JPH06137997A - Method for evaluating dynamic pressure gas bearing, its cleaning method, and dynamic pressure gas bearing - Google Patents

Method for evaluating dynamic pressure gas bearing, its cleaning method, and dynamic pressure gas bearing

Info

Publication number
JPH06137997A
JPH06137997A JP28611692A JP28611692A JPH06137997A JP H06137997 A JPH06137997 A JP H06137997A JP 28611692 A JP28611692 A JP 28611692A JP 28611692 A JP28611692 A JP 28611692A JP H06137997 A JPH06137997 A JP H06137997A
Authority
JP
Japan
Prior art keywords
fixed shaft
gas bearing
dynamic pressure
pressure gas
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28611692A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Minamino
安泰 南野
Hiroyuki Matsuo
浩幸 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28611692A priority Critical patent/JPH06137997A/en
Publication of JPH06137997A publication Critical patent/JPH06137997A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for evaluating dynamic gas bearing for improving reliability regarding the performance and durability of dynamic pressure gas bearing, a method for cleaning the dynamic gas bearing, and the dynamic pressure gas bearing. CONSTITUTION:A vent hole 4 for communicating the surrounding of the lower part of a fixed shaft 2 with each static pressure generation part 3 generating static pressure around the fixed shaft 2, is formed in the fixed shaft 2 where a hollow rotator 1 is extermaly engaged with a small space, a pressure sensor 5 is connected to each vent hole 4, and the static pressure of the static pressure generation part 3 when the rotator 1 rotates, is measured by the pressure sensor 5 for evaluation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、動圧気体軸受の性能を
評価する方法、動圧気体軸受の清掃方法及び動圧気体軸
受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the performance of a dynamic pressure gas bearing, a method for cleaning a dynamic pressure gas bearing, and a dynamic pressure gas bearing.

【0002】[0002]

【従来の技術】レーザプリンタに使用される高速スキャ
ナモータには、図5の断面図に示すように、回転体1を
固定軸2に例えば30μm程度の微小空間を置いて外嵌
させた動圧気体軸受が用いられる。
2. Description of the Related Art In a high speed scanner motor used in a laser printer, as shown in a sectional view of FIG. 5, a rotary body 1 is externally fitted to a fixed shaft 2 with a minute space of, for example, about 30 .mu.m. A gas bearing is used.

【0003】この動圧気体軸受の固定軸2の周面の中間
高さ部には縁切溝2aが全周にわたって凹設され、この
縁切溝2aの上下両側の周面にそれぞれ対をなすヘリン
グボーン溝2b〜2eが形成される。上下各対をなすヘ
リングボーン溝2b〜2eは深さ5〜12μm程度で、
所定の間隔を置いて互いに逆方向に傾斜させてある。回
転体1を回転させると微小空間内の空気が上下の対をな
すヘリングボーン溝2b〜2eの間に寄せられ、固定軸
2の上部の周囲の静圧発生部3と下部の周囲の静圧発生
部3とに正の静圧が発生し、この圧力によって回転体1
が固定軸2に非接触状に支持される。なお、縁切溝2a
の周囲の静圧発生部3には負の静圧が発生している。
An edge cut groove 2a is provided over the entire circumference at an intermediate height portion of the peripheral surface of the fixed shaft 2 of the dynamic pressure gas bearing, and a pair is formed on each of the upper and lower peripheral surfaces of the edge cut groove 2a. Herringbone grooves 2b-2e are formed. The herringbone grooves 2b to 2e forming the upper and lower pairs have a depth of about 5 to 12 μm,
They are inclined in opposite directions with a predetermined interval. When the rotating body 1 is rotated, the air in the minute space is drawn between the upper and lower herringbone grooves 2b to 2e, and the static pressure generating portion 3 around the upper part of the fixed shaft 2 and the static pressure around the lower part. Positive static pressure is generated in the generator 3, and this pressure causes the rotor 1 to rotate.
Are supported by the fixed shaft 2 in a non-contact manner. In addition, the edge cutting groove 2a
Negative static pressure is generated in the static pressure generating portion 3 around.

【0004】[0004]

【発明が解決しようとする課題】ところで、この動圧気
体軸受は、理論的に求めた設計値にしたがってミクロン
オーダーの寸法精度で製造されており、その性能も設計
値として求められているに過ぎず、実際の性能、すなわ
ち、軸受圧力の評価は行われていない。
By the way, this dynamic pressure gas bearing is manufactured with dimensional accuracy of micron order according to the theoretically determined design value, and its performance is merely required as the design value. No, the actual performance, that is, the bearing pressure has not been evaluated.

【0005】また、微小な加工屑による使用初期に発生
する焼付き、回転体内周面や固定軸外周面の腐食や回転
中の外力による異常接触、焼付き、回転変動等の不具合
が発生することがあるが、製品を例えば120時間程度
のエージランニング(慣らし運転)をしてこれらの不具
合が発生するか否かを見極めているにすぎない。
Further, problems such as seizure that occurs in the initial stage of use due to minute machining scraps, corrosion of the inner peripheral surface of the rotating body and the outer peripheral surface of the fixed shaft, abnormal contact due to external force during rotation, seizure, and fluctuation in rotation may occur. However, the product is merely aged for about 120 hours (run-in operation) to determine whether or not these problems occur.

【0006】したがって、動圧気体軸受の性能や耐久性
に対する信頼性は低く、この信頼性を高めるための根本
的な解決方法は未だ見出されていない。本発明は、上記
の事情を鑑みてなされたものであり、動圧気体軸受の性
能や耐久性に対する信頼性を高めることができる動圧気
体軸受の評価方法、動圧気体軸受の清掃方法、及び動圧
気体軸受を提供することを目的とする。
Therefore, the reliability of the performance and durability of the dynamic pressure gas bearing is low, and a fundamental solution for increasing this reliability has not yet been found. The present invention has been made in view of the above circumstances, and is a method for evaluating a dynamic pressure gas bearing, which is capable of enhancing reliability of performance and durability of the dynamic pressure gas bearing, a method for cleaning the dynamic pressure gas bearing, and An object is to provide a dynamic pressure gas bearing.

【0007】[0007]

【課題を解決するための手段】本発明に係る動圧気体軸
受の評価方法は、上記の目的を達成するため、例えば図
1に示すように、中空の回転体1が微小空間を置いて外
嵌される固定軸2内に、該固定軸2の周囲に静圧が発生
する各静圧発生部3を該固定軸2の下部の周囲に連通す
る逆L字形の通気孔4を形成し、各通気孔4に圧力セン
サ5を接続して、回転体1の回転時の静圧発生部3の静
圧を圧力センサ5で測定して評価することを特徴とす
る。
In order to achieve the above-mentioned object, the method for evaluating a dynamic pressure gas bearing according to the present invention has a hollow rotating body 1 with a small space outside as shown in FIG. 1, for example. In the fixed shaft 2 to be fitted, an inverted L-shaped ventilation hole 4 is formed, which connects the respective static pressure generating portions 3 that generate static pressure around the fixed shaft 2 to the periphery of the lower portion of the fixed shaft 2. It is characterized in that a pressure sensor 5 is connected to each vent hole 4 and the static pressure of the static pressure generating portion 3 during rotation of the rotating body 1 is measured and evaluated by the pressure sensor 5.

【0008】また、本発明に係る動圧気体軸受の清掃方
法は、上記の目的を達成するため、例えば図2に示すよ
うに、中空の回転体1が固定軸2に微小空間を置いて外
嵌される動圧気体軸受の固定軸2内にその周囲に静圧が
発生する各静圧発生部3を固定軸2の下部の周囲に連通
させる各通気孔4を形成し、乾燥清浄気体を各通気孔4
の下端から固定軸1の周囲に吹き出させることを特徴と
する。
In order to achieve the above-mentioned object, the method for cleaning a dynamic pressure gas bearing according to the present invention has a hollow rotary member 1 with a small space on a fixed shaft 2 as shown in FIG. In the fixed shaft 2 of the dynamic pressure gas bearing to be fitted, the respective ventilation holes 4 for communicating the respective static pressure generating portions 3 in which static pressure is generated around the fixed shaft 2 with the periphery of the lower portion of the fixed shaft 2 are formed, and the dry clean gas is supplied. Each vent 4
It is characterized in that it is blown out from the lower end to the periphery of the fixed shaft 1.

【0009】更に、本発明の動圧気体軸受は、上記の動
圧気体軸受の評価方法及び動圧気体軸受の清掃方法を実
施できるようにするため、例えば図3に示すように、中
空の回転体1と、該回転体1が微小空間を置いて外嵌さ
れる固定軸2とを備える動圧気体軸受において、上記固
定軸2が、該固定軸2の周囲に静圧が発生する各静圧発
生部3の周面から該固定軸2の内部を通って固定軸2の
下端面に連通する逆L字形の通気孔4と、各通気孔4の
下端部に着脱され、各通気孔4を封止する栓11とを備
えることを特徴とする。
Further, the dynamic pressure gas bearing of the present invention has a hollow rotation as shown in FIG. 3, for example, in order to be able to carry out the above-described dynamic pressure gas bearing evaluation method and dynamic pressure gas bearing cleaning method. In a dynamic pressure gas bearing including a body 1 and a fixed shaft 2 on which the rotating body 1 is fitted with a small space, each of the static shafts in which static pressure is generated around the fixed shaft 2. An inverted L-shaped ventilation hole 4 that communicates with the lower end surface of the fixed shaft 2 from the peripheral surface of the pressure generating portion 3 through the inside of the fixed shaft 2, and is attached to and detached from the lower end portion of each ventilation hole 4. And a plug 11 for sealing

【0010】[0010]

【作 用】本発明の動圧気体軸受によれば、栓11を外
すと、通気孔4の下端部に圧力センサ5を接続したり、
乾燥清浄気体を通気孔4に導入したりできる。また、栓
11で通気孔4を封止すれば、通気孔4によって各静圧
発生部3の静圧キャパシティが増大され、回転中の外力
や低速回転時の求心力が高められる。
[Operation] According to the dynamic pressure gas bearing of the present invention, when the plug 11 is removed, the pressure sensor 5 is connected to the lower end portion of the vent hole 4,
A dry clean gas can be introduced into the ventilation hole 4. Further, if the vent hole 4 is sealed with the plug 11, the static pressure capacity of each static pressure generating portion 3 is increased by the vent hole 4, and the external force during rotation and the centripetal force during low speed rotation are increased.

【0011】本発明の動圧気体軸受の評価方法によれ
ば、通気孔4を介して各静圧発生部3の静圧を測定して
動圧気体軸受の性能を評価でき、開発段階においては、
その評価値に基づいて最適設計値を求めることができ、
生産段階においては、製品が要求性能を満たすか否かを
検査することができる。
According to the method for evaluating a dynamic pressure gas bearing of the present invention, the performance of the dynamic pressure gas bearing can be evaluated by measuring the static pressure of each static pressure generating portion 3 through the ventilation hole 4, and at the development stage. ,
The optimum design value can be obtained based on the evaluation value,
At the production stage, it is possible to inspect whether or not the product satisfies the required performance.

【0012】また、本発明の動圧気体軸受の清掃方法に
よれば、各通気孔4を介して回転体1と固定軸2との間
の微小空間に乾燥清浄気体を吹き出すことにより、回転
体1と固定軸2との表面を乾燥させてこれらの腐食を防
止できるとともに、回転体1と固定軸2との間の微小空
間から微小な加工屑を排出することができる。
Further, according to the method for cleaning a dynamic pressure gas bearing of the present invention, the dry cleaning gas is blown out into a minute space between the rotating body 1 and the fixed shaft 2 through each ventilation hole 4, whereby the rotating body is rotated. It is possible to dry the surfaces of the fixed shaft 1 and the fixed shaft 2 to prevent them from corroding, and it is possible to discharge minute processing chips from the minute space between the rotating body 1 and the fixed shaft 2.

【0013】[0013]

【実施例】以下、本発明の一実施例に係る動圧気体軸受
の評価方法、動圧気体の清掃方法及び動圧気体軸受につ
いて図面に基づいて具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for evaluating a dynamic pressure gas bearing, a method for cleaning a dynamic pressure gas, and a dynamic pressure gas bearing according to an embodiment of the present invention will be specifically described below with reference to the drawings.

【0014】本発明の前提となる動圧気体軸受は、図1
の断面図に示すように、中空の回転体1と、この回転体
1が例えば30μm程度の微小空間を置いて外嵌される
固定軸2とを備えている。この回転体1は例えばレーザ
プリンタに使用される高速スキャナモータの回転子であ
って、18,500〜27,500rpm程度の高速で
回転する。また、回転体1及び固定軸2は鉄、炭素鋼、
ステンレス鋼等の磁性体で造られる。
The dynamic pressure gas bearing on which the present invention is based is shown in FIG.
As shown in the cross-sectional view of FIG. 1, a hollow rotating body 1 and a fixed shaft 2 to which the rotating body 1 is externally fitted with a minute space of, for example, about 30 μm placed. The rotating body 1 is a rotor of a high-speed scanner motor used in a laser printer, for example, and rotates at a high speed of about 18,500 to 27,500 rpm. The rotating body 1 and the fixed shaft 2 are made of iron, carbon steel,
Made of magnetic material such as stainless steel.

【0015】固定軸2の周面の中間高さには縁切溝2a
が全周にわたって凹設され、その上側と下側とにそれぞ
れ対をなすヘリングボーン溝2b〜2eが形成される。
上下各対をなすヘリングボーン溝2b〜2eは深さ5〜
12μm程度で、所定の間隔を置いて互いに逆方向に傾
斜させてある。
An edge cutting groove 2a is formed at an intermediate height of the peripheral surface of the fixed shaft 2.
Are recessed over the entire circumference, and herringbone grooves 2b to 2e are formed on the upper side and the lower side, respectively.
The herringbone grooves 2b to 2e forming the upper and lower pairs have a depth of 5 to 5, respectively.
They are about 12 μm and are inclined in opposite directions with a predetermined interval.

【0016】回転体1を回転させると微小空間内の空気
が連れ回り、上下の対をなすヘリングボーン溝2b〜2
eに案内されて、図4に示すように、上側で対をなすヘ
リングボーン溝2b,2cの間と、下側で対をなすヘリ
ングボーン溝2b,2cの間とに空気が寄せられて正の
静圧を発生し、この圧力によって回転体1が固定軸2に
非接触状に支持される。また、縁切溝2bの周囲には負
の静圧が発生する。
When the rotating body 1 is rotated, the air in the minute space is entrained and the upper and lower herringbone grooves 2b-2 are paired.
Guided by e, as shown in FIG. 4, air is gathered between the pair of herringbone grooves 2b and 2c on the upper side and between the pair of herringbone grooves 2b and 2c on the lower side, so that the air flows forward. Static pressure is generated, and this pressure supports the rotating body 1 on the fixed shaft 2 in a non-contact manner. Further, a negative static pressure is generated around the edge cut groove 2b.

【0017】図1に示すように、この動圧気体軸受の固
定軸2の内部には、その周囲で静圧が発生する各静圧発
生部3を固定軸2の下部の周囲に連通させる3本の通気
孔4が形成される。各通気孔4の形状は、特に限定され
ないが、ここでは、ドリル加工で簡単に通気孔4を形成
できるように、静圧発生部3に面する固定軸2の周面か
ら該固定軸2の下面に至る逆L字形に形成している。
As shown in FIG. 1, inside the fixed shaft 2 of this dynamic pressure gas bearing, each static pressure generating portion 3 in which static pressure is generated around the fixed shaft 2 is communicated with the periphery of the lower portion of the fixed shaft 2. The book vent 4 is formed. The shape of each vent hole 4 is not particularly limited, but here, from the peripheral surface of the fixed shaft 2 facing the static pressure generating portion 3 of the fixed shaft 2 so that the vent hole 4 can be easily formed by drilling. It is formed in an inverted L shape reaching the lower surface.

【0018】なお、通気孔4をコ字形に形成して、通気
孔4の下端が固定軸2の周面に開口するように構成する
ことも可能である。図2に示すように、この通気孔4の
下端には、フィルタ6、流量制御弁7、クーラ8を介し
てコンプレッサ9が接続され、コンプレッサ9で加圧さ
れ、クーラ8で除湿され、フィルタ6で除塵された乾燥
清浄空気が各通気孔4を介して各静圧発生部3に吹き出
し、通気孔4及び回転体1と固定軸2との間の微小空間
から水分と塵埃とを排出させる。
It is also possible to form the ventilation hole 4 in a U-shape so that the lower end of the ventilation hole 4 opens to the peripheral surface of the fixed shaft 2. As shown in FIG. 2, a compressor 9 is connected to the lower end of the vent hole 4 via a filter 6, a flow rate control valve 7 and a cooler 8, and is pressurized by the compressor 9 and dehumidified by the cooler 8 and the filter 6 The dry clean air dedusted in (1) is blown out to each static pressure generating portion 3 through each ventilation hole 4, and water and dust are discharged from the ventilation hole 4 and the minute space between the rotating body 1 and the fixed shaft 2.

【0019】これにより、回転体1と固定軸2との表面
が乾燥され、長期間にわたって腐食が発生することを防
止できる。また、通気孔4及び回転体1と固定軸2との
間の微小空間から塵埃を排出することにより、回転初期
に塵埃によって回転摩耗が誘発されることが防止され、
回転初期に発生する回転摩耗粉による焼付きを防止でき
る。また、このような焼付きを防止できるので、エージ
ランニングにおいて回転体1の回転停止頻度を高めて、
エージランニング時間を例えば1時間程度に短縮できる
とともに、製品の耐久性に対する信頼性を高めることが
できる。
As a result, it is possible to prevent the surfaces of the rotating body 1 and the fixed shaft 2 from being dried and causing corrosion for a long period of time. Further, by discharging the dust from the ventilation hole 4 and the minute space between the rotary body 1 and the fixed shaft 2, it is possible to prevent the rotary wear from being induced by the dust at the initial stage of rotation,
It is possible to prevent seizure due to rotating abrasion powder generated at the initial stage of rotation. Further, since such seizure can be prevented, the rotation stop frequency of the rotating body 1 can be increased during age running,
The age running time can be shortened to, for example, about 1 hour, and the reliability of the durability of the product can be improved.

【0020】このような手順で動圧気体軸受の清掃をし
た後、図1に示すように、上記各通気孔4にそれぞれ圧
力センサ5を螺着し、これらの圧力センサ5を圧力指示
計10に接続して、各静圧発生部3の圧力を測定(例え
ば図4のサンプルNo.1〜No.6)し、これによ
り、動圧気体軸受の性能を評価する。
After the dynamic pressure gas bearing is cleaned by the above procedure, as shown in FIG. 1, the pressure sensors 5 are screwed into the respective vent holes 4, and these pressure sensors 5 are attached to the pressure indicator 10. The pressure of each static pressure generating part 3 is measured (for example, samples No. 1 to No. 6 in FIG. 4), and the performance of the dynamic pressure gas bearing is evaluated.

【0021】開発段階においては、この評価に基づいて
最適設計値を求めたり、追加工により最適寸法値や最適
寸法精度を求めたりすることができ、生産段階において
は、この評価に基づいて要求性能が満たされているか否
かの検査ができる。また、この検査を行いながら1時間
程度にわたって回転体1を頻繁に回転停止させることに
より十分なエージランニングを済ませることができる。
At the development stage, the optimum design value can be obtained based on this evaluation, and the optimum dimension value and the optimum dimension accuracy can be obtained by additional machining. At the production stage, the required performance is based on this evaluation. It is possible to check whether or not is satisfied. In addition, by frequently stopping the rotation of the rotating body 1 for about one hour while performing this inspection, sufficient age running can be completed.

【0022】このように、要求性能を実際に満たす最適
設計値、最適寸法値、最適寸法精度等を求め、実際の製
品が要求性能を満たすことを確認してから製品を市場に
出すことにより、製品の性能に対する信頼性を著しく高
めることができる。
As described above, the optimum design value, the optimum dimensional value, the optimum dimensional accuracy, etc. for actually satisfying the required performance are obtained, and after confirming that the actual product satisfies the required performance, the product is put on the market. The reliability of the product performance can be significantly increased.

【0023】これらの性能評価を終了した固定軸2の各
通気孔4から圧力センサ5を外した後、図3に示すよう
に、各通気孔4は栓11で封止される。栓11で封止さ
れた各通気孔4は各静圧発生部3に連通しているので、
各通気孔4によって各静圧発生部3の静圧キャパシティ
が増大され、回転中の外力や低速回転時の求心力が高め
られる。その結果、回転中の異常接触、焼付き、回転速
度変動が発生し難くなり、耐久性を高めることができ
る。
After removing the pressure sensor 5 from each of the vent holes 4 of the fixed shaft 2 which has been subjected to these performance evaluations, each vent hole 4 is sealed with a plug 11 as shown in FIG. Since each vent hole 4 sealed by the plug 11 communicates with each static pressure generating portion 3,
Each vent hole 4 increases the static pressure capacity of each static pressure generating portion 3, thereby increasing the external force during rotation and the centripetal force during low speed rotation. As a result, abnormal contact, seizure, and rotation speed fluctuation during rotation are less likely to occur, and durability can be improved.

【0024】この実施例では、栓11を各通気孔4の屈
曲部の近傍まで延長し、その先端部に通気孔4の周面に
接触しないように磁石12を支持させている。磁石12
は直径0.5〜1mm程度とすればよく、磁石12と各
通気孔4の周面との隙間は例えば0.5mm程度以上に
すればよい。
In this embodiment, the plug 11 is extended to the vicinity of the bent portion of each vent hole 4, and the magnet 12 is supported at its tip end so as not to contact the peripheral surface of the vent hole 4. Magnet 12
The diameter may be about 0.5 to 1 mm, and the gap between the magnet 12 and the peripheral surface of each vent hole 4 may be about 0.5 mm or more.

【0025】この磁石12は、回転中の回転体1と固定
軸2との接触により生成される摩耗粉を通気孔4内に吸
引して捕獲し、回転体1の内周面及び固定軸2の外周面
の摩耗の進行を遅らせる。これにより、焼付き、回転異
常及び回転速度変動が長期間にわたって発生し難くな
り、耐久性が一層高められる。
The magnet 12 sucks and captures wear particles generated by the contact between the rotating body 1 and the fixed shaft 2 which are rotating, into the air holes 4, and captures them. Delays the progress of wear on the outer peripheral surface. As a result, seizure, rotation abnormality, and rotation speed fluctuation are less likely to occur over a long period of time, and durability is further enhanced.

【0026】[0026]

【発明の効果】以上説明したように、本発明の動圧気体
軸受によれば、栓を取り外して乾燥清浄気体を通気孔に
送りこむことにより、本発明の動圧気体軸受の清掃方法
を実施できる。また、栓を取り外して圧力センサを通気
孔に接続することにより本発明の動圧気体軸受の評価方
法を実施できる。
As described above, according to the dynamic pressure gas bearing of the present invention, the cleaning method of the dynamic pressure gas bearing of the present invention can be carried out by removing the plug and feeding the dry clean gas into the ventilation hole. . Further, the method for evaluating a dynamic pressure gas bearing of the present invention can be implemented by removing the plug and connecting the pressure sensor to the ventilation hole.

【0027】しかも、本発明の動圧気体軸受によれば、
栓で通気孔を閉じることにより、通気孔によって静圧キ
ャパシティが増大されて、回転中の外力や低速回転時の
求心力が高められ、回転中の異常接触、焼付き、回転速
度変動が発生し難くなり、耐久性を高めることができ
る。
Moreover, according to the dynamic pressure gas bearing of the present invention,
Closing the vent with a plug increases the static pressure capacity by the vent, increasing external force during rotation and centripetal force during low-speed rotation, which causes abnormal contact during rotation, seizure, and fluctuations in rotational speed. It becomes difficult and durability can be improved.

【0028】本発明の動圧気体軸受の清掃方法によれ
ば、通気孔及び回転体の内周面、固定軸の該周面から水
分を除去できるので、長期間にわたって回転体の内周面
及び固定軸の外周面の腐食を防止でき、耐久性を高める
ことができる。また、通気孔内及び回転体と固定軸との
間の塵埃を除去できるので、回転初期において接触摩耗
粉が発生し難くなり、焼付き、異常摩耗などの発生を防
止できる。更に、回転初期の焼付き、異常摩耗などの発
生を防止できるので、回転体の回転停止頻度を高めてエ
ージランニング時間を短縮できる。
According to the method for cleaning a dynamic pressure gas bearing of the present invention, water can be removed from the ventilation hole, the inner peripheral surface of the rotating body, and the peripheral surface of the fixed shaft. Corrosion of the outer peripheral surface of the fixed shaft can be prevented, and durability can be improved. Further, since dust in the ventilation hole and between the rotating body and the fixed shaft can be removed, contact wear powder is less likely to be generated in the initial stage of rotation, and seizure, abnormal wear, etc. can be prevented. Further, since it is possible to prevent the occurrence of seizure and abnormal wear in the initial stage of rotation, it is possible to increase the frequency of rotation stop of the rotating body and shorten the age running time.

【0029】本発明の動圧気体軸受の評価方法によれ
ば、製品の実際の静圧を圧力センサで測定して、性能を
評価できる。したがって、開発段階では、最適設計値、
最適寸法値、最適寸法精度等を求めることができ、生産
段階では、要求性能が満たされているか否かの検査がで
き、出荷された製品に対する耐久性及び性能に対する信
頼性を著しく高めることができる。
According to the dynamic pressure gas bearing evaluation method of the present invention, the performance can be evaluated by measuring the actual static pressure of the product with the pressure sensor. Therefore, at the development stage, the optimum design value,
It is possible to obtain the optimum dimensional value, the optimum dimensional accuracy, etc., and at the production stage, it is possible to inspect whether the required performance is satisfied, and it is possible to remarkably improve the durability of the shipped product and the reliability of the performance. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る動圧気体軸受及びその
評価方法の構成図である。
FIG. 1 is a configuration diagram of a dynamic pressure gas bearing and an evaluation method thereof according to an embodiment of the present invention.

【図2】本発明の一実施例に係る動圧気体軸受及びその
清掃方法の構成図である。
FIG. 2 is a configuration diagram of a dynamic pressure gas bearing and a cleaning method thereof according to an embodiment of the present invention.

【図3】本発明の一実施例に係る動圧気体軸受の断面図
である。
FIG. 3 is a sectional view of a dynamic pressure gas bearing according to an embodiment of the present invention.

【図4】本発明の固定軸の周囲の圧力分布を示す圧力分
布図である。
FIG. 4 is a pressure distribution diagram showing a pressure distribution around a fixed shaft of the present invention.

【図5】従来の動圧気体軸受の断面図である。FIG. 5 is a cross-sectional view of a conventional dynamic pressure gas bearing.

【符合の説明】[Explanation of sign]

1 回転体 2 固定軸 3 静圧発生部 4 通気孔 5 圧力センサ 11 栓 12 磁石 DESCRIPTION OF SYMBOLS 1 Rotating body 2 Fixed shaft 3 Static pressure generating part 4 Vent hole 5 Pressure sensor 11 Plug 12 Magnet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中空の回転体(1) が微小空間を置いて外
嵌される固定軸(2)内に、該固定軸(2) の周囲に静圧が
発生する各静圧発生部(3) を該固定軸(2) の下部の周囲
に連通する通気孔(4) を形成し、各通気孔(4) に圧力セ
ンサ(5) を接続して、回転体(1) の回転時の静圧発生部
(3) の静圧を圧力センサ(5) で測定して評価することを
特徴とする動圧気体軸受の評価方法。
1. A static pressure generating part (1) in which a static pressure is generated around a fixed shaft (2) into which a hollow rotating body (1) is fitted with a minute space. 3) Form a vent hole (4) that connects the lower part of the fixed shaft (2) to the periphery of the fixed shaft (2), connect a pressure sensor (5) to each vent hole (4), and rotate the rotating body (1) Static pressure generation part
A method for evaluating a dynamic pressure gas bearing, characterized in that the static pressure of (3) is measured and evaluated by a pressure sensor (5).
【請求項2】 中空の回転体(1) が固定軸(2) に微小空
間を置いて外嵌される動圧気体軸受の固定軸(2) 内にそ
の周囲に静圧が発生する各静圧発生部(3) を固定軸(2)
の下部の周囲に連通する逆L字形の通気孔(4) を形成
し、乾燥清浄気体を各通気孔(4) の下端から固定軸(2)
の周囲に吹き出させることを特徴とする動圧気体軸受の
清掃方法。
2. A hydrostatic gas bearing fixed shaft (2) in which a hollow rotating body (1) is fitted onto a fixed shaft (2) with a small space therebetween. Attach the pressure generator (3) to the fixed shaft (2)
Inverted L-shaped ventilation holes (4) communicating with the lower part of the ventilation hole (4) are formed, and dry clean gas is fed from the lower end of each ventilation hole (4) to the fixed shaft (2).
A method for cleaning a dynamic pressure gas bearing, characterized in that it is blown out to the surroundings.
【請求項3】 中空の回転体(1) と、該回転体(1) が微
小空間を置いて外嵌される固定軸(2) とを備える動圧気
体軸受において、 上記固定軸(2) が、該固定軸(2) の周囲に静圧が発生す
る静圧発生部(3) の周面から該固定軸(2) の内部を通っ
て固定軸(2) の下端面に連通する逆L字形の通気孔(4)
と、各通気孔(4) の下端部に着脱され、各通気孔(4) を
封止する栓(11)とを備えることを特徴とする動圧気体軸
受。
3. A dynamic pressure gas bearing comprising a hollow rotating body (1) and a fixed shaft (2) to which the rotating body (1) is externally fitted with a small space, the fixed shaft (2) Is a reverse pressure that communicates from the peripheral surface of the static pressure generating part (3) where static pressure is generated around the fixed shaft (2) through the inside of the fixed shaft (2) to the lower end surface of the fixed shaft (2). L-shaped ventilation holes (4)
And a plug (11) which is attached to and detached from the lower end of each vent hole (4) and seals each vent hole (4).
【請求項4】 上記各通気孔(4) の屈曲部に磁石(12)が
配置される請求項3に記載の動圧気体軸受。
4. The dynamic pressure gas bearing according to claim 3, wherein a magnet (12) is arranged at a bent portion of each vent hole (4).
【請求項5】 磁石(12)が上記栓(11)に支持される請求
項4に記載の動圧気体軸受。
5. The dynamic pressure gas bearing according to claim 4, wherein a magnet (12) is supported by the plug (11).
JP28611692A 1992-10-23 1992-10-23 Method for evaluating dynamic pressure gas bearing, its cleaning method, and dynamic pressure gas bearing Withdrawn JPH06137997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28611692A JPH06137997A (en) 1992-10-23 1992-10-23 Method for evaluating dynamic pressure gas bearing, its cleaning method, and dynamic pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28611692A JPH06137997A (en) 1992-10-23 1992-10-23 Method for evaluating dynamic pressure gas bearing, its cleaning method, and dynamic pressure gas bearing

Publications (1)

Publication Number Publication Date
JPH06137997A true JPH06137997A (en) 1994-05-20

Family

ID=17700143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28611692A Withdrawn JPH06137997A (en) 1992-10-23 1992-10-23 Method for evaluating dynamic pressure gas bearing, its cleaning method, and dynamic pressure gas bearing

Country Status (1)

Country Link
JP (1) JPH06137997A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925854B2 (en) 2003-01-13 2005-08-09 Minebea Co., Inc. Method and device to check the bearing gap of a hydrodynamic bearing
DE102005052962A1 (en) * 2005-11-03 2007-05-16 Minebea Co Ltd Cylindrical and electrically conducting upper surface`s e.g. bearing bore, cylindricity and internal diameter measuring device, has measuring device determining surface diameter in area of measuring surface by evaluating common capacity
US7258013B2 (en) 2004-04-27 2007-08-21 Minebea Co., Ltd. Device and method to measure a bearing system
DE102007007459A1 (en) 2007-02-15 2008-08-28 Minebea Co., Ltd. Socket i.e. bush, feed through measuring method for fluid-dynamic bearing, involves rotating shaft with defined speed relative to socket such that laminar flow of fluid medium is adjusted in gap
CN101852684A (en) * 2010-05-24 2010-10-06 中国计量学院 Performance testing device of static-pressure air bearing
DE102009030667A1 (en) 2009-06-25 2010-12-30 Minebea Co., Ltd. Hole measuring method for bearing bush of fluid dynamic bearing system, involves positioning shaft relative to hole in bush, and determining value describing measurement of fluid path from rotational speed of bush and shaft
CN102980703A (en) * 2012-11-29 2013-03-20 重庆理工大学 Method and device for testing dynamic pressing force of clutch release bearing of automobile
CN103884504A (en) * 2014-03-10 2014-06-25 西安交通大学 Axial force bearing test structure of elastic foil dynamic pressure gas thrust bearings
CN111751220A (en) * 2020-06-22 2020-10-09 哈尔滨工业大学 Aerostatic bearing performance calculation method considering fluid-solid coupling
CN116907824A (en) * 2023-09-11 2023-10-20 福建德普乐能源科技有限公司 Vacuum degree detection device of vacuum interrupter

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301429B4 (en) * 2003-01-13 2005-11-17 Minebea Co., Ltd. Method and device for testing the bearing gap of a hydrodynamic bearing
US6925854B2 (en) 2003-01-13 2005-08-09 Minebea Co., Inc. Method and device to check the bearing gap of a hydrodynamic bearing
US7258013B2 (en) 2004-04-27 2007-08-21 Minebea Co., Ltd. Device and method to measure a bearing system
DE102005052962A1 (en) * 2005-11-03 2007-05-16 Minebea Co Ltd Cylindrical and electrically conducting upper surface`s e.g. bearing bore, cylindricity and internal diameter measuring device, has measuring device determining surface diameter in area of measuring surface by evaluating common capacity
DE102007007459A1 (en) 2007-02-15 2008-08-28 Minebea Co., Ltd. Socket i.e. bush, feed through measuring method for fluid-dynamic bearing, involves rotating shaft with defined speed relative to socket such that laminar flow of fluid medium is adjusted in gap
DE102007007459B4 (en) * 2007-02-15 2009-10-08 Minebea Co., Ltd. Method and device for measuring a bore in a bush
DE102009030667A1 (en) 2009-06-25 2010-12-30 Minebea Co., Ltd. Hole measuring method for bearing bush of fluid dynamic bearing system, involves positioning shaft relative to hole in bush, and determining value describing measurement of fluid path from rotational speed of bush and shaft
CN101852684A (en) * 2010-05-24 2010-10-06 中国计量学院 Performance testing device of static-pressure air bearing
CN102980703A (en) * 2012-11-29 2013-03-20 重庆理工大学 Method and device for testing dynamic pressing force of clutch release bearing of automobile
CN103884504A (en) * 2014-03-10 2014-06-25 西安交通大学 Axial force bearing test structure of elastic foil dynamic pressure gas thrust bearings
CN111751220A (en) * 2020-06-22 2020-10-09 哈尔滨工业大学 Aerostatic bearing performance calculation method considering fluid-solid coupling
CN111751220B (en) * 2020-06-22 2023-06-02 哈尔滨工业大学 Gas hydrostatic bearing performance calculation method considering fluid-solid coupling
CN116907824A (en) * 2023-09-11 2023-10-20 福建德普乐能源科技有限公司 Vacuum degree detection device of vacuum interrupter
CN116907824B (en) * 2023-09-11 2023-12-01 福建德普乐能源科技有限公司 Vacuum degree detection device of vacuum interrupter

Similar Documents

Publication Publication Date Title
JP6546759B2 (en) Rotary machine, bearing and method for manufacturing said rotary machine
JPH06137997A (en) Method for evaluating dynamic pressure gas bearing, its cleaning method, and dynamic pressure gas bearing
Butler The shock-pulse method for the detection of damaged rolling bearings
JP2006077938A (en) Abnormality diagnosing device
US20190063503A1 (en) Method and apparatus for monitoring a sliding bearing
JP2008290205A (en) Method and device for grinding stand-out of angular ball bearing
US20200096384A1 (en) Blade abnormality detecting device, blade abnormality detecting system, rotary machine system, and blade abnormality detecting method
JPH07190850A (en) Ultrasonic wave detector
JP5144887B2 (en) Rotating tool
Eric Real-time detection of developing cracks in jet engine rotors
Sopcik et al. How sensor performance enables condition-based monitoring solutions
CN108571590A (en) Mechanically-sealing apparatus
JP3876976B2 (en) Evaluation apparatus and evaluation method
Raharjo et al. A comparative study of the monitoring of a self aligning spherical journal using surface vibration, airborne sound and acoustic emission
JP2018025183A (en) Rolling bearing for turbocharger and detent mechanism
JP3912675B2 (en) Inspection method for hydrodynamic bearings
JPS63106400A (en) Turbo fluid machinery
JP6580866B2 (en) Air turbine drive spindle
JP3938901B2 (en) NRRO measuring device
JPS6135410B2 (en)
JP5370647B2 (en) Equilibrium testing device with hydrostatic gas bearing device
CN209196113U (en) Mechanically-sealing apparatus
JP2004230496A (en) Rotary chuck mechanism
JPH0571359A (en) Ceramic turbocharger rotor and machining method thereof
JP3876956B2 (en) Bearing inspection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104