JPH06139847A - Manufacture of superconducting wire - Google Patents

Manufacture of superconducting wire

Info

Publication number
JPH06139847A
JPH06139847A JP5053747A JP5374793A JPH06139847A JP H06139847 A JPH06139847 A JP H06139847A JP 5053747 A JP5053747 A JP 5053747A JP 5374793 A JP5374793 A JP 5374793A JP H06139847 A JPH06139847 A JP H06139847A
Authority
JP
Japan
Prior art keywords
holes
metal plate
composite billet
based metal
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5053747A
Other languages
Japanese (ja)
Other versions
JP2868966B2 (en
Inventor
Kunihiko Egawa
邦彦 江川
Yoshio Kubo
芳生 久保
Takayuki Nagai
貴之 永井
Hidefusa Uchikawa
英興 内川
Shoji Miyashita
章志 宮下
Hiroko Higuma
弘子 樋熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5053747A priority Critical patent/JP2868966B2/en
Publication of JPH06139847A publication Critical patent/JPH06139847A/en
Application granted granted Critical
Publication of JP2868966B2 publication Critical patent/JP2868966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To manufacture a superconducting wire capable of shortening the manufacturing time and reducing the production cost and having an improved superconductive characteristic. CONSTITUTION:Round rods 3 of 337 pieces made of NbTi alloy are manufactured, and 337 holes 2 are bored with an NC drilling machine at lattice points of a triangular lattice on a disk 1 made of oxygen-free copper. 60 disks 1 are laminated in a container 4 made of oxygen-free copper so that positions of the holes 2 match with each other to obtain a laminated body, and the NbTi rods 3 are inserted and filled into the holes 2. The inside of the laminated body is evacuated, a coat is welded to manufacture a composite billet, and cross section reducing machining is applied to it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合ビレットを用いた
超電導線材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconducting wire using a composite billet.

【0002】[0002]

【従来の技術】電力損失無しに大電流を流したり、強磁
界を発生できる超電導の応用分野として、(1)発電
機、送電ケーブル、エネルギー貯蔵などの電力システム
の超電導化による省エネルギー開発、(2)核融合、M
HD発電などの新エネルギー開発、(3)高エネルギー
加速器、磁気浮上列車、電磁推進船、磁気分離、医療用
MRIなど高磁界を利用した新技術の開発、などがあ
る。このような超電導応用技術の発展のためには優れた
超電導線材技術の開発が必要不可欠であり、これまで
に、8および9T以下の磁界下ではNbTi系合金線材
が、又、それ以上の高磁界下ではNb3SnおよびV3
a系化合物線材が開発されている。これらの超電導線材
はその安定化のために、Cu等の抵抗率の小さな金属マ
トリックス中に数10μm以下の径の超電導フィラメン
トが多数埋設され、しかもその超電導フィラメントは捻
られた構造を持っている。こうした超電導線材は極細多
芯線と呼ばれている。
2. Description of the Related Art As application fields of superconductivity capable of passing a large current or generating a strong magnetic field without power loss, (1) energy-saving development by superconducting power systems such as generators, power transmission cables, and energy storage, (2) ) Nuclear fusion, M
There are new energy development such as HD power generation, and (3) development of new technology using high magnetic field such as high energy accelerator, magnetic levitation train, electromagnetic propulsion ship, magnetic separation, and medical MRI. Development of excellent superconducting wire technology is indispensable for the development of such superconducting application technology. So far, NbTi alloy wire materials have been used under magnetic fields of 8 and 9 T or less, and high magnetic field of higher than that. Below, Nb 3 Sn and V 3 G
An a-type compound wire has been developed. In order to stabilize these superconducting wires, a large number of superconducting filaments having a diameter of several tens of μm or less are embedded in a metal matrix having a low resistivity such as Cu, and the superconducting filaments have a twisted structure. Such superconducting wire is called extra fine multifilamentary wire.

【0003】極細多芯線の実用化は加工性の良好な合金
系材料に始まった。以下、NbTi線の製造方法につい
て簡単に述べる。詳細は、例えば、刊行物{超電導工学
(改訂版)、オーム社(1988)P.74および材料
科学誌、20(1983)P.80}に示されている。
即ち、NbTi合金を丸棒状に冷間加工する。この丸棒
をCuチューブ中に挿入し断面減少加工することで単芯
線を得る。この単芯線を適当な長さに裁断し、Cuの容
器中に多数充填する。容器中の空気を排除し、蓋を溶接
して密封し複合ビレットを製造する。その後、押出し加
工と断面減少加工を繰り返すことで複合線を得る。尚、
大電流容量化するためには、得られた多数の複合線をC
uチューブ中に充填して断面減少加工すればよい。一般
に、NbTi合金線の臨界電流密度は強加工(断面減少
率104以上)と時効処理(熱処理温度350〜450
℃)の組み合わせにより大幅に増大するので、通常、多
重時効・冷間加工処理が施され、さらにツイスト加工す
ることで極細多芯線が得られている。
Practical use of ultrafine multifilamentary wires began with alloy materials having good workability. The method of manufacturing the NbTi wire will be briefly described below. For details, see, for example, a publication {Superconductivity Engineering (revised edition), Ohmsha (1988) P. 74 and Journal of Materials Science, 20 (1983) P.I. 80}.
That is, the NbTi alloy is cold worked into a round bar shape. A single core wire is obtained by inserting this round bar into a Cu tube and subjecting it to cross-section reduction processing. This single-core wire is cut into an appropriate length and many Cu containers are filled. The air in the container is evacuated and the lid is welded and sealed to produce a composite billet. After that, a composite wire is obtained by repeating extrusion processing and cross-section reduction processing. still,
In order to increase the current capacity, C
It may be filled in the u-tube and processed to reduce the cross section. Generally, the critical current densities of NbTi alloy wires are high working (area reduction rate of 10 4 or more) and aging treatment (heat treatment temperature of 350 to 450).
(° C) significantly increases, so multiple aging / cold working is usually performed, and then twisting is performed to obtain an ultrafine multifilamentary wire.

【0004】次に化合物系材料の製造方法について説明
する。化合物系の超電導材料は合金系材料に比べ、臨界
温度(Tc)、上部臨界磁界(Bc2)共にかなり高いと
いう優れた特徴がある反面、極めて脆いという欠点を有
している。従って、化合物系超電導材料自身は加工性を
持たないため、この極細多芯線を得るための製造方法に
関して、さまざまのアイデアが出されてきた。現在、工
業的に確立されている製造方法は固相反応を利用したも
ので、主な方法として、例えば、刊行物{超電導工学
(改訂版)、オーム社(1988)P.74および材料
科学誌、20(1983)P.82}に示されている、
ブロンズ法、チューブ法、内部拡散法、外部拡散法等が
ある。これらの方法において、Nbの代わりにV、Sn
の代わりにGaで置き換えればNb3SnとV3Gaとが
定性的に同等であるので、以下、Nb3Snを例にし、
典型的な内部拡散法について簡単に説明する。
Next, a method for producing a compound material will be described. The compound-based superconducting material has an excellent characteristic that both the critical temperature (T c ) and the upper critical magnetic field (B c2 ) are considerably higher than the alloy-based material, but it has a drawback of being extremely brittle. Therefore, since the compound-based superconducting material itself does not have workability, various ideas have been proposed regarding the manufacturing method for obtaining the ultrafine multifilamentary wire. Currently, the industrially established manufacturing method utilizes a solid-phase reaction, and as a main method, for example, a publication {Superconducting Engineering (Revised Edition), Ohmsha (1988) P. 74 and Journal of Materials Science, 20 (1983) P.I. 82},
There are bronze method, tube method, internal diffusion method, external diffusion method and the like. In these methods, V, Sn instead of Nb
Because the Nb 3 Sn and V 3 Ga is replaced by Ga in place of a qualitatively equivalent, hereinafter, the Nb 3 Sn as an example,
A typical internal diffusion method will be briefly described.

【0005】即ち、Nb棒をCuチューブに挿入し、あ
る径まで断面減少加工をする。この単芯線を適当な長さ
に裁断し、Cuの容器中に多数充填する。但し、中央部
にはCu棒および多数のCu線を配置しておく。容器中
の空気を排除し、蓋を溶接して密封し複合ビレットを得
る。これを押出し加工した後、中心のCu部に機械的に
孔を空ける。この中空部にSnを挿入し、外側に、Ta
やNbのチューブ、更にその外側にCuのチューブを被
覆し、断面減少加工する。尚、大電流容量化するために
は、得られた複合線を多数Cuチューブ中に充填して断
面減少加工すればよい。最終径でツイスト加工した後、
熱処理を施す。この熱処理により、Snは周囲のCu中
に拡散してCuをCu−Sn合金に変え、更に、Nbフ
ィラメントと反応し、この表面層もしくは全てがNb3
Snに変わり、Nb3Sn系極細多芯線が得られる。こ
のように合金系、化合物系とも極細多芯線の製造方法は
工業的にも確立されつつあり、最近ではNb3Sn系化
合物に第3元素を添加することにより、17T以上の高
磁界マグネットも実用化されている。
That is, an Nb rod is inserted into a Cu tube and a cross-section reduction process is performed to a certain diameter. This single-core wire is cut into an appropriate length and many Cu containers are filled. However, a Cu rod and a large number of Cu wires are arranged in the central portion. The air in the container is evacuated and the lid is welded and sealed to obtain a composite billet. After this is extruded, a hole is mechanically formed in the central Cu portion. Sn is inserted in this hollow part, and Ta is put outside.
A tube of Nb or Nb, and a tube of Cu on the outside of the tube are coated to reduce the cross section. In order to increase the current capacity, a large number of the obtained composite wires may be filled in a Cu tube and the cross-section reduction processing may be performed. After twist processing with the final diameter,
Heat treatment is applied. By this heat treatment, Sn diffuses into the surrounding Cu and changes Cu into a Cu-Sn alloy, and further reacts with the Nb filament, and this surface layer or all of it is Nb 3
Instead of Sn, an Nb 3 Sn-based extra fine multifilamentary wire is obtained. As described above, the method of manufacturing ultrafine multifilamentary wires, both alloy-based and compound-based, is being industrially established, and recently, by adding a third element to Nb 3 Sn-based compounds, high magnetic field magnets of 17T or more have been put into practical use. Has been converted.

【0006】しかしながら、これらの製造方法にも欠点
はある。線材作製上、最も重要な工程はCu容器中に多
数のCu、Cu/NbTi、または、Cu/Nb単芯線
を充填し、複合ビレットを製造する部分である。この工
程により、極細多芯線の形状がほぼ決定するため、この
工程の仕上がりの善し悪しが、線材の超電導特性を左右
すると言っても過言ではない。しかしながら、これまで
説明してきた従来の方法では、適当な長さに裁断された
数十から多い場合では千数百本のCu、Cu/NbT
i、または、Cu/Nb単芯線を多数の人手によりCu
容器に挿入することで複合ビレットを製造していた。こ
のため単芯線の直線性等の加工精度を満たすために多く
の人手と時間を要し、製造コストの増大につながってい
た。さらに、従来の方法では単芯線の充填密度には限界
があった。
However, these manufacturing methods also have drawbacks. The most important step in producing the wire rod is to fill a large number of Cu, Cu / NbTi or Cu / Nb single core wires in a Cu container to produce a composite billet. Since the shape of the ultrafine multifilamentary wire is almost determined by this step, it is no exaggeration to say that the quality of the finish of this step affects the superconducting properties of the wire. However, according to the conventional method described so far, in the case where the number of diced pieces cut to an appropriate length is large, and in the case of a large number of tens, hundreds or more of Cu and Cu / NbT are cut.
i or Cu / Nb single core wire is Cu
The composite billet was manufactured by inserting it into a container. For this reason, a lot of manpower and time are required to satisfy the processing accuracy such as the linearity of the single core wire, which leads to an increase in manufacturing cost. Furthermore, the packing density of the single core wire is limited in the conventional method.

【0007】また、今後、超電導線のさらなる高性能化
の需要に答えるためには、線材の多芯化、超電導フィラ
メントの細線化等は重要課題である。このためには複合
ビレットの製造においてCu容器中に充填する単芯線の
本数を増やすか、あるいは、複合化のプロセスを多数回
繰り返すことが必要となる。したがって、加工性の良さ
が望まれ、上記方法では限界があった。さらに、多芯化
は極細多芯線中の超電導フィラメント間の距離がこれま
で以上に短くなることを意味する。このため、超電導フ
ィラメント間の一部または大部分に物理的結合および近
接効果による超電導的結合を生じ交流損失が高くなり特
性を劣化させてしまう。従って、複合ビレットの製造に
おいてCu容器中に単芯線を充填する方法以外の簡便な
方法が採用できれば、製造方法の簡便化、コストの低減
ばかりでなく、超電導特性の向上が計れる。
In order to meet the demand for higher performance of superconducting wires, it is important to increase the number of cores of wires and thin superconducting filaments. For this purpose, it is necessary to increase the number of single core wires to be filled in the Cu container in the production of the composite billet, or to repeat the composite process a number of times. Therefore, good workability is desired, and there is a limit in the above method. Further, the multi-core structure means that the distance between the superconducting filaments in the ultra-fine multi-core wire becomes shorter than ever. For this reason, physical coupling and superconducting coupling due to the proximity effect occur in a part or most of the superconducting filaments, resulting in a high AC loss and degrading the characteristics. Therefore, if a simple method other than the method of filling the single core wire into the Cu container can be adopted in the production of the composite billet, not only the production method can be simplified and the cost can be reduced, but also the superconducting property can be improved.

【0008】そこで、特公昭54―22758号公報
に、改善された複合ビレットの製造方法が示されてい
る。即ち、縦方向に複数本の孔を開けた銅ブロックの複
数個を積み重ねたものに超電導材料棒を挿入した後、銅
ブロックの両端に銀蓋を当て、銅ブロック積層円周部を
真空中で電子ビーム溶接して押しだし用ビレットを製造
する。
Japanese Patent Publication No. 54-22758 discloses an improved method for producing a composite billet. That is, after inserting a superconducting material rod into a stack of a plurality of copper blocks having a plurality of holes in the vertical direction, apply silver lids to both ends of the copper blocks and place the copper block laminated circumferential portion in vacuum. Manufacture extrusion billets by electron beam welding.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来法では、真空中での多数回の電子ビーム溶接が必要で
あり、製造工程が複雑になり製造コストが増大するこ
と、さらに、各銅ブロック同士の接触面が溶接時の融け
込み深さ(2mm)しかなく、その後の断面減少加工時
に断線が頻繁におこるという課題があった。
However, the above-mentioned conventional method requires a large number of electron beam weldings in a vacuum, which complicates the manufacturing process and increases the manufacturing cost. There was a problem that the contact surface had a fusion depth (2 mm) at the time of welding, and the wire was frequently broken during the subsequent cross-section reduction processing.

【0010】本発明は、かかる課題を解決するためにな
されたもので、製造時間の短縮および製造コストの低減
が達成でき、超電導特性の向上した超電導線材の製造方
法を得ることを目的とするものである。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a method for manufacturing a superconducting wire which can achieve a reduction in manufacturing time and a reduction in manufacturing cost, and which has improved superconducting properties. Is.

【0011】本発明の別の発明は、加工性が向上して歩
留まりが良くなり、さらに製造時間の短縮と製造コスト
の低減が達成できる超電導線材の製造方法を得ることを
目的とするものである。
Another object of the present invention is to obtain a method for manufacturing a superconducting wire which has improved workability, improved yield, and can shorten manufacturing time and manufacturing cost. .

【0012】本発明のさらに別の発明は、さらに製造時
間の短縮と製造コストの低減が達成でき、さらに超電導
特性の向上した超電導線材の製造方法を得ることを目的
とするものである。
Still another object of the present invention is to obtain a method for manufacturing a superconducting wire which can achieve further reduction of manufacturing time and manufacturing cost, and further has improved superconducting characteristics.

【0013】また、容易な超電導線材の製造方法を得る
ことができる。
Further, an easy method for manufacturing a superconducting wire can be obtained.

【0014】[0014]

【課題を解決するための手段】本発明の超電導線材の製
造方法は、Cu基金属板に孔を空ける工程、この各金属
板の各孔が重なるように、上記孔の開いたCu基金属板
を支持容器に積層して積層体を得る工程、この積層体の
孔に熱処理により超電導体となる材料を充填する工程、
上記支持容器内を排気密封して複合ビレットを得る工
程、および上記複合ビレットを断面減少加工し、熱処理
して超電導体を得る工程を施すものである。
A method of manufacturing a superconducting wire according to the present invention comprises a step of forming holes in a Cu-based metal plate, and a Cu-based metal plate having the holes so that the holes of each metal plate are overlapped. To obtain a laminated body by laminating a supporting container, a step of filling the material of the superconductor by heat treatment into the holes of the laminated body,
The step of exhaust-sealing the inside of the support container to obtain a composite billet, and the step of subjecting the composite billet to cross-section reduction processing and heat treatment to obtain a superconductor are performed.

【0015】本発明の別の発明の超電導線材の製造方法
は、Cu基金属板に孔を空ける工程、この各金属板の各
孔が重なるように、上記孔の開いたCu基金属板を支持
容器に積層して積層体を得る工程、この積層体の孔に超
電導体を充填する工程、上記支持容器内を排気密封して
複合ビレットを得る工程、および上記複合ビレットを断
面減少加工する工程を施すものである。
A method of manufacturing a superconducting wire according to another aspect of the present invention comprises a step of forming holes in a Cu-based metal plate, and supporting the Cu-based metal plate with the holes so that the holes of the metal plates overlap. A step of stacking in a container to obtain a laminate, a step of filling a hole in the laminate with a superconductor, a step of exhaust-sealing the inside of the supporting vessel to obtain a composite billet, and a step of subjecting the composite billet to cross-section reduction It is something to give.

【0016】本発明の別の発明の超電導線材の製造方法
は、Cu基金属板に孔を空ける工程、この各金属板の各
孔が重なるように、上記孔の開いたCu基金属板を支持
容器に積層して積層体を得る工程、この積層体の孔に熱
処理により超電導体となる材料を充填する工程、上記支
持容器内を排気密封して複合ビレットを得る工程、およ
び上記複合ビレットを熱間加圧処理して、断面減少加工
し、熱処理して超電導体を得る工程を施すものである。
A method of manufacturing a superconducting wire according to another invention of the present invention comprises a step of forming a hole in a Cu-based metal plate, and supporting the Cu-based metal plate having the holes so that the holes of each metal plate overlap. The step of stacking in a container to obtain a laminated body, the step of filling the hole of this laminated body with a material to be a superconductor by heat treatment, the step of exhaust-sealing the inside of the supporting container to obtain a composite billet, and the step of heating the composite billet It is subjected to a pressurizing process, a cross-section reduction process, and a heat treatment to obtain a superconductor.

【0017】本発明の別の発明の超電導線材の製造方法
は、Cu基金属板に孔を空ける工程、この各金属板の各
孔が重なるように、上記孔の開いたCu基金属板を支持
容器に積層して積層体を得る工程、この積層体の孔に超
電導体を充填する工程、上記支持容器内を排気密封して
複合ビレットを得る工程、および上記複合ビレットを熱
間加圧処理して、断面減少加工する工程を施すものであ
る。
A method of manufacturing a superconducting wire according to another invention of the present invention comprises a step of forming a hole in a Cu-based metal plate, and supporting the Cu-based metal plate having the holes so that the holes of each of the metal plates overlap. Stacking in a container to obtain a laminate, filling the holes of the laminate with a superconductor, exhausting and sealing the inside of the supporting container to obtain a composite billet, and hot pressing the composite billet. Then, a process of reducing the cross section is performed.

【0018】本発明のさらに別の発明の超電導線材の製
造方法は、Cu基金属板に孔を空ける工程、この各金属
板の各孔が重なるように、上記孔の開いたCu基金属板
を、支持容器に積層して積層体を得る工程、この積層体
の孔に熱処理により超電導体となる材料を充填する工
程、上記支持容器内を排気密封して複合ビレットを得る
工程、および上記複合ビレットを断面減少加工し、上記
Cu基金属板とは化学的に反応せず、上記支持容器を化
学的に除去して後、熱処理して超電導体を得る工程を施
すものである。また、上記支持容器がFeまたはNi製
であり、上記複合ビレットを塩酸に浸漬することにより
支持容器を除去する。
A method of manufacturing a superconducting wire according to still another aspect of the present invention comprises a step of forming holes in a Cu-based metal plate, and a Cu-based metal plate having the above-mentioned holes so that the holes of each metal plate overlap. A step of stacking in a support container to obtain a laminate, a step of filling a hole in the laminate with a material to be a superconductor by heat treatment, a step of exhaust-sealing the inside of the support vessel to obtain a composite billet, and the composite billet Is subjected to a cross-section reduction processing, does not chemically react with the Cu-based metal plate, chemically removes the supporting container, and then heat-treats to obtain a superconductor. The supporting container is made of Fe or Ni, and the supporting container is removed by immersing the composite billet in hydrochloric acid.

【0019】また、上記Cu基金属板として、厚みが上
記孔の径の3倍以下であるものを用いる。
As the Cu-based metal plate, one having a thickness not more than 3 times the diameter of the hole is used.

【0020】[0020]

【作用】本発明において、複合ビレットの製造が容易に
なり、しかも、複合ビレットの製造方法のみを変更し、
それ以外の線材化プロセスはそのまま踏襲することで超
電導線材を得ることが可能であり、従来の装置を利用で
きると共に、製造時間の短縮および製造コストの低減が
達成できる。さらに、従来は六角棒の形状により詰め方
が限定されていたのに対し、本発明では自由に孔が開け
られるので、複合ビレット設計の自由度が大幅に向上す
るため、最適設計した複合ビレットを加工することによ
り、また、複合ビレットは加工による断面形状の変化が
抑えられることにより従来よりも超電導特性の向上した
超電導線材が製造可能になった。
In the present invention, the production of the composite billet is facilitated, and only the production method of the composite billet is changed,
The superconducting wire can be obtained by directly following the other wire forming processes, and the conventional apparatus can be used, and the manufacturing time and the manufacturing cost can be shortened. Further, in the past, the packing method was limited by the shape of the hexagonal bar, but in the present invention, since holes can be freely opened, the degree of freedom in designing the composite billet is greatly improved. By processing the composite billet and suppressing the change in cross-sectional shape due to the processing, it has become possible to manufacture a superconducting wire having improved superconducting properties as compared with conventional ones.

【0021】本発明の別の発明において、複合ビレット
を例えば熱間等方性加圧処理等の熱間加圧処理すること
により、支持容器、積層体および充填材同士の密着性を
向上させることになるので、その後のビレットの断面減
少加工時の加工性がさらに向上する。即ち、複合ビレッ
トの断面減少加工時の加工度が大きく取れ、さらに製造
時間の短縮が図られると共に、加工時の断線を防止する
ことができて歩留まりが良くなり、製造コストがさらに
低減できる。
In another invention of the present invention, the composite billet is subjected to hot pressure treatment such as hot isotropic pressure treatment to improve the adhesion between the support container, the laminate and the filler. Therefore, the workability in the subsequent billet cross-section reduction processing is further improved. That is, it is possible to obtain a large degree of working when the composite billet is reduced in cross section, further shorten the manufacturing time, prevent wire breakage during processing, improve the yield, and further reduce the manufacturing cost.

【0022】本発明のさらに別の発明において、支持容
器分を除去するので、線材の電流密度が増し特性が向上
し、しかも化学的に支持容器分を除去するのでプロセス
が簡便化でき、製造時間の短縮化と製造コストの低減が
達成できる。
In yet another aspect of the present invention, since the supporting container is removed, the current density of the wire is increased and the characteristics are improved, and the supporting container is chemically removed, so that the process can be simplified and the manufacturing time can be improved. Can be shortened and the manufacturing cost can be reduced.

【0023】また、Cu基金属板としてその厚みが孔の
径の3倍以下であるものを用いると、孔開けが容易にな
り、複合ビレットの製造が容易で、従来よりもコストの
低減がさらに図られる。
When a Cu-based metal plate having a thickness not more than 3 times the diameter of the hole is used, the hole can be easily formed, the composite billet can be easily manufactured, and the cost can be further reduced as compared with the conventional case. Planned.

【0024】[0024]

【実施例】【Example】

実施例1.NbTi合金を直径5.9mmの丸棒状に冷
間加工する。この丸棒を337本作製しておく。次に、
直径159.8mm、厚さ5mmの無酸素銅の円盤上の
直径154mm以下の領域に存在する3角格子(格子間
距離:7.8mm)の格子点に直径6.0mmの孔を3
37個、NCボール盤により穿孔する。図1は、本発明
の一実施例に係わる孔を開けたCu基金属板である無酸
素銅の円盤の平面図であり、図において、1はCu基金
属板、2は孔である。この円盤を60枚作製し、孔の位
置が合うように、外径180mm、内径160mmの無
酸素銅の容器(支持容器)中に積層して積層体を得、そ
の孔に上述のNbTi棒を挿入して充填する。図2は、
本発明の一実施例に係わる積層体にNbTi棒を充填す
る状態を支持容器の一部を切り欠いて示す斜視図であ
り、3はNbTi棒、4は支持容器である。最後に内部
を真空引きして蓋を溶接することで本発明の一実施例に
係わる複合ビレットを製造した。なお、60枚重ねられ
た無酸素銅円盤へのNbTi棒の挿入は容易であった。
なお、上記複合ビレットを用いて従来の方法でNbTi
超電導線材を製造することができる。
Example 1. NbTi alloy is cold worked into a round bar shape with a diameter of 5.9 mm. 337 of these round bars are prepared. next,
A hole with a diameter of 6.0 mm is formed at each lattice point of a triangular lattice (interlattice distance: 7.8 mm) existing in a region of a diameter of 154 mm or less on a disk of oxygen-free copper having a diameter of 159.8 mm and a thickness of 5 mm.
37 holes are punched by NC drilling machine. FIG. 1 is a plan view of a disk of oxygen-free copper, which is a Cu-based metal plate with holes, according to an embodiment of the present invention. In the drawing, 1 is a Cu-based metal plate and 2 is a hole. Sixty discs were prepared and laminated in an oxygen-free copper container (supporting container) having an outer diameter of 180 mm and an inner diameter of 160 mm so that the positions of the holes were aligned to obtain a laminated body, and the above-mentioned NbTi rod was placed in the hole. Insert and fill. Figure 2
FIG. 3 is a perspective view showing a state in which a laminated body according to an embodiment of the present invention is filled with NbTi rods by cutting out a part of a supporting container, 3 is an NbTi rod, and 4 is a supporting container. Finally, the interior was evacuated and the lid was welded to manufacture a composite billet according to an embodiment of the present invention. In addition, it was easy to insert the NbTi rods into the oxygen-free copper discs on which 60 sheets were stacked.
It should be noted that NbTi was formed by the conventional method using the above composite billet.
A superconducting wire can be manufactured.

【0025】比較例1.NbTi合金を直径5.0m
m、長さ330mmの丸棒状に冷間加工する。この丸棒
を73本作製しておく。次に、直径73mm、厚さ30
mmの無酸素銅に直径5.5mmの孔を73個穿孔す
る。この円盤を11個作製し、孔の位置が合うように積
層して、その孔に上述のNbTi棒を挿入した。この複
合銅ブロックの両端に無酸素銅の上板および底板を当
て、この積層円周部を真空中で電子ビーム溶接し、直径
73mm、全長400mmの複合ビレットを作製した。
その後、複合ビレットを熱間で押し出し加工した後、断
面減少加工し、直径0.52mmのNbTi超電導線材
を製造した。
Comparative Example 1. NbTi alloy with a diameter of 5.0 m
m, cold working into a round bar shape of 330 mm. 73 round bars are prepared in advance. Next, diameter 73mm, thickness 30
73 holes of 5.5 mm in diameter are drilled in mm-mm oxygen-free copper. Eleven discs were produced, laminated so that the positions of the holes were aligned, and the above-mentioned NbTi rod was inserted into the holes. An upper plate and a bottom plate of oxygen-free copper were applied to both ends of this composite copper block, and the laminated circumferential portion was electron beam welded in vacuum to produce a composite billet having a diameter of 73 mm and a total length of 400 mm.
After that, the composite billet was hot extruded and then subjected to cross-section reduction processing to manufacture a NbTi superconducting wire having a diameter of 0.52 mm.

【0026】比較例2.NbTi合金を丸棒状に冷間加
工する。この丸棒をCuチューブ中に挿入し断面減少加
工することで、1辺4.5mmの6角形の断面を持つ単
芯線(NbTiの占積率:53.7%)を得る。この単
芯線を313本作製しておく。次に、このCu/NbT
i単芯線を外径180mm、内径156mmの無酸素銅
の容器中に、313本細密充填し、更に充填密度を高め
るために、隙間に無酸素銅の細線を充填した。次に、内
部を真空引きして蓋を溶接した。
Comparative Example 2. The NbTi alloy is cold worked into a round bar shape. By inserting this round bar into a Cu tube and subjecting it to cross-section reduction processing, a single-core wire (space factor of NbTi: 53.7%) having a hexagonal cross section with a side of 4.5 mm is obtained. 313 single-core wires are prepared in advance. Next, this Cu / NbT
A single-core wire was packed into an oxygen-free copper container having an outer diameter of 180 mm and an inner diameter of 156 mm in an amount of 313 fine wires, and in order to further increase the packing density, a thin wire of oxygen-free copper was filled. Next, the inside was evacuated to weld the lid.

【0027】実施例2.直径159.8mm、厚さ5m
mの無酸素銅の円盤上の直径79mm以上154mm以
下の領域に存在する3角格子(格子間距離:7.8m
m)の格子点に直径6.0mmの孔を246個、NCボ
ール盤により穿孔した。図3は、本発明の他の実施例に
係わる孔を開けたCu基金属板である無酸素銅の円盤の
平面図である。実施例1と同様に、この円盤を60枚、
孔の位置が合うように、外径180mm、内径160m
mの無酸素銅の容器中に挿入した。次に、直径5.9m
mのNb棒をその孔に246本充填し、最後に内部を真
空引きして蓋を溶接することで複合ビレットを製造し
た。なお、無酸素銅円盤へのNb棒の挿入は容易であっ
た。上記のようにして得られた複合ビレットを50mm
の径に押出し加工し、両端を切断した。この外周部を切
削し、中央の銅の部分に19mmの径の孔をドリルで空
け、そこに18.8mmのSn棒を挿入して、9.8m
mまで引抜き加工を行なった。表面を洗浄した後に、こ
の外側に外径11mm、内径10mmのSnの拡散バリ
ヤとなるTaチューブ、更にその外側に外径16mm、
内径11.2mmの安定化のための無酸素銅チューブを
かぶせ、最終0.2mmの径まで引き抜き加工を行なっ
た。加工性は極めて良好であった。得られた線材を窒素
ガス雰囲気中、600〜750℃で30〜200時間熱
処理を行なった。得られた線材の仕様を表1に示す。
Example 2. Diameter 159.8 mm, thickness 5 m
Triangular lattice (interlattice distance: 7.8m
At the grid point of m), 246 holes having a diameter of 6.0 mm were punched by the NC drilling machine. FIG. 3 is a plan view of a disk of oxygen-free copper, which is a Cu-based metal plate with holes, according to another embodiment of the present invention. As with Example 1, 60 of these discs,
180 mm outer diameter and 160 m inner diameter so that the holes are aligned
m oxygen-free copper container. Next, diameter 5.9m
A composite billet was manufactured by filling 246 Nm rods of m in the holes and finally vacuuming the inside and welding the lid. It was easy to insert the Nb rod into the oxygen-free copper disk. 50 mm of the composite billet obtained as described above
The diameter was extruded and both ends were cut. This outer peripheral part is cut, a hole with a diameter of 19 mm is drilled in the copper part in the center, and a Sn rod of 18.8 mm is inserted there, and 9.8 m
It was drawn to m. After cleaning the surface, a Ta tube serving as a diffusion barrier for Sn having an outer diameter of 11 mm and an inner diameter of 10 mm is provided on the outer side, and an outer diameter of 16 mm is provided on the outer side.
An oxygen-free copper tube for stabilization having an inner diameter of 11.2 mm was covered, and drawing processing was performed to a final diameter of 0.2 mm. The workability was extremely good. The obtained wire was heat-treated at 600 to 750 ° C. for 30 to 200 hours in a nitrogen gas atmosphere. Table 1 shows the specifications of the obtained wire rod.

【0028】[0028]

【表1】 [Table 1]

【0029】比較例3.外径180mm、内径156m
mの無酸素銅の容器中に、1辺4.5mmの6角形の断
面の無酸素銅の棒を中央部に91本、同じ寸法の銅被覆
Nb単芯線(Nbの占積率:53.7%)をその周囲に
222本細密充填し、更に充填密度を高めるために、隙
間に無酸素銅の細線を充填した。次に、内部を真空引き
して蓋を溶接した。上記のようにして得られた複合ビレ
ットを50mmの径に押出し加工し、両端を切断した。
この外周部を切削し、中央の銅の部分に19mmの径の
孔をドリルで空け、そこに18.8mmのSn棒を挿入
して、9.8mmまで引抜き加工を行なった。その後、
実施例2と同様のプロセスで、最終0.2mmの径の超
電導線材を製造した。得られた線材の仕様を表1に示
す。
Comparative Example 3. Outer diameter 180 mm, inner diameter 156 m
In a container of oxygen-free copper having a length of 4.5 mm, 91 rods of oxygen-free copper having a hexagonal cross section with a side of 4.5 mm are provided in the center, and a copper-coated Nb single-core wire of the same size (occupying space of Nb: 53. (7%) was closely packed in the surrounding area, and in order to further increase the packing density, a thin wire of oxygen-free copper was filled in the gap. Next, the inside was evacuated to weld the lid. The composite billet obtained as described above was extruded into a diameter of 50 mm, and both ends were cut.
The outer peripheral portion was cut, a hole having a diameter of 19 mm was drilled in the central copper portion, a 18.8 mm Sn rod was inserted therein, and a drawing process was performed to 9.8 mm. afterwards,
A superconducting wire having a final diameter of 0.2 mm was manufactured by the same process as in Example 2. Table 1 shows the specifications of the obtained wire rod.

【0030】実施例3.直径159.8mm、厚さ5m
mの無酸素銅の円盤上の直径79mm以上151mm以
下の領域に同心円上に直径6.0mmの孔を232個
(平均間隔:8.6mm)、NCボール盤により穿孔す
る。図4は、本発明のさらに他の実施例に係わる孔を開
けたCu基金属板である無酸素銅の円盤の平面図であ
る。この円盤を60枚、孔の位置が合うように、外径1
80mm、内径160mmの無酸素銅の容器中に挿入し
た。次に、直径5.9mmのNb棒を上述の孔に充填
し、最後に内部を真空引きして蓋を溶接することで複合
ビレットを製造した。なお、無酸素銅円盤へのNb棒の
挿入は容易であった。この複合ビレットを実施例2と同
様なプロセスにより加工を行い、最終線径0.2mmの
Nb3Sn超電導線材を製造した。得られた線材の仕様
を表1に示すように、従来よりも更にNb3Snフィラ
メントの平均間隔の大きな線材が得られた。
Example 3. Diameter 159.8 mm, thickness 5 m
232 holes (average interval: 8.6 mm) having a diameter of 6.0 mm are concentrically formed in an area of 79 mm or more and 151 mm or less in diameter on a disc of m-free oxygen-free copper by an NC drilling machine. FIG. 4 is a plan view of a disk of oxygen-free copper, which is a Cu-based metal plate with holes, according to still another embodiment of the present invention. 60 discs with an outer diameter of 1 so that the holes are aligned.
It was inserted into an oxygen-free copper container having an inner diameter of 80 mm and an inner diameter of 160 mm. Next, a Nb rod having a diameter of 5.9 mm was filled in the above-mentioned hole, and finally the inside was evacuated to weld the lid to manufacture a composite billet. It was easy to insert the Nb rod into the oxygen-free copper disk. This composite billet was processed by the same process as in Example 2 to manufacture a Nb 3 Sn superconducting wire having a final wire diameter of 0.2 mm. As shown in Table 1 for the specifications of the obtained wire, a wire having a larger average spacing of Nb 3 Sn filaments than the conventional one was obtained.

【0031】実施例4.実施例3と同様に、直径15
9.8mm、厚さ5mmの無酸素銅の円盤上に直径6.
0mmの孔を232個、NCボール盤により穿孔し、こ
の円盤を60枚、孔の位置が合うように、外径180m
m、内径160mmの無酸素銅の容器中に挿入した。次
に、直径5.9mmのNb棒を上述の孔に充填し、最後
に内部を真空引きして蓋を溶接することで複合ビレット
を製造した。その後、この複合ビレットに圧力2ton
/cm2、温度600℃の条件で、2時間、HIP(熱
間等方性加圧)処理を施した。この処理によりビレット
の外径は179mmとなり、全長は約1mm減少した。
この複合ビレットを実施例2および3と同様なプロセス
により加工を行い、最終線径0.2mmのNb3Sn超
電導線材を製造した。
Example 4. Diameter 15 as in Example 3
A diameter of 6. on a disk of oxygen-free copper having a thickness of 9.8 mm and a thickness of 5 mm.
232 0mm holes are punched by NC drilling machine, 60 disks, outer diameter 180m, so that the positions of holes match.
It was inserted into a container of oxygen-free copper having a diameter of 160 mm and an inner diameter of 160 mm. Next, a Nb rod having a diameter of 5.9 mm was filled in the above-mentioned hole, and finally the inside was evacuated to weld the lid to manufacture a composite billet. After that, pressure on this composite billet is 2 ton
HIP (hot isotropic pressurization) treatment was performed for 2 hours under the conditions of / cm 2 and a temperature of 600 ° C. This treatment reduced the billet outer diameter to 179 mm and reduced the overall length by about 1 mm.
This composite billet was processed by the same process as in Examples 2 and 3 to manufacture a Nb 3 Sn superconducting wire having a final wire diameter of 0.2 mm.

【0032】実施例5.実施例3および4と同様に、直
径159.8mm、厚さ5mmの無酸素銅の円盤上に直
径6.0mmの孔を232個、NCボール盤により穿孔
し、この円盤を60枚、孔の位置が合うように、外径1
80mm、内径160mmの純鉄製の容器中に挿入し
た。次に、直径5.9mmのNb棒を上述の孔に充填
し、最後に内部を真空引きして蓋を溶接することで複合
ビレットを製造した。その後、この複合ビレットに実施
例4と同様に、HIP(熱間等方性加圧)処理を施した
後、実施例2、3および4と同様に、50mmの計に押
し出し加工した。次に、このビレットを1規定の塩酸中
に浸漬し、外周の純鉄製容器部分を溶解した。純鉄の溶
解は極めて容易であった。その後、実施例2、3および
4と同様に、中央の銅の部分に孔を開け、Sn棒を挿入
して、引き抜き加工を行った後、外側にTaチューブ、
無酸素銅チューブをかぶせ、最終線径0.2mmまで引
き抜き加工を行い、得られた線材に熱処理加工を施すこ
とでNb3Sn超電導線材を製造した。得られた線材の
仕様は表1の実施例3とほぼ同様であった。
Example 5. As in Examples 3 and 4, 232 holes having a diameter of 6.0 mm were punched by a NC drilling machine on a disk of oxygen-free copper having a diameter of 159.8 mm and a thickness of 5 mm, and 60 disks were placed at the positions of the holes. Outer diameter 1 so that
It was inserted into a pure iron container having a diameter of 80 mm and an inner diameter of 160 mm. Next, a Nb rod having a diameter of 5.9 mm was filled in the above-mentioned hole, and finally the inside was evacuated to weld the lid to manufacture a composite billet. Then, this composite billet was subjected to HIP (hot isotropic pressure) treatment in the same manner as in Example 4, and then extruded into a total of 50 mm in the same manner as in Examples 2, 3 and 4. Next, this billet was immersed in 1N hydrochloric acid to dissolve the pure iron container portion on the outer periphery. The dissolution of pure iron was extremely easy. After that, as in Examples 2, 3 and 4, a hole was made in the central copper portion, a Sn rod was inserted, and after pulling out, a Ta tube was attached to the outside,
An Nb 3 Sn superconducting wire rod was manufactured by covering it with an oxygen-free copper tube, drawing it to a final wire diameter of 0.2 mm, and heat-treating the obtained wire rod. The specifications of the wire obtained were almost the same as in Example 3 of Table 1.

【0033】上記実施例に示したように、複合ビレット
を製造する方法として、従来の単芯線を無酸素銅容器中
に多数挿入する方法に代えて、NbまたはNbTi棒を
無酸素銅容器中に組み立てられた複数枚の無酸素銅円盤
(積層体)の孔に挿入するプロセスを採用することで、
従来必要であった、銅被覆NbまたはNbTi単芯線を
製造するプロセスと、充填密度を高めるために、隙間に
無酸素銅の細線を充填するプロセスとを省略することが
できプロセスが大幅に簡便化できた。これにより、製造
時間の短縮化が図られ、製造コストの低減も達成でき
た。
As shown in the above Examples, as a method for producing a composite billet, instead of inserting a large number of single core wires into an oxygen-free copper container, a Nb or NbTi rod is placed in the oxygen-free copper container. By adopting the process of inserting into the holes of the assembled multiple oxygen-free copper disks (laminate),
The process of manufacturing a copper-coated Nb or NbTi single core wire and the process of filling a gap with a fine wire of oxygen-free copper, which are conventionally required, can be omitted, and the process is greatly simplified. did it. As a result, the manufacturing time was shortened and the manufacturing cost was also reduced.

【0034】さらに、排気密封された複合ビレットに例
えばHIP処理等の熱間加圧処理を施すことは、処理に
よるビレットサイズの変化から解るように、無酸素銅容
器、無酸素銅円盤(積層体)および充填されたNb棒同
士の密着性を向上させることになるので、その後のビレ
ットの断面減少加工時の加工性がさらに向上する。即
ち、複合ビレットの断面減少加工時の加工度が大きくと
れ、さらに製造時間の短縮が図られると共に、加工時の
断線率がほぼ零にまで向上するので歩留まりが向上し、
製造コストがさらに低減できた。
Further, subjecting the composite billet, which is exhausted and sealed, to hot pressurizing treatment such as HIP treatment, can be understood from the change in billet size due to the treatment, as can be seen from the oxygen-free copper container, the oxygen-free copper disk (the laminated body). ) And the adhesion between filled Nb rods are improved, so that the workability during the subsequent cross-section reduction processing of the billet is further improved. That is, the workability at the time of cross-section reduction processing of the composite billet can be made large, the manufacturing time can be further shortened, and the disconnection rate at the time of processing is improved to almost zero, so the yield is improved,
The manufacturing cost could be further reduced.

【0035】また、実施例2、3おおよび4で示したよ
うに、線材の電流密度を増す為に行う押し出し加工後の
複合ビレットの両端部分の切断工程、外周部の切削工程
の代わりに、Cu基金属板とは化学的に反応せず、上記
支持容器を化学的に除去できれば、プロセスが簡略化で
き、さらに製造時間の短縮が図られ、製造コストの低減
も達成できる。そこで、支持容器として純鉄を用いて複
合ビレットを製造し、それを押し出し加工後、塩酸に浸
漬すると、積層体の無酸素銅円盤を損なうことなく、純
鉄容器部分を溶解することができた。
Further, as shown in Examples 2, 3 and 4, instead of the step of cutting both ends and the step of cutting the outer peripheral portion of the composite billet after extrusion for increasing the current density of the wire, If the supporting container can be chemically removed without chemically reacting with the Cu-based metal plate, the process can be simplified, the manufacturing time can be shortened, and the manufacturing cost can be reduced. Therefore, when a composite billet was manufactured using pure iron as a supporting container, it was extruded and then immersed in hydrochloric acid, it was possible to dissolve the pure iron container part without damaging the oxygen-free copper disk of the laminate. .

【0036】また、本発明に係わる複合ビレット内のC
u基マトリックス中にNbまたはNbTiフィラメント
が丸棒状に埋設しているため、後述するが、上記複合ビ
レットを用いて超電導線材を製造した場合、断面減少加
工によってもフィラメントの断面形状変化を最小限に抑
えることができ、従来のような断面減少加工によるフィ
ラメントの変形が防止され、したがって、従来と同じフ
ィラメント占積率でも、生成される超電導フィラメント
の有効間隔が広がり、交流損失の低減というメリットも
生じた。
Further, C in the composite billet according to the present invention
Since Nb or NbTi filaments are embedded in the u-based matrix in the shape of a round bar, it will be described later, but when a superconducting wire is manufactured using the above composite billet, the cross-sectional shape change of the filament can be minimized even by the cross-section reduction processing. It is possible to suppress the deformation of the filament due to the cross-section reduction processing as in the past, and therefore, even with the same filament space factor as in the past, the effective spacing of the superconducting filaments generated is widened, and there is also the advantage of reducing AC loss. It was

【0037】また、この方法では無酸素銅円盤に空ける
孔の形状、分布状態を自由に設定できるため、複合ビレ
ットの設計の自由度が大きく向上し、後述するが、本発
明に係わる複合ビレットを用いて超電導線材を製造した
場合、断面形状を最適設計することにより、生成される
超電導のフィラメントの有効間隔を広げることが可能と
なり、交流損失の低減というメリットも生じた。
Further, according to this method, since the shape and distribution of the holes formed in the oxygen-free copper disk can be freely set, the degree of freedom in designing the composite billet is greatly improved. When a superconducting wire is manufactured by using the superconducting wire, it is possible to widen the effective interval of the generated superconducting filaments by optimally designing the cross-sectional shape, and there is a merit of reducing AC loss.

【0038】上記実施例と比較例を比較すると、本発明
に係わる複合ビレットを用いても従来のビレットと同様
な加工を施すことで超電導線が得られることがわかる。
図5および図6は各々実施例2および比較例3により得
られたNb3Sn超電導線の一部断面図であり、図にお
いて、5はCuマトリックス、6はNb3Snフィラメ
ントである。上図より、従来の比較例3の場合では、断
面減少加工によりフィラメントが大きな変形を受けてい
るのに対し、実施例2の場合、加工によるフィラメント
の断面形状変化が最小限に抑えられていることがわか
る。
Comparing the above examples with the comparative examples, it can be seen that even if the composite billet according to the present invention is used, a superconducting wire can be obtained by performing the same processing as the conventional billet.
5 and 6 are partial cross-sectional views of the Nb 3 Sn superconducting wires obtained in Example 2 and Comparative Example 3, respectively, in which 5 is a Cu matrix and 6 is an Nb 3 Sn filament. From the above figure, in the case of the conventional comparative example 3, the filament is greatly deformed by the cross-section reduction processing, whereas in the case of the example 2, the change in the cross-sectional shape of the filament due to the processing is suppressed to the minimum. I understand.

【0039】一般に、超電導線材の線径を細くしていく
と超電導フィラメント間の距離が非常に短くなるだけで
なく、上述したように加工によりフィラメントの断面形
状に変形を生じる。このため超電導フィラメント間の一
部または大部分に物理的結合および近接効果による超電
導的結合を生じ、電気的特性から求められる有効フィラ
メント径は実際のフィラメント径より大きくなり、交流
損失が大きくなるという問題点も生じる。表2に得られ
た超電導線材の平均フィラメント径および間隔と有効フ
ィラメント径の実測値を示す。
Generally, when the wire diameter of the superconducting wire is reduced, not only the distance between the superconducting filaments becomes very short but also the cross-sectional shape of the filament is deformed by the processing as described above. For this reason, physical coupling and superconducting coupling due to the proximity effect occur in a part or most of the superconducting filaments, and the effective filament diameter obtained from the electrical characteristics becomes larger than the actual filament diameter, resulting in a large AC loss. Points also occur. Table 2 shows the measured values of the average filament diameter and spacing and the effective filament diameter of the obtained superconducting wire.

【0040】[0040]

【表2】 [Table 2]

【0041】表2に示されるように、有効フィラメント
径は、従来の方法による比較例3の値に対し、実施例2
では58%、実施例3では42%にそれぞれ細くするこ
とができた。これは、実施例2の場合、図5に示したよ
うに、複合ビレット内のCu基マトリックス中にNbフ
ィラメントが丸棒状に埋設されているため、加工による
断面形状の変化が最小限に抑えられたことによる。ま
た、実施例3ではビレット構成を最適設計したことによ
る。即ち、臨界電流が大きく取れ、かつ交流損失の低減
が計れるように、適宜孔を空けるのである。このため比
較例に対し実施例では大幅な交流損失の低減が達成され
た。また、得られた3種類の超電導線材の4.2Kにお
ける臨界電流の磁界依存性を測定した結果、有意差は認
められなかった。
As shown in Table 2, the effective filament diameter is different from that of Comparative Example 3 obtained by the conventional method in Example 2
In Example 3 and 42% in Example 3, respectively. In the case of Example 2, as shown in FIG. 5, since the Nb filaments were embedded in the Cu-based matrix in the composite billet in the shape of a round bar, the change in cross-sectional shape due to processing was suppressed to the minimum. It depends. Moreover, in Example 3, it is because the billet configuration was optimally designed. That is, holes are appropriately formed so that the critical current can be large and the AC loss can be reduced. For this reason, a significant reduction in AC loss was achieved in the example compared to the comparative example. Further, as a result of measuring the magnetic field dependence of the critical current at 4.2 K of the three types of obtained superconducting wires, no significant difference was observed.

【0042】なお、本発明において、Cu基金属、Nb
ないしV基金属及びSnないしGa基金属のうち少なく
とも1つに、Ti、In、Ge、Si、Al、Ta、H
f、Zr、W、Moで代表される元素、あるいは、その
うち少なくとも1種類以上の元素が含まれている合金を
添加することでJcを向上させる事は可能で、本発明は
こうした元素添加を妨げるものではない。
In the present invention, Cu-based metal, Nb
To V-based metal and at least one of Sn to Ga-based metal, Ti, In, Ge, Si, Al, Ta, H
It is possible to improve J c by adding an element represented by f, Zr, W, Mo, or an alloy containing at least one or more of these elements. It does not hinder.

【0043】本発明に係わるCu基金属板として、純C
u並びにCuとSn、Ga、Ti、In、Ge、Siお
よびAlの内の少なくとも一種とから成るCu基合金が
用いられる。
As the Cu-based metal plate according to the present invention, pure C
A Cu-based alloy composed of u and Cu and at least one of Sn, Ga, Ti, In, Ge, Si and Al is used.

【0044】本発明に係わるCu基金属板に充填され、
熱処理により超電導体となる材料および超電導体とし
て、純Nb、純V、並びにNbまたはVとTi、Ta、
Hf、Zr、W、Moの内の少なくとも一種とから成る
NbまたはV基金属材が用いられる。
The Cu-based metal plate according to the present invention is filled with
As a material and a superconductor which become a superconductor by heat treatment, pure Nb, pure V, and Nb or V and Ti, Ta,
An Nb or V-based metal material made of at least one of Hf, Zr, W and Mo is used.

【0045】さらに、本発明において、Cu基金属容器
および円盤の形状、Cu基金属円盤に挿入するNbまた
はV基金属材の本数、形状等は特に限定されるものでは
ない。
Further, in the present invention, the shapes of the Cu-based metal container and the disk, the number and shape of the Nb or V-based metal material to be inserted into the Cu-based metal disk are not particularly limited.

【0046】また、本発明において、Cu基金属板への
穿孔はNCボール盤により行ったが、Cu基金属板の厚
みを1mm程度に薄くし、パンチ抜きによる穿孔も可能
であるが、上記板の孔開け加工にとって、Cu基金属板
の厚みが、孔の径の3倍以下であるのが望ましい。
Further, in the present invention, the punching of the Cu-based metal plate was performed by the NC drilling machine, but the thickness of the Cu-based metal plate can be reduced to about 1 mm and the punching can be performed by punching. For drilling, it is desirable that the thickness of the Cu-based metal plate be 3 times the diameter of the holes or less.

【0047】本発明に係わる支持容器として、純Cu、
CuとSn、Ga、Ti、In、Ge、SiおよびAl
の内の少なくとも一種とから成るCu基合金、並びにス
テンレススチールやカーボンのようなCuの融点以下で
Cuと殆ど反応しない材料の金型が用いられる。さら
に、支持容器として、上記加工を損なうことの無い延性
を有し、しかもCu基金属板は反応せずに化学的に除去
できようなものを選べば、押し出し加工後の複合ビレッ
トの両端部分の切断工程、外周部の切削工程の代わり
に、支持容器を化学的に容易に除去することができ、プ
ロセスが簡略化でき、さらに製造時間の短縮が図られ、
製造コストの低減も達成できる。そこで、支持容器とし
ては、例えばFeおよびNi等のCuよりイオン化傾向
の大きい金属が用いられ、酸処理により除去される。
As the supporting container according to the present invention, pure Cu,
Cu and Sn, Ga, Ti, In, Ge, Si and Al
A Cu-based alloy composed of at least one of the above, and a metal mold such as stainless steel or carbon that does not react with Cu below the melting point of Cu are used. Furthermore, if a supporting container is selected that has ductility that does not impair the above-mentioned processing and that can be chemically removed without reacting the Cu-based metal plate, then both ends of the composite billet after extrusion processing can be selected. Instead of the cutting process and the cutting process of the outer peripheral part, the supporting container can be chemically easily removed, the process can be simplified, and the manufacturing time can be shortened.
A reduction in manufacturing cost can also be achieved. Therefore, as the supporting container, for example, a metal such as Fe and Ni having a greater ionization tendency than Cu is used and is removed by acid treatment.

【0048】本発明により製造した複合ビレットに断面
減少加工を施した複合体(単モジュール材)を製造し、
この単モジュール材を多数本、Cu基金属に挿入後、断
面減少加工、熱処理することで多モジュール線を製造で
きる。このプロセスを繰り返すことで超極細多芯超電導
線材を製造することが可能である。
A composite (single module material) is produced by subjecting the composite billet produced by the present invention to a cross-section reduction process,
A multi-module wire can be manufactured by inserting a large number of this single-module material into a Cu-based metal, and then subjecting it to cross-section reduction processing and heat treatment. By repeating this process, it is possible to manufacture a superfine multifilamentary superconducting wire.

【0049】また、本発明において、本発明により製造
した複合ビレットを用いたNb3Sn超電導線材の製造
方法として内部拡散法による場合のみを示したが、従来
行われているその他の方法によっても、Nb3Sn超電
導線材を製造できることはいうまでもない。
Further, in the present invention, the method of manufacturing the Nb 3 Sn superconducting wire using the composite billet manufactured by the present invention is shown only by the internal diffusion method, but by other conventional methods, It goes without saying that the Nb 3 Sn superconducting wire can be manufactured.

【0050】[0050]

【発明の効果】本発明は、以上説明したとおり、Cu基
金属板に孔を空ける工程、この各金属板の各孔が重なる
ように、上記孔の開いたCu基金属板を支持容器に積層
して積層体を得る工程、この積層体の孔に熱処理により
超電導体となる材料を充填する工程、上記支持容器内を
排気密封して複合ビレットを得る工程、および上記複合
ビレットを断面減少加工し、熱処理して超電導体を得る
工程を施すことにより、また、Cu基金属板に孔を空け
る工程、この各金属板の各孔が重なるように、上記孔の
開いたCu基金属板を支持容器に積層して積層体を得る
工程、この積層体の孔に超電導体を充填する工程、上記
支持容器内を排気密封して複合ビレットを得る工程、お
よび上記複合ビレットを断面減少加工する工程を施すこ
とにより、製造時間の短縮および製造コストの低減が達
成でき、超電導特性の向上した超電導線材の製造方法を
得ることができる。
As described above, according to the present invention, the step of forming a hole in a Cu-based metal plate, the Cu-based metal plate having the above-mentioned holes laminated on a support container so that the holes of each metal plate overlap each other. To obtain a laminated body, a step of filling the hole of the laminated body with a material to be a superconductor by heat treatment, a step of exhaust-sealing the inside of the supporting container to obtain a composite billet, and a cross-section reduction processing of the composite billet. A step of forming a hole in the Cu-based metal plate by subjecting it to a heat treatment to obtain a superconductor, and a support container for the Cu-based metal plate having the holes so that the holes of the metal plate overlap. To obtain a laminated body, a step of filling the holes of the laminated body with a superconductor, a step of exhaust-sealing the inside of the supporting container to obtain a composite billet, and a step of reducing the cross-section of the composite billet. By manufacturing Shortened and can achieve a reduction in manufacturing cost can be obtained a method of manufacturing the improved superconducting wire superconducting properties.

【0051】本発明の別の発明は、Cu基金属板に孔を
空ける工程、この各金属板の各孔が重なるように、上記
孔の開いたCu基金属板を支持容器に積層して積層体を
得る工程、この積層体の孔に熱処理により超電導体とな
る材料を充填する工程、上記支持容器内を排気密封して
複合ビレットを得る工程、および上記複合ビレットを熱
間加圧処理して、断面減少加工し、熱処理して超電導体
を得る工程を施すことにより、また、Cu基金属板に孔
を空ける工程、この各金属板の各孔が重なるように、上
記孔の開いたCu基金属板を支持容器に積層して積層体
を得る工程、この積層体の孔に超電導体を充填する工
程、上記支持容器内を排気密封して複合ビレットを得る
工程、および上記複合ビレットを熱間加圧処理して、断
面減少加工する工程を施すことにより、加工性が向上し
て歩留まりが良くなり、さらに製造時間の短縮と製造コ
ストの低減が達成できる超電導線材の製造方法を得るこ
とができる。
Another aspect of the present invention is the step of forming a hole in a Cu-based metal plate, wherein the Cu-based metal plate having the above-mentioned holes is laminated on a support container so that the holes of each metal plate overlap. A step of obtaining a body, a step of filling a material of a superconductor by heat treatment into the holes of the laminated body, a step of exhaust-sealing the inside of the supporting container to obtain a composite billet, and a hot press treatment of the composite billet. , A step of forming a hole in the Cu-based metal plate by subjecting it to a step of subjecting to cross-section reduction processing and heat treatment to obtain a superconductor, and the Cu-based Cu base having the above-mentioned holes so that the holes of each metal plate overlap. A step of laminating a metal plate on a support container to obtain a laminate, a step of filling the holes of the laminate with a superconductor, a step of exhaust-sealing the inside of the support vessel to obtain a composite billet, and a hot pressing of the composite billet. Process of pressure treatment and cross-section reduction processing By subjecting the yield is better improved workability, further shortened to reduce the manufacturing cost of the manufacturing time can be obtained a method of manufacturing a superconducting wire can be achieved.

【0052】本発明のさらに別の発明は、Cu基金属板
に孔を空ける工程、この各金属板の各孔が重なるよう
に、上記孔の開いたCu基金属板を、支持容器に積層し
て積層体を得る工程、この積層体の孔に熱処理により超
電導体となる材料を充填する工程、上記支持容器内を排
気密封して複合ビレットを得る工程、および上記複合ビ
レットを断面減少加工し、上記Cu基金属板とは化学的
に反応せず、上記支持容器を化学的に除去して後、熱処
理して超電導体を得る工程を施すことにより、さらに製
造時間の短縮と製造コストの低減が達成でき、さらに超
電導特性の向上した超電導線材の製造方法を得ることが
できる。また、上記支持容器がFeまたはNi製であ
り、上記複合ビレットを塩酸に浸漬することにより支持
容器を除去することができる。
Still another invention of the present invention is the step of forming a hole in a Cu-based metal plate, wherein the Cu-based metal plate having the above-mentioned holes is laminated on a support container so that the holes of each metal plate overlap. A step of obtaining a laminated body, a step of filling a material for a superconductor by heat treatment into the holes of the laminated body, a step of exhaust-sealing the inside of the supporting container to obtain a composite billet, and a cross-section reduction processing of the composite billet, By not chemically reacting with the Cu-based metal plate and chemically removing the supporting container and then performing a heat treatment to obtain a superconductor, the manufacturing time and the manufacturing cost can be further reduced. It is possible to obtain a method for producing a superconducting wire which can be achieved and has improved superconducting properties. Further, the supporting container is made of Fe or Ni, and the supporting container can be removed by immersing the composite billet in hydrochloric acid.

【0053】また、上記Cu基金属板の厚みが、孔の径
の3倍以下であると、容易に超電導線材を得ることがで
きる。
Further, when the thickness of the Cu-based metal plate is 3 times or less the diameter of the hole, the superconducting wire can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる孔を開けたCu基金
属板の平面図である。
FIG. 1 is a plan view of a Cu-based metal plate with holes formed therein according to an embodiment of the present invention.

【図2】本発明の一実施例に係わる積層体にNbTi棒
を充填した状態を支持容器の一部を切り欠いて示す斜視
図である。
FIG. 2 is a perspective view showing a state in which a laminated body according to an embodiment of the present invention is filled with NbTi rods by cutting out a part of a supporting container.

【図3】本発明の別の発明の一実施例に係わる孔を開け
たCu基金属板の平面図である。
FIG. 3 is a plan view of a Cu-based metal plate with holes formed therein according to another embodiment of the present invention.

【図4】本発明の別の発明の他の実施例に係わる孔を開
けたCu基金属板の平面図である。
FIG. 4 is a plan view of a Cu-based metal plate with holes formed therein according to another embodiment of the present invention.

【図5】実施例2により得られたNb3Sn超電導線の
一部断面図である。
5 is a partial cross-sectional view of an Nb 3 Sn superconducting wire obtained in Example 2. FIG.

【図6】比較例3により得られたNb3Sn超電導線の
一部断面図である。
6 is a partial cross-sectional view of a Nb 3 Sn superconducting wire obtained in Comparative Example 3. FIG.

【符号の説明】[Explanation of symbols]

1 Cu基金属板 2 孔 3 NbTi棒 4 支持容器 5 Cuマトリックス 6 Nb3Snフィラメント1 Cu-based metal plate 2 hole 3 NbTi rod 4 support container 5 Cu matrix 6 Nb 3 Sn filament

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内川 英興 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 (72)発明者 宮下 章志 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 (72)発明者 樋熊 弘子 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hideoki Uchikawa 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Material Device Research Center (72) Inventor Akashi Miyashita 8-1-1 Tsukaguchihonmachi, Amagasaki No. Mitsubishi Electric Corporation Material Devices Research Laboratory (72) Inventor Hiroko Hikuma 8-1-1 Tsukaguchi Honcho, Amagasaki City Mitsubishi Electric Corporation Material Devices Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Cu基金属板に孔を空ける工程、この各
金属板の各孔が重なるように、上記孔の開いたCu基金
属板を支持容器に積層して積層体を得る工程、この積層
体の孔に熱処理により超電導体となる材料を充填する工
程、上記支持容器内を排気密封して複合ビレットを得る
工程、および上記複合ビレットを断面減少加工し、熱処
理して超電導体を得る工程を施す超電導線材の製造方
法。
1. A step of forming a hole in a Cu-based metal plate, a step of laminating a Cu-based metal plate having the above-mentioned holes in a supporting container so that the holes of each metal plate are overlapped, to obtain a laminate, A step of filling the holes of the laminate with a material to be a superconductor by heat treatment, a step of exhaust-sealing the inside of the support container to obtain a composite billet, and a step of subjecting the composite billet to cross-section reduction processing and heat treatment to obtain a superconductor A method of manufacturing a superconducting wire rod.
【請求項2】 Cu基金属板に孔を空ける工程、この各
金属板の各孔が重なるように、上記孔の開いたCu基金
属板を支持容器に積層して積層体を得る工程、この積層
体の孔に超電導体を充填する工程、上記支持容器内を排
気密封して複合ビレットを得る工程、および上記複合ビ
レットを断面減少加工する工程を施す超電導線材の製造
方法。
2. A step of forming a hole in a Cu-based metal plate, a step of laminating a Cu-based metal plate having the above-mentioned holes in a supporting container so that the holes of each metal plate overlap, thereby obtaining a laminate. A method of manufacturing a superconducting wire, comprising: a step of filling a hole in a laminate with a superconductor; a step of exhaust-sealing the inside of the support container to obtain a composite billet; and a step of reducing the cross section of the composite billet.
【請求項3】 Cu基金属板に孔を空ける工程、この各
金属板の各孔が重なるように、上記孔の開いたCu基金
属板を支持容器に積層して積層体を得る工程、この積層
体の孔に熱処理により超電導体となる材料を充填する工
程、上記支持容器内を排気密封して複合ビレットを得る
工程、および上記複合ビレットを熱間加圧処理して、断
面減少加工し、熱処理して超電導体を得る工程を施す超
電導線材の製造方法。
3. A step of forming a hole in a Cu-based metal plate, a step of laminating a Cu-based metal plate having the above-mentioned holes in a supporting container so that the holes of each metal plate are overlapped, to obtain a laminate. A step of filling a material to be a superconductor by heat treatment into the holes of the laminated body, a step of exhaust-sealing the inside of the supporting container to obtain a composite billet, and a hot press treatment of the composite billet to perform cross-section reduction processing, A method for producing a superconducting wire, which comprises performing a step of heat treatment to obtain a superconductor.
【請求項4】 Cu基金属板に孔を空ける工程、この各
金属板の各孔が重なるように、上記孔の開いたCu基金
属板を支持容器に積層して積層体を得る工程、この積層
体の孔に超電導体を充填する工程、上記支持容器内を排
気密封して複合ビレットを得る工程、および上記複合ビ
レットを熱間加圧処理して、断面減少加工する工程を施
す超電導線材の製造方法。
4. A step of forming a hole in a Cu-based metal plate, a step of laminating a Cu-based metal plate having the above-mentioned holes in a support container so that the holes of each metal plate overlap with each other, thereby obtaining a laminate. A step of filling a superconductor into the holes of the laminated body, a step of exhaust-sealing the inside of the supporting container to obtain a composite billet, and a step of subjecting the composite billet to a hot press treatment to reduce the cross-section Production method.
【請求項5】 Cu基金属板に孔を空ける工程、この各
金属板の各孔が重なるように、上記孔の開いたCu基金
属板を、支持容器に積層して積層体を得る工程、この積
層体の孔に熱処理により超電導体となる材料を充填する
工程、上記支持容器内を排気密封して複合ビレットを得
る工程、および上記複合ビレットを断面減少加工し、上
記Cu基金属板とは化学的に反応せず、上記支持容器を
化学的に除去して後、熱処理して超電導体を得る工程を
施す超電導線材の製造方法。
5. A step of forming a hole in a Cu-based metal plate, a step of laminating a Cu-based metal plate having the above-mentioned holes in a support container so that the holes of each metal plate overlap, to obtain a laminate, The steps of filling the holes of this laminate with a material to be a superconductor by heat treatment, the steps of exhaust-sealing the inside of the supporting container to obtain a composite billet, and the cross-section reduction processing of the composite billet to obtain the Cu-based metal plate. A method for producing a superconducting wire, which comprises chemically removing the supporting container without chemical reaction and then performing a heat treatment to obtain a superconductor.
【請求項6】 特許請求の範囲第5項に記載のものにお
いて、上記支持容器がFeまたはNi製であり、上記複
合ビレットを塩酸に浸漬することにより支持容器を除去
することを特徴とする超電導線材の製造方法。
6. The superconducting device according to claim 5, wherein the supporting container is made of Fe or Ni, and the supporting container is removed by immersing the composite billet in hydrochloric acid. Manufacturing method of wire.
【請求項7】 特許請求の範囲第1項ないし第5項に記
載のものにおいて、Cu基金属板の厚みが、孔の径の3
倍以下であることを特徴とする超電導線材の製造方法。
7. The structure according to claim 1, wherein the Cu-based metal plate has a thickness of 3 times the diameter of the holes.
A method for manufacturing a superconducting wire characterized by being no more than double.
JP5053747A 1992-09-11 1993-03-15 Superconducting wire manufacturing method Expired - Fee Related JP2868966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053747A JP2868966B2 (en) 1992-09-11 1993-03-15 Superconducting wire manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-243349 1992-09-11
JP24334992 1992-09-11
JP5053747A JP2868966B2 (en) 1992-09-11 1993-03-15 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JPH06139847A true JPH06139847A (en) 1994-05-20
JP2868966B2 JP2868966B2 (en) 1999-03-10

Family

ID=26394453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053747A Expired - Fee Related JP2868966B2 (en) 1992-09-11 1993-03-15 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP2868966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501746A (en) * 1993-12-16 1996-03-26 Mitsubishi Denki Kabushiki Kaisha Process for preparing superconducting wire
WO2019189917A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal sheet, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method for producing metal sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875190A (en) * 1972-01-12 1973-10-09
JPS491193A (en) * 1972-04-15 1974-01-08
JPS63292527A (en) * 1987-05-25 1988-11-29 Nippon Steel Corp Manufacture of ceramic superconductive wire
JPS6427130A (en) * 1987-07-22 1989-01-30 Kobe Steel Ltd Multi-core superconductor of ceramic type and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875190A (en) * 1972-01-12 1973-10-09
JPS491193A (en) * 1972-04-15 1974-01-08
JPS63292527A (en) * 1987-05-25 1988-11-29 Nippon Steel Corp Manufacture of ceramic superconductive wire
JPS6427130A (en) * 1987-07-22 1989-01-30 Kobe Steel Ltd Multi-core superconductor of ceramic type and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501746A (en) * 1993-12-16 1996-03-26 Mitsubishi Denki Kabushiki Kaisha Process for preparing superconducting wire
WO2019189917A1 (en) * 2018-03-30 2019-10-03 大阪瓦斯株式会社 Metal sheet, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method for producing metal sheet
CN111971835A (en) * 2018-03-30 2020-11-20 大阪瓦斯株式会社 Metal plate, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method for producing metal plate

Also Published As

Publication number Publication date
JP2868966B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US5501746A (en) Process for preparing superconducting wire
US20070157450A1 (en) Bonding method of metal surfaces
WO2007099820A1 (en) PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD
EP1993153A1 (en) Nb3Sn superconducting wire, precursor of same, and method for producing precursor
US20090036312A1 (en) Multifilament Superconductor, as well as Method for its Production
US10128428B2 (en) Ternary molybdenum chalcogenide superconducting wire and manufacturing thereof
JP2868966B2 (en) Superconducting wire manufacturing method
JPH06251645A (en) Wire for nb3x system superconducting wire
JP2011124575A (en) Superconductor with improved mechanical strength
WO2021024529A1 (en) PRECURSOR FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL, PRODUCTION METHOD THEREFOR, AND PRODUCTION METHOD FOR Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL USING SAME
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP5598825B2 (en) Nb3Al superconducting wire manufacturing method
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JPH04289615A (en) Manufacture of compound superconducting rod
JPS58169712A (en) Method of producing composite superconductive wire
JP3182978B2 (en) Nb (3) Sn Superconducting Wire for Magnet Operated by Permanent Current and Manufacturing Method Thereof
JP2593549B2 (en) Forced cooling type superconducting cable and method of manufacturing the same
JP3265618B2 (en) Composite billet for compound superconducting wire and method for producing compound superconducting wire
JPH09204828A (en) Manufacture of nb3al superconducting wire
JP2002063816A (en) MANUFACTURING METHOD OF Nb3Al-SYSTEM SUPERCONDUCTING WIRE
JPH05101720A (en) Compound superconductive wire and manufacture thereof
JP2000322957A (en) Manufacture for superconductive wire
JPH06150737A (en) Nb multicore superconducting cable and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees