させた共晶混合物の電気伝導度を測定した。実施例1の配合比の共晶混合物を1軸プレスによりペレットを作製した。ペレットを500℃で焼成して融かしたのち、室温まで温度を低下させ凝固させた。ペレットの表面、裏面にLiを圧着して電極として2極インピーダンス測定を行った。恒温槽中にて、ACインピーダンスアナライザー(Solartron製FRA1255B)を用い、周波数0.01Hz〜1MHz、振幅電圧100mVの条件で、ナイキストプロットの円弧より抵抗値を求め、この抵抗値から電気伝導度を算出した。図6は、実施例1のLi2.20.20.83、LiF及びLiClの共晶混合物のナイキストプロットである。図6の測定結果から算出されたバルク抵抗は、2.6MΩであった。また、電極面積0.53cm2、ペレット厚さ0.22cmからイオン導電率を求めると、1.7×10-7(S/cm)であった。
(Electrical conductivity)
LBCO, LiF and LiCl were blended in the blending ratio of Example 1, and the electric conductivity of the eutectic mixture that was heat-solidified was measured. The eutectic mixture having the compounding ratio of Example 1 was prepared by uniaxial pressing to prepare pellets. The pellet was calcined at 500 ° C. to melt it, and then the temperature was lowered to room temperature to solidify it. Li was pressure-bonded to the front and back surfaces of the pellet to measure the bipolar impedance as an electrode. Using an AC impedance analyzer (FRA1255B manufactured by Solartron) in a constant temperature bath, obtain the resistance value from the arc of Nyquist plot under the conditions of frequency 0.01Hz to 1MHz and amplitude voltage 100mV, and calculate the electrical conductivity from this resistance value. did. FIG. 6 is a Nyquist plot of a eutectic mixture of Li 2.2 B 0.2 C 0.8 O 3 , LiF and LiCl from Example 1. The bulk resistance calculated from the measurement result of FIG. 6 was 2.6 MΩ. Further, when the ionic conductivity was calculated from the electrode area of 0.53 cm 2 and the pellet thickness of 0.22 cm, it was 1.7 × 10 -7 (S / cm).

(全固体リチウム二次電池の作製)
正極活物質としてのLiCoO2粉末(以下LCOと称する。平均粒径が1.7μm)と、LBCO粉末とLiF粉末とLiCl粉末とを乳鉢混合した。正極活物質と共晶混合物の原料(LBCO、LiF、LiCl)は、体積比率で、73:27とした。また、共晶混合物の組成は、モル比率でLBCO:LiF:LiCl=32:32:36(実施例1と同じ)とした。この粉末にバインダ(日新化成製ECビヒクル)を加え、混練することによりLCO、LBCO、LiF及びLiClを含むペーストを作製した。このペーストをスクリーン印刷機により固体電解質基板上に印刷して,500℃、1hの熱処理条件で焼き付けることにより正極を形成した。固体電解質基板は、リチウムイオン伝導性を有するガーネット型酸化物であるLi6.75La3Zr1.75Nb0.2512の板状体を用いた。この正極を形成した固体電解質基板の裏面にLiを蒸着して負極を形成することにより、実施例1の共晶混合物を正極に備えた全固体電池を作製した。
(Manufacturing of all-solid-state lithium secondary battery)
LiCoO 2 powder (hereinafter referred to as LCO, having an average particle size of 1.7 μm) as a positive electrode active material, LBCO powder, LiF powder, and LiCl powder were mixed in a mortar. The raw materials (LBCO, LiF, LiCl) of the positive electrode active material and the eutectic mixture were set to 73:27 in volume ratio. The composition of the eutectic mixture was LBCO: LiF: LiCl = 32: 32: 36 (same as in Example 1) in terms of molar ratio. A binder (EC vehicle manufactured by Nissin Kasei) was added to this powder and kneaded to prepare a paste containing LCO, LBCO, LiF and LiCl. This paste was printed on a solid electrolyte substrate by a screen printing machine and baked under heat treatment conditions of 500 ° C. and 1 h to form a positive electrode. As the solid electrolyte substrate, a plate-like body of Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , which is a garnet-type oxide having lithium ion conductivity, was used. By depositing Li on the back surface of the solid electrolyte substrate on which the positive electrode was formed to form a negative electrode, an all-solid-state battery having the eutectic mixture of Example 1 on the positive electrode was produced.

(電池評価)
電池評価として、サイクリックボルタモグラム(CV)を測定した。CV測定は、電気化学測定システム(Solartron製148055B)を用いて電位走査速度0.1mV/sの条件で行った。図7は、実施例1の共晶混合物を正極活物質層に含む全固体リチウム二次電池のサイクリックボルタモグラム(CV)である。図7に示すように、CVにおいて酸化還元電流が流れており、作製した全固体リチウム二次電池は、500℃という低温焼成により作製されたものであるが、充放電することがわかった。なお、LBCOのみを用いて正極活物質層を形成した従来の全固体リチウム二次電池では、500℃での焼成ではLBCOが融けないため、全く酸化還元電流は流れなかった。
(Battery evaluation)
As a battery evaluation, a cyclic voltammogram (CV) was measured. The CV measurement was performed using an electrochemical measurement system (148505B manufactured by Solartron) under the condition of a potential scanning speed of 0.1 mV / s. FIG. 7 is a cyclic voltammogram (CV) of an all-solid-state lithium secondary battery containing the eutectic mixture of Example 1 in the positive electrode active material layer. As shown in FIG. 7, a redox current is flowing in the CV, and the produced all-solid-state lithium secondary battery was produced by firing at a low temperature of 500 ° C., but it was found that the battery was charged and discharged. In the conventional all-solid-state lithium secondary battery in which the positive electrode active material layer was formed using only LBCO, the redox current did not flow at all because the LBCO did not melt when fired at 500 ° C.

本発明は、電池産業の分野に利用可能である。 The present invention is available in the field of the battery industry.

10 全固体型リチウム二次電池、11 固体電解質層、12 正極、13 正極活物質層、14 集電体、15 負極、16 負極活物質層、17 集電体、21 正極活物質粒子、22 共晶混合物。 10 all-solid lithium secondary battery, 11 solid electrolyte layer, 12 positive electrode, 13 positive electrode active material layer, 14 current collector, 15 negative electrode, 16 negative electrode active material layer, 17 current collector, 21 positive electrode active material particles, 22 Crystal mixture.

Claims (8)

全固体電池に用いられる電極であって、
リチウムを吸蔵放出する活物質粒子と、
フッ化リチウム及び塩化リチウムのうち1以上と、リチウムとホウ素と元素A(C、Al、Si、Ga、Ge、In及びSnのうち1以上)とを含むリチウムホウ素含有酸化物と、を含み前記活物質粒子の周りに存在する共晶混合物と、
が混在する活物質層、を備え
前記共晶混合物には、前記リチウムホウ素含有酸化物が15mol%以上70mol%以下の範囲で含まれ、前記フッ化リチウムが15mol%以上70mol%以下の範囲で含まれ、前記塩化リチウムが15mol%以上70mol%以下の範囲で含まれており、
前記活物質層には、前記活物質粒子が50体積%以上85体積%以下の範囲で含まれ、前記共晶混合物が15体積%以上50体積%以下の範囲で含まれる、
電極。
An electrode used in all-solid-state batteries
Active material particles that occlude and release lithium,
The above includes 1 or more of lithium fluoride and lithium chloride, and a lithium boron-containing oxide containing lithium, boron and the element A (1 or more of C, Al, Si, Ga, Ge, In and Sn). With the eutectic mixture that exists around the active material particles,
With a mixed active material layer ,
The eutectic mixture contains the lithium boron-containing oxide in the range of 15 mol% or more and 70 mol% or less, the lithium fluoride in the range of 15 mol% or more and 70 mol% or less, and the lithium chloride in the range of 15 mol% or more. It is contained in the range of 70 mol% or less,
The active material layer contains the active material particles in the range of 50% by volume or more and 85% by volume or less, and the eutectic mixture in the range of 15% by volume or more and 50% by volume or less.
electrode.
前記リチウムホウ素含有酸化物は、Li2+xx1-x3(式中、xは0<x≦1を満たす)である、請求項1に記載の電極。 The electrode according to claim 1, wherein the lithium boron-containing oxide is Li 2 + x B x C 1-x O 3 (in the formula, x satisfies 0 <x ≦ 1). 前記活物質粒子は、リチウム複合酸化物粒子である、請求項1又は2に記載の電極。 The electrode according to claim 1 or 2 , wherein the active material particles are lithium composite oxide particles. 請求項1〜のいずれか1項に記載の電極と、
前記電極に隣接した固体電解質層と、を備えた、電池。
The electrode according to any one of claims 1 to 3 and
A battery comprising a solid electrolyte layer adjacent to the electrode.
リチウムを吸蔵放出する活物質粒子と、共晶混合物となるフッ化リチウム及び塩化リチウムのうち1以上と、リチウムとホウ素と元素A(C、Al、Si、Ga、Ge、In及びSnのうち1以上)とを含み共晶混合物となるリチウムホウ素含有酸化物と、を含む混合物を400℃以上650℃以下の温度で焼成して活物質層を作製する活物質層作製工程、を含み、
前記活物質層作製工程では、前記共晶混合物の全体に対して、前記リチウムホウ素含有酸化物を15mol%以上70mol%以下の範囲、前記フッ化リチウムを15mol%以上70mol%以下の範囲、前記塩化リチウムを15mol%以上70mol%以下の範囲で配合し、前記活物質粒子を50体積%以上85体積%以下の範囲、前記共晶混合物となる原料を15体積%以上50体積%以下の範囲で配合する、
電極の製造方法。
Active material particles that absorb and release lithium, one or more of lithium fluoride and lithium chloride that are eutectic mixtures, and one of lithium, boron, and element A (C, Al, Si, Ga, Ge, In, and Sn). look including the active material layer forming step is attained for forming the active material layer and the lithium-boron-containing oxide having a eutectic mixture, a mixture comprising by firing at a temperature of 650 ° C. 400 ° C. or higher include higher) and,
In the active material layer preparation step, the lithium boron-containing oxide is in the range of 15 mol% or more and 70 mol% or less, the lithium fluoride is in the range of 15 mol% or more and 70 mol% or less, and the chloride is added to the whole eutectic mixture. Lithium is blended in the range of 15 mol% or more and 70 mol% or less, the active material particles are blended in the range of 50% by volume or more and 85% by volume or less, and the raw material to be the eutectic mixture is blended in the range of 15% by volume or more and 50% by volume or less. To do,
Electrode manufacturing method.
前記活物質層作製工程では、フッ化リチウムと、塩化リチウムとを用い、540℃以下の温度で焼成する、請求項に記載の電極の製造方法。 The method for producing an electrode according to claim 5 , wherein in the active material layer manufacturing step, lithium fluoride and lithium chloride are used and fired at a temperature of 540 ° C. or lower. 前記活物質層作製工程では、前記リチウムホウ素含有酸化物としてLi2+xx1-x3(式中、xは0<x≦1を満たす)を用いる、請求項5又は6に記載の電極の製造方法。 According to claim 5 or 6 , in the step of preparing the active material layer, Li 2 + x B x C 1-x O 3 (where x satisfies 0 <x ≦ 1) is used as the lithium boron-containing oxide. The method for manufacturing an electrode according to the description. 前記活物質層作製工程では、前記活物質粒子としてリチウム複合酸化物粒子を用いる、
請求項のいずれか1項に記載の電極の製造方法。
In the active material layer manufacturing step, lithium composite oxide particles are used as the active material particles.
The method for manufacturing an electrode according to any one of claims 5 to 7 .
JP2016038598A 2016-03-01 2016-03-01 Electrode, battery and electrode manufacturing method Expired - Fee Related JP6766376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038598A JP6766376B2 (en) 2016-03-01 2016-03-01 Electrode, battery and electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038598A JP6766376B2 (en) 2016-03-01 2016-03-01 Electrode, battery and electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2017157359A JP2017157359A (en) 2017-09-07
JP6766376B2 true JP6766376B2 (en) 2020-10-14

Family

ID=59809927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038598A Expired - Fee Related JP6766376B2 (en) 2016-03-01 2016-03-01 Electrode, battery and electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP6766376B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2991256B2 (en) * 1991-08-23 1999-12-20 日本電信電話株式会社 Lithium ion conductive solid electrolyte material
JP5312966B2 (en) * 2008-01-31 2013-10-09 株式会社オハラ Method for producing lithium ion secondary battery
JP2012099225A (en) * 2010-10-29 2012-05-24 Ohara Inc All-solid lithium ion secondary battery and method of manufacturing the same
JP6119469B2 (en) * 2013-07-05 2017-04-26 株式会社豊田中央研究所 Ion conductive solid, method for producing the same, and solid battery
US10566611B2 (en) * 2015-12-21 2020-02-18 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication

Also Published As

Publication number Publication date
JP2017157359A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6672848B2 (en) Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure
JP5731278B2 (en) All-solid-state lithium ion battery
JP5312969B2 (en) Method for producing lithium ion secondary battery
JP5721540B2 (en) Lithium ion conductive inorganic material
JP6565724B2 (en) Garnet type lithium ion conductive oxide and all solid state lithium ion secondary battery
JP5283188B2 (en) All-solid secondary battery and manufacturing method thereof
JP6119469B2 (en) Ion conductive solid, method for producing the same, and solid battery
WO2015128982A1 (en) Lithium secondary cell
WO2014141456A1 (en) Solid electrolyte, and all-solid ion secondary cell using same
JP6679843B2 (en) Electrode, electrode manufacturing method and battery
TW201121125A (en) Conductive materials and positive electrode material for li ion secondary battery using the same
JP2009140910A (en) All-solid battery
JP7220370B2 (en) Solid electrolyte and power storage device with the same
WO2014020654A1 (en) All-solid ion secondary cell
JP6294094B2 (en) Glass electrolyte and all solid lithium ion secondary battery
JP7105055B2 (en) Anode materials, anodes and batteries
JP2009140911A (en) All-solid battery
JP6757573B2 (en) Manufacturing method of all-solid-state battery and all-solid-state battery
WO2015037270A1 (en) Solid electrolyte, and all-solid ion secondary battery using same
JPWO2019093221A1 (en) Rechargeable battery
JP2015079702A (en) Lithium ion conductive ceramics material, method for manufacturing the same, and lithium ion battery
JP6840946B2 (en) Solid electrolytes, all-solid-state batteries, and how to make them
JP7375914B2 (en) solid state battery
JP2015065046A (en) All-solid battery, and method for manufacturing the same
JP6766376B2 (en) Electrode, battery and electrode manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6766376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees