WO2019168086A1 - Defect detection system, defect model creation program, and defect detection program - Google Patents

Defect detection system, defect model creation program, and defect detection program Download PDF

Info

Publication number
WO2019168086A1
WO2019168086A1 PCT/JP2019/007758 JP2019007758W WO2019168086A1 WO 2019168086 A1 WO2019168086 A1 WO 2019168086A1 JP 2019007758 W JP2019007758 W JP 2019007758W WO 2019168086 A1 WO2019168086 A1 WO 2019168086A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
defect
normal
evaluation
unit
Prior art date
Application number
PCT/JP2019/007758
Other languages
French (fr)
Japanese (ja)
Inventor
福井 健一
正嗣 北井
Original Assignee
国立大学法人大阪大学
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, Ntn株式会社 filed Critical 国立大学法人大阪大学
Publication of WO2019168086A1 publication Critical patent/WO2019168086A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • Rolling bearing defect detection system determines a defect in the rolling bearing based on vibration generated from the rolling bearing when the shaft supported by the rolling bearing is rotated It relates to a detection program.
  • Rolling bearings are mechanical elements for supporting a shaft that rotates around an axis.
  • moving bodies such as automobiles, ships, and airplanes
  • industrial machines such as machine tools and conveyance machines
  • large plants such as petrochemical and power generation.
  • Patent Document 1 as a defect detection method for a rotating machine equipped with a rolling bearing, a normal state model of a physical quantity such as vibration obtained from the rotating machine is created, and the newly measured physical quantity is separated from the normal state.
  • Patent Document 2 discloses a method for identifying a defect based on a change amount of a characteristic frequency peak caused by a bearing defect or a shaft touch.
  • the measurement results of the vibration of the rolling bearing provided in the rotating machine include noise caused by the operating conditions and the installation location, the measured physical quantity to some extent even when the rolling bearing is in a normal state. fluctuate. Therefore, even if an initial defect, that is, a minute defect, occurs in the rolling bearing, it is difficult to distinguish it from the normal state and cannot be sufficiently detected.
  • the present invention has been made in view of the above problems, and includes a rolling bearing defect detection system, a rolling bearing defect model creation program, and a rolling bearing defect detection program that accurately detect the occurrence of minute defects in the rolling bearing.
  • the purpose is to provide.
  • a defect detection system includes a model learning unit that learns a model using a rolling bearing whose defect state is known, and a defect in the rolling bearing using the learned model. It is a defect detection system of a rolling bearing provided with the detection part to detect.
  • the model learning unit acquires a normal signal that is a measurement result in a state in which a shaft supported by a normal bearing that is a defect-free rolling bearing is rotated, and is the same type of rolling as the normal bearing having a relatively small defect.
  • a first signal that is a measurement result in a state where the shaft body supported by the first bearing that is a bearing is rotated is acquired, and is a rolling bearing of the same type as the normal bearing and has a larger defect than the first bearing.
  • a reference information acquisition unit that acquires a second signal that is a measurement result in a state in which a shaft supported by two bearings is rotated, and information based on the normal signal, the first signal, and the second signal
  • a division unit that divides a plurality of segments by time length, and an initial value that includes an initial number of initial feature values by calculating a feature value for each segment of the normal signal, the first signal, and the second signal Create feature vector Classifying the normal signal and the first signal, and the normal signal and the second signal by supervised learning using the generated initial feature vector, and determining the contribution when classifying the first signal.
  • a first feature amount that is a high feature amount a high contribution feature amount extraction unit that extracts a second feature amount that is a feature amount having a high contribution in classifying the second signal from an initial feature amount, and the first feature
  • a first normal vector based on the normal signal using a quantity, a first feature vector based on the first signal, and a second normal vector based on the normal signal using the second feature quantity A vector reconstruction unit for reconstructing a second feature vector based on the second signal, and learning the first normal model and the second normal model using the first normal vector and the second normal vector, respectively.
  • a normal model learning unit configured to calculate a first defect degree for the first normal model using the first feature vector, and a second defect degree for the second normal model using the second feature vector
  • a reference defect degree calculation unit an overall normal model creation unit that creates an overall normal model using the first defect degree and the second defect degree as input vectors, and the first defect degree and the second defect degree are input.
  • a normal signal defect degree calculation unit that calculates a normal signal defect degree that is a defect degree of a normal signal from the overall normal model, and a defect detection threshold setting unit that sets a defect detection threshold based on the normal signal defect degree Prepare.
  • the detection unit includes an evaluation information acquisition unit that acquires an evaluation signal that is a measurement result of a state in which a shaft body supported by an evaluation bearing that is a rolling bearing of the same type as the normal bearing is rotated; An evaluation dividing unit that divides into a plurality of segments by time length, and a first evaluation vector using the first feature amount and a second feature amount for each segment of the divided evaluation signal An evaluation vector generation unit for generating two evaluation vectors, a first evaluation defect degree for the first normal model of the evaluation signal using the first evaluation vector, and the evaluation signal using the second evaluation vector An evaluation defect degree calculation unit for calculating a second evaluation defect degree with respect to the second normal model, the first evaluation defect degree, and the second evaluation defect degree as input vectors for evaluation from the general normal model
  • the evaluation signal defect degree calculation unit that calculates the defect degree of the evaluation signal is compared with the defect detection threshold, and the defect degree is detected as a defect out of all the information included in the evaluation signal.
  • a defect rate calculating unit that calculates a ratio exceeding the threshold as
  • a defect model creation program that is one of the present invention is a normal signal that is a measurement result in a state in which a shaft supported by a normal bearing that is a rolling bearing without a defect is rotated.
  • a first signal that is a measurement result of a state in which a shaft body supported by a first bearing that is a rolling bearing of the same type as the normal bearing having a relatively small defect is rotated
  • the normal bearing A reference information acquisition unit that acquires a second signal that is a measurement result of a state in which a shaft body supported by a second bearing that is a rolling bearing of the same type and has a larger defect than the first bearing is rotated, and the normal signal
  • a division unit that divides information based on the first signal and the second signal into a plurality of segments with a predetermined time length; and for each segment of the normal signal, the first signal, and the second signal Feature quantity
  • An initial feature vector creation unit that creates an initial feature vector composed of an initial number of initial feature quantities by calculation
  • the initial feature value is the first feature value, which is a feature value with a high contribution when classifying the first signal, and the second feature value with a high contribution value when the second signal is classified.
  • a high-contribution feature amount extraction unit that respectively extracts the first feature vector, the first normal vector based on the normal signal using the first feature amount, and the first feature vector based on the first signal, and the second feature A second normal vector based on the normal signal using a quantity, a vector reconstruction unit for reconstructing a second feature vector based on the second signal, the first normal vector, and the second normal vector.
  • a normal model learning unit that uses the first feature vector to create a first normal model and a second normal model by learning; a first defect degree for the first normal model using the first feature vector; and the second feature vector.
  • a reference defect degree calculation unit that calculates a second defect degree with respect to the second normal model using, and an overall normal model creation part that creates an overall normal model using the first defect degree and the second defect degree as input vectors
  • a normal signal defect degree calculation unit that calculates a normal signal defect degree that is a defect degree of a normal signal from the overall normal model using the first defect degree and the second defect degree as input vectors; and the normal signal defect And a defect detection threshold value setting unit that sets a defect detection threshold value based on the degree, and each processing unit is realized by causing the computer to execute each process.
  • a defect detection program for detecting a defect in a rolling bearing using a defect model created by the defect model creation program.
  • An evaluation information acquisition unit that acquires an evaluation signal that is a measurement result in a state in which a shaft body supported by an evaluation bearing that is a rolling bearing to be measured is rotated; and a plurality of segments of the evaluation signal for a predetermined time length
  • An evaluation dividing unit that divides the evaluation signal into two segments, and an evaluation that generates a first evaluation vector using the first feature amount and a second evaluation vector using the second feature amount for each segment of the divided evaluation signal
  • a vector generation unit a first evaluation defect degree of the evaluation signal with respect to the first normal model using the first evaluation vector; and the evaluation signal using the second evaluation vector.
  • An evaluation defect degree calculation unit for calculating a second evaluation defect degree with respect to the second normal model, a defect of an evaluation signal from the general normal model, with the first evaluation defect degree and the second evaluation defect degree as input vectors
  • An evaluation signal defect degree calculation unit that calculates an evaluation signal defect degree that is a degree, and the evaluation signal defect degree is compared with the defect detection threshold value, and the defect degree exceeds the defect detection threshold value among all information included in the evaluation signal
  • a defect rate calculation unit that calculates a ratio as a defect rate, and a determination unit that determines that the rolling bearing that has obtained the evaluation signal has a defect when the defect rate exceeds a predetermined defect rate threshold, and performs each process.
  • the above processing units are realized by causing the computer to execute them.
  • the present invention it is possible to improve the defect detection accuracy, for example, by making it possible to detect defects that are lighter than those of the prior art.
  • drawings are schematic diagrams in which emphasis, omission, and ratio adjustment are performed as appropriate to show the present invention, and may differ from actual shapes, positional relationships, and ratios.
  • FIG. 1 is a diagram showing an outline of a measuring device, in which a diagram shown in part (a) is a front view of the measuring device, and a diagram shown in part (b) is a sectional side view corresponding to the part (a).
  • a measuring apparatus 200 includes a base body 205, a shaft body 201, a target bearing 210 that is a rolling bearing to be measured, a driving device 202, a weight 203, a biasing member 204, and a measurement sensor. (Described later) and a recording device 206.
  • the measuring apparatus 200 employs a structure in which the shaft body 201 is supported by the target bearing 210 and the auxiliary bearing 211 that is guaranteed not to be defective.
  • the base body 205 is a member that is a structural basis of the measuring apparatus 200, and is a member that rotatably holds the shaft body 201.
  • the shaft body 201 is a rod-like member that is rotatably held by the base body 205 via the target bearing 210 or the like.
  • the shaft body 201 is not particularly limited in material and length as long as it has a shape that fits the inner ring of the target bearing 210, but it is preferable to match the actual usage of the target bearing 210 as much as possible.
  • the target bearing 210 is a rolling bearing to be measured.
  • the target bearing 210 is not particularly limited as long as it is a rolling bearing, but in the case of the present embodiment, the target bearing 210 is an angular ball bearing.
  • a normal bearing which is a rolling bearing having no defect, a first bearing which is a rolling bearing having a relatively small defect, and a second bearing having a defect larger than the first bearing are prepared.
  • the same type of rolling bearing can be used as the target bearing 210, and the rolling bearings in different defective states can be exchanged and used.
  • Normal bearings are unused rolling bearings that are recognized as having no scratches by product inspection.
  • the first bearing has, for example, a cylindrical hole with a diameter of 2b that is twice that of the inner circumference of the outer ring. It is a bearing provided on the surface.
  • the second bearing is, for example, a bearing in which a cylindrical hole having a diameter that can be detected by a method of specifying a defect by a change amount of a characteristic frequency peak, which is a conventional defect detection method, is provided on the inner periphery of the outer ring.
  • the diameter of the cylindrical hole provided in the second bearing is 6b.
  • the holes were formed by electric discharge machining.
  • defects used in the present specification and claims include holes, grooves, scratches and the like that are artificially provided as described above, and are further generated by using a bearing.
  • the term includes fatigue peeling and fatigue damage, lubricant deterioration, and surface roughness due to seal failure.
  • the auxiliary bearing 211 is provided to stably rotate the shaft body 201, and a bearing in the same state as a normal bearing is employed.
  • the drive device 202 is a device that drives the shaft body 201 to rotate.
  • the type of the driving device 202 is not particularly limited, but in the case of the present embodiment, the drive device 202 is separated from the base body 205 so that the vibration of the motor as a power source is not transmitted to the shaft body 201 as much as possible.
  • the driving device 202 receives power from a fixed motor (not shown) via a belt.
  • the driving device 202 is connected to the shaft body 201 by a joint provided with a vibration isolating member.
  • the weight 203 is a member that applies a vertically downward load to the shaft body 201 in one of the radial directions.
  • the weight of the weight 203 is preferably close to the usage of the rolling bearing to be evaluated.
  • the urging member 204 is a member that applies a load to the shaft body 201 in the axial direction.
  • the type of the urging member 204 is not particularly limited, but in the case of the present embodiment, a leaf spring is employed.
  • the load applied to the shaft body 201 by the urging member 204 is the same as that of the weight 203, and is preferably close to the usage mode of the rolling bearing to be evaluated.
  • the measurement sensor is not particularly limited and may be a sensor that measures sound, but in the case of the present embodiment, the measurement sensor is vibration (vibration acceleration) caused by rotation of the shaft body 201 due to the target bearing 210. ). However, since it is generally considered difficult to attach the measurement sensor directly to the target bearing 210, in the case of the present embodiment, the vibration sensor is attached to the base body 205, and only the vibration of the target bearing 210 is detected. Also measure vibrations caused by other factors.
  • the type of the measurement sensor is not particularly limited, and it is preferable to employ the same type of sensor as that used to detect a defect in the rolling bearing.
  • a sensor that measures vibration acceleration in a uniaxial direction is employed as the measurement sensor.
  • the number and location of the measurement sensors attached to the measuring apparatus 200 are not limited, but in the case of the present embodiment, the radial direction is the axial direction of the shaft body 201 and is added to the shaft body 201 by the weight 203.
  • a first sensor 221 that measures vibration in the direction of the load Z direction in FIG.
  • a second sensor 222 that measures vibration in a direction in which the restraining force from the shaft is weak, and a third sensor 223 that acquires vibration in the axial direction of the shaft body 201.
  • the recording device 206 is a device that records a signal from the measurement sensor.
  • signals from the first sensor 221, the second sensor 222, and the third sensor 223 are individually recorded.
  • an analog signal from a measurement sensor is digitized at a sampling frequency of 50 kHz, and the signal is recorded for a time of about 5 to 60 seconds (20 seconds in this embodiment).
  • the rotational speed of the shaft body 201 is not particularly limited, and is limited by the type of the target bearing 210. In the present embodiment, the rotational speed selected from a range of 1000 rpm to 2000 rpm. It was rotated with.
  • FIG. 2 is a block diagram illustrating a functional configuration of the defect detection system.
  • the defect detection system 100 uses a model learning unit 101 that learns a model using a signal of a rolling bearing whose defect state is known measured using the above-described measuring apparatus 200 and the like, and a model learned by the model learning unit 101.
  • a model learning unit 101 includes a reference information acquisition unit 102, a division unit 103, and an initial feature vector generation unit.
  • the detection unit 151 detects the presence or absence of a defect from a rolling bearing signal whose defect state is unknown.
  • a defect detection threshold value setting unit 111, and the detection unit 151 includes an evaluation information acquisition unit 152, an evaluation division unit 153, and an evaluation vector generation unit 15. If, evaluation defect calculation unit 155, an evaluation signal defect calculation unit 156, and a defect rate calculation unit 157, a determining unit 158.
  • the reference information acquisition unit 102 is a processing unit that acquires a signal from the recording device 206 of the measurement device 200.
  • One of the signals is a normal signal as a signal when the target bearing 210 is a normal bearing without a defect.
  • the other one of the signals is the first signal as a signal when the target bearing 210 is a first bearing that is a rolling bearing of the same type as a normal bearing in which a small-diameter hole that is a relatively small defect is artificially provided.
  • the other one of the signals is when the target bearing 210 is a rolling bearing of the same kind as a normal bearing and a second bearing in which a rectangular hole that is a larger defect than the first bearing is artificially provided. It is the 2nd signal as a signal.
  • FIG. 3 is a diagram schematically showing the division state of the division unit.
  • the dividing unit 103 divides the normal signal, the first signal, and the second signal acquired by the reference information acquisition unit 102 by a predetermined time length, respectively, so that a normal segment group and a first segment group are obtained. And a processing unit for generating a second segment group.
  • a vertical line overlapping the character in the figure indicates that it is after division.
  • the predetermined time length for dividing the signal by the dividing unit 103 is not particularly limited, but is set to be at least a time length enough for the shaft body 201 to rotate a plurality of times. In the case of the present embodiment, each signal is divided into a plurality of segments with a time length corresponding to five rotations of the shaft body 201.
  • the dividing unit 103 extracts a plurality of frequency bands by applying a band pass filter to the normal segment group, the first segment group, and the second segment group, and generates new information.
  • the frequency bandwidth and the number of extractions extracted by the dividing unit 103 are not particularly limited, but in the case of the present embodiment, 20 Hz to 200 Hz (frequency band 01), 1000 Hz to 5000 Hz (frequency band 02), and 5000 Hz. Three types of frequency of 20000 Hz or less (frequency band 03) are extracted. Since the initial feature vector is also created for raw data to which the bandpass filter is not applied, four frequency bandwidth segments are created in the present embodiment.
  • the dividing unit 103 performs Fourier transform by fast Fourier transform on the normal segment group, the first segment group, and the second segment group that are the time domain information including the extracted new information. Frequency domain information is generated and newly included in the normal segment group, the first segment group, and the second segment group. Further, the dividing unit 103 performs Fourier transform on the frequency domain information of each segment by fast Fourier transform to generate quefrency region information, and newly includes it in the normal segment group, the first segment group, and the second segment group.
  • the normal segment group includes the segment divided for the four types of frequency bands, the frequency domain segment that has undergone Fourier transform, and the segment of the quefrency domain that has undergone Fourier transform, as a result of the arithmetic processing of the division unit 103. Twelve types of segments are included.
  • the normal signal which becomes the origin of a normal segment group contains the signal obtained from the 1st sensor 221, the 2nd sensor 222, and the 3rd sensor 223, and the division
  • the normal signal, the first signal, and the second signal include the signal from the first sensor 221, the signal from the second sensor 222, and the signal from the third sensor 223, respectively.
  • the dividing unit 103 performs the above division.
  • the initial feature vector creation unit 104 calculates a feature amount for each segment of the normal segment group, the first segment group, and the second segment group generated by the dividing unit 103, and an initial number of initial feature amounts based on the calculation result Create an initial feature vector consisting of
  • the type of feature quantity calculated from each segment and the number to be calculated are not particularly limited. For example, various statistics can be selected and used. In the case of the present embodiment, five types of statistics, which are an effective value, a maximum value, a crest factor, a kurtosis, and a skewness, are selected as feature amounts calculated from each segment.
  • the frequency domain statistic is calculated with respect to the frequency domain waveform obtained by performing Fourier transform after envelope processing of each segment. Further, the statistic of the quefrency region is calculated with respect to the waveform of the quefrency region obtained by performing Fourier transform again on the frequency region information after the envelope processing.
  • the initial feature amount is information from any of the first sensor 221, the second sensor 222, and the third sensor 223. 3 types, 4 types of information in frequency band, 3 types of information in time domain information, frequency domain information, and quefrency region information, and feature quantity calculated as statistic
  • the initial number that is the number of the initial feature amounts is 180 including five types. That is, in the case of this embodiment, the initial feature vector creation unit 104 creates an initial feature vector composed of 180 feature amounts.
  • the initial feature vector is not created for all the acquired signals, but a plurality of initial feature vectors may be selected at random for each segment of the normal signal, the first signal, and the second signal.
  • the high contribution feature amount extraction unit 105 classifies the normal signal and the first signal, and the normal signal and the second signal by supervised learning using the created initial feature vector, and contributes to classify the first signal.
  • the method for extracting feature amounts having a high contribution is not particularly limited, but the contribution of each feature is calculated for each of the first signal and the second signal by supervised machine learning, and the contribution is calculated. What is necessary is just to extract a predetermined number (for example, 10 pieces) from the upper rank of.
  • the high contribution feature amount extraction unit 105 uses a random forest that is one of supervised machine learning, extracts a first feature amount based on the normal signal and the first signal, A second feature amount is extracted based on the signal and the second signal.
  • Random forest is a classification method using decision trees.
  • a plurality of training sets are created by restoration extraction from the input data, and each training set is classified by a decision tree.
  • the final classification is determined by majority vote for the classification result by the decision tree for each training set.
  • the vector reconstruction unit 106 reconstructs the first normal vector for each normal segment group based on the normal signal using the first feature amount extracted by the high-contribution feature amount extraction unit 105, and performs each first based on the first signal.
  • the first feature vector is reconstructed for the segment group
  • the second feature vector is used to reconstruct the second normal vector for each normal segment group based on the normal signal
  • the second feature vector is second for each second segment group based on the second signal. It is a processing unit for reconstructing a feature vector.
  • the high contribution feature amount extraction unit 105 extracts the top ten first feature amounts and second feature amounts having a high contribution degree from 378 feature amounts. Accordingly, the vector reconstruction unit 106 reconstructs the first normal vector and the first feature vector based on the ten first feature amounts, and constructs the second normal vector and the second feature vector based on the second feature amount. Yes.
  • the normal model learning unit 107 creates a first normal model and a second normal model by learning using the first normal vector and the second normal vector created by the vector reconstruction unit 106, respectively.
  • the normal model learning unit 107 generates a function for calculating the reference defect degree by fitting an unsupervised machine learning algorithm to the first normal vector and the second normal vector. ing. Specifically, a local authorial factor (hereinafter referred to as LOF) is employed.
  • LOF local authorial factor
  • the reference defect degree calculation unit 108 is a processing unit that calculates the first defect degree for the first normal model using the first feature vector and the second defect degree for the second normal model using the second feature vector. .
  • the comprehensive normal model creation unit 109 is a processing unit that creates a comprehensive normal model using the first defect degree and the second defect degree calculated by the reference defect degree calculation unit 108 as input vectors.
  • the general normal model creation unit 109 adopts the LOF similarly to the normal model learning unit 107.
  • the normal signal defect degree calculation unit 110 calculates a normal signal defect degree that is a defect degree of a normal signal from the overall normal model created by the overall normal model creation unit 109 using the first defect degree and the second defect degree as input vectors. Is a processing unit.
  • the defect detection threshold value setting unit 111 is a processing unit that sets a defect detection threshold value based on the normal signal defect degree. Specifically, for example, the defect detection threshold setting unit 111 sets an average of all normal signal defect degrees + 5 ⁇ standard deviation as the defect detection threshold.
  • the defect detection threshold setting unit 111 may set the defect detection threshold based on information from the outside, for example, information input by a person.
  • the evaluation information acquisition unit 152 is a processing unit that acquires an evaluation signal that is a measurement result of a state in which a shaft body supported by an evaluation bearing that is a rolling bearing of the same type as the normal bearing used in the model learning unit 101 is rotated. is there.
  • a measurement sensor of the same type as the measurement sensor used in the model learning unit 101 is used in an actual machine 300 such as an industrial machine in which the same type of rolling bearing as that of a normal bearing is used, and the same number as that of the measuring apparatus 200 is used. And a plurality of measurement sensors mounted in an arrangement are mounted in the vicinity of the evaluation bearing. Then, the evaluation information acquisition unit 152 acquires the signal recorded in the real machine recording device 306 as in the measurement device 200.
  • the evaluation dividing unit 153 divides the evaluation signal acquired by the evaluation information acquiring unit 152 into a plurality of segments with a predetermined time length that is the same as or substantially the same as that of the model learning unit 101. In the case of the present embodiment, the evaluation dividing unit 153 extracts frequency band information in the same or substantially the same frequency band as the dividing unit 103. Further, the evaluation division unit 153 performs frequency transformation information on each segment to create frequency domain information, and further performs Fourier transformation to create quefrency region information similarly to the division unit 103.
  • the evaluation division unit 153 may not create the corresponding information. Absent. Specifically, for example, when the first feature value or the second feature value does not include a feature value that is quefrency region information, the evaluation division unit 153 does not need to perform Fourier transform on the frequency region information. As a result, the processing time of the evaluation division unit 153 can be shortened.
  • the evaluation vector generation unit 154 uses the first evaluation vector and the second feature amount for each segment of the evaluation signal divided by the evaluation division unit 153, using the first feature amount obtained from the model learning unit 101. It is a process part which produces
  • the evaluation defect degree calculation unit 155 acquires the first normal model and the second normal model from the model learning unit 101, and uses the first evaluation vector created by the evaluation vector generation unit 154 to evaluate the first normal model of the evaluation signal. And a second evaluation defect degree for the second normal model of the evaluation signal using the second evaluation vector.
  • the evaluation signal defect degree calculation unit 156 uses the first evaluation defect degree and the second evaluation defect degree calculated by the evaluation defect degree calculation unit 155 as input vectors, and the defect of the evaluation signal from the general normal model acquired from the model learning unit 101 It is a processing unit for calculating an evaluation signal defect degree which is a degree.
  • the defect rate calculation unit 157 compares the evaluation signal defect degree calculated by the evaluation signal defect degree calculation unit 156 with the defect detection threshold acquired from the model learning unit 101, and the defect degree is defective among all the information included in the evaluation signal. It is a processing unit that calculates a ratio exceeding the detection threshold as a defect rate.
  • the determination unit 158 is a processing unit that determines that there is a defect in the evaluation bearing that is the rolling bearing that has acquired the evaluation signal when the defect rate calculated by the defect rate calculation unit 157 exceeds a predetermined defect rate threshold.
  • the detection unit 151 includes a notification unit 159.
  • the notification unit 159 is a processing unit that notifies the information.
  • the method of notification is not particularly limited, but it may be notified that there is a defect by transmitting information to sound, light, image, video, and other computers.
  • the defect detection accuracy is higher than that of the prior art even in adverse conditions such as a situation in which the operation status of the actual machine including the evaluation bearing varies and a situation in which vibration from other machines is transmitted.
  • the present invention is not limited to the above embodiment.
  • another embodiment realized by arbitrarily combining the components described in this specification and excluding some of the components may be used as an embodiment of the present invention.
  • the present invention includes modifications obtained by making various modifications conceivable by those skilled in the art without departing from the gist of the present invention, that is, the meaning of the words described in the claims. It is.
  • the defect detection system 100 including the model learning unit 101 and the detection unit 151 has been described.
  • the model learning unit 101 and the detection unit 151 are separate. It doesn't matter.
  • a defect model creation program 301 that causes the measurement computer 310 to execute each processing unit included in the model learning unit 101 and a defect detection program 312 that causes the evaluation computer 311 to execute each processing unit included in the detection unit 151 are used. Can be realized.
  • the measurement computer 310 and the evaluation computer 311 may directly exchange necessary information, and the measurement computer 310 may send a plurality of information to the server 313 as shown in FIG.
  • the information may be downloaded from the server 313 and the evaluation computer 311 may download information suitable for the rolling bearing to be evaluated.
  • the signals used by the model learning unit 101 are not limited to the normal signal, the first signal, and the second signal, and the third signal, the fourth signal, and the like that are different from each other in the defect state of the rolling bearing. You can use it.
  • the signal measured by the measurement sensor is not limited to vibration acceleration, and may be vibration displacement, vibration speed, or the like. Further, not only vibration but also sound may be measured and used as a signal.
  • the frequency band to be extracted may be arbitrarily selected, and the extracted frequency bands may overlap.
  • the frequency domain information may be used only for creating the quefrency domain information, and the feature quantity may not be included in the frequency domain.
  • each processing unit is described separately. However, if there is a module common to each processing unit, they may be shared.
  • the present invention is applicable to various machines equipped with rolling bearings.

Abstract

In the present invention, an evaluation signal which is a signal of a rolling bearing is divided into segments, a first evaluation vector is generated using a first feature value selected in advance and a second evaluation vector is generated using a second feature value for each segment, a first evaluated defect degree and a second evaluated defect degree for a first normal model are calculated, and a defect degree of the evaluation signal is calculated from an overall normal model using the first evaluated defect degree and the second evaluated defect degree as input vectors. The defect degree is furthermore compared with a threshold value, and the bearing is determined to be defective when a defect rate, which is the ratio at which the defect degree exceeds a defect detection threshold value from among all the information included in the evaluation signal, exceeds a predetermined defect rate threshold value.

Description

欠陥検出システム、欠陥モデル作成プログラム、および欠陥検出プログラムDefect detection system, defect model creation program, and defect detection program
 転がり軸受に支持される軸体を回転させた際に転がり軸受から発生する振動に基づき転がり軸受の欠陥を判定する転がり軸受の欠陥検出システム、転がり軸受の欠陥モデル作成プログラム、および、転がり軸受の欠陥検出プログラムに関する。 Rolling bearing defect detection system, rolling bearing defect model creation program, and rolling bearing defect, which determines a defect in the rolling bearing based on vibration generated from the rolling bearing when the shaft supported by the rolling bearing is rotated It relates to a detection program.
 転がり軸受は、軸周りに回転する軸体を支持するための機械要素である。具体的には、自動車、船舶、航空機等の移動体、工作機械や搬送機械などの産業機械、石油化学や発電などの大型プラントなど、転がり軸受が使用される分野は多岐にわたる。 Rolling bearings are mechanical elements for supporting a shaft that rotates around an axis. Specifically, there are a wide variety of fields in which rolling bearings are used, such as moving bodies such as automobiles, ships, and airplanes, industrial machines such as machine tools and conveyance machines, and large plants such as petrochemical and power generation.
 転がり軸受に欠陥が発生した場合、回転機械の精度や運転効率に影響を与えるだけでなく、欠陥が拡大していくと、機械自体にダメージを与える要因となりかねない。そのため、転がり軸受の欠陥を正確に検出することが課題となる。 When a defect occurs in a rolling bearing, it not only affects the accuracy and operating efficiency of the rotating machine, but if the defect expands, it may cause damage to the machine itself. Therefore, it becomes a subject to detect the defect of a rolling bearing correctly.
 例えば特許文献1には、転がり軸受を備えた回転器械の欠陥検出方法として、回転機械から得られる振動等の物理量の正常状態のモデルを作成し、新たに測定した物理量の正常状態からのかい離量により欠陥を判別する方法が開示されている。また特許文献2には、軸受の欠陥や軸の触れにより発生する特性周波数ピークの変化量により欠陥を特定する方法が開示されている。 For example, in Patent Document 1, as a defect detection method for a rotating machine equipped with a rolling bearing, a normal state model of a physical quantity such as vibration obtained from the rotating machine is created, and the newly measured physical quantity is separated from the normal state. A method for discriminating defects is disclosed. Patent Document 2 discloses a method for identifying a defect based on a change amount of a characteristic frequency peak caused by a bearing defect or a shaft touch.
特開2011-070635号公報JP 2011-070635 A 特開2013-030015号公報JP 2013-030015 A
 しかし、回転機械が備える転がり軸受の振動の測定結果には、運転状況や設置場所などに起因するノイズなども含まれているため、転がり軸受が正常な状態であっても測定された物理量はある程度変動する。従って、転がり軸受に発生する初期欠陥、つまり微小な欠陥が発生していても正常状態との区別が困難で、十分に検出することができない。 However, since the measurement results of the vibration of the rolling bearing provided in the rotating machine include noise caused by the operating conditions and the installation location, the measured physical quantity to some extent even when the rolling bearing is in a normal state. fluctuate. Therefore, even if an initial defect, that is, a minute defect, occurs in the rolling bearing, it is difficult to distinguish it from the normal state and cannot be sufficiently detected.
 本発明は、上記課題に鑑みなされたものであり、転がり軸受における微小な欠陥の発生を精度良く検出する転がり軸受の欠陥検出システム、転がり軸受の欠陥モデル作成プログラム、および、転がり軸受の欠陥検出プログラムの提供を目的とする。 The present invention has been made in view of the above problems, and includes a rolling bearing defect detection system, a rolling bearing defect model creation program, and a rolling bearing defect detection program that accurately detect the occurrence of minute defects in the rolling bearing. The purpose is to provide.
 上記目的を達成するために、本発明の1つである欠陥検出システムは、欠陥状態が既知の転がり軸受を用いてモデルを学習するモデル学習部と、学習したモデルを用いて転がり軸受の欠陥を検出する検出部とを備える転がり軸受の欠陥検出システムである。 In order to achieve the above object, a defect detection system according to one aspect of the present invention includes a model learning unit that learns a model using a rolling bearing whose defect state is known, and a defect in the rolling bearing using the learned model. It is a defect detection system of a rolling bearing provided with the detection part to detect.
 前記モデル学習部は、欠陥のない転がり軸受である正常軸受で支持された軸体を回転させた状態の測定結果である正常信号を取得し、比較的小さな欠陥を有する前記正常軸受と同種の転がり軸受である第一軸受で支持された軸体を回転させた状態の測定結果である第一信号を取得し、前記正常軸受と同種の転がり軸受であり前記第一軸受よりも大きな欠陥を有する第二軸受で支持された軸体を回転させた状態の測定結果である第二信号を取得する基準情報取得部と、前記正常信号、前記第一信号、および前記第二信号に基づく情報を所定の時間長さで複数のセグメントに分割する分割部と、前記正常信号、前記第一信号、および前記第二信号の各セグメントに対して、特徴量を算出して初期個数の初期特徴量からなる初期特徴ベクトルを作成する初期特徴ベクトル作成部と、作成された初期特徴ベクトルを用いて正常信号と第一信号、および正常信号と第二信号をそれぞれ教師有学習で分類し、第一信号を分類するに際し寄与度の高い特徴量である第一特徴量と、第二信号を分類するに際し寄与度の高い特徴量である第二特徴量を初期特徴量からそれぞれ抽出する高寄与特徴量抽出部と、前記第一特徴量を用いて前記正常信号に基づく第一正常ベクトルと、前記第一信号に基づく第一特徴ベクトルを再構成し、前記第二特徴量を用いて前記正常信号に基づく第二正常ベクトルと、前記第二信号に基づく第二特徴ベクトルを再構成するベクトル再構成部と、前記第一正常ベクトル、および前記第二正常ベクトルをそれぞれ用いて第一正常モデル、および第二正常モデルを学習により作成する正常モデル学習部と、前記第一特徴ベクトルを用いて前記第一正常モデルに対する第一欠陥度と、前記第二特徴ベクトルを用いて前記第二正常モデルに対する第二欠陥度とを算出する基準欠陥度算出部と、前記第一欠陥度、および前記第二欠陥度を入力ベクトルとして総合正常モデルを作成する総合正常モデル作成部と、前記第一欠陥度、および前記第二欠陥度を入力ベクトルとして、前記総合正常モデルから正常信号の欠陥度である正常信号欠陥度を算出する正常信号欠陥度算出部と、前記正常信号欠陥度に基づき欠陥検出閾値を設定する欠陥検出閾値設定部とを備える。 The model learning unit acquires a normal signal that is a measurement result in a state in which a shaft supported by a normal bearing that is a defect-free rolling bearing is rotated, and is the same type of rolling as the normal bearing having a relatively small defect. A first signal that is a measurement result in a state where the shaft body supported by the first bearing that is a bearing is rotated is acquired, and is a rolling bearing of the same type as the normal bearing and has a larger defect than the first bearing. A reference information acquisition unit that acquires a second signal that is a measurement result in a state in which a shaft supported by two bearings is rotated, and information based on the normal signal, the first signal, and the second signal A division unit that divides a plurality of segments by time length, and an initial value that includes an initial number of initial feature values by calculating a feature value for each segment of the normal signal, the first signal, and the second signal Create feature vector Classifying the normal signal and the first signal, and the normal signal and the second signal by supervised learning using the generated initial feature vector, and determining the contribution when classifying the first signal. A first feature amount that is a high feature amount, a high contribution feature amount extraction unit that extracts a second feature amount that is a feature amount having a high contribution in classifying the second signal from an initial feature amount, and the first feature A first normal vector based on the normal signal using a quantity, a first feature vector based on the first signal, and a second normal vector based on the normal signal using the second feature quantity, A vector reconstruction unit for reconstructing a second feature vector based on the second signal, and learning the first normal model and the second normal model using the first normal vector and the second normal vector, respectively. A normal model learning unit configured to calculate a first defect degree for the first normal model using the first feature vector, and a second defect degree for the second normal model using the second feature vector A reference defect degree calculation unit, an overall normal model creation unit that creates an overall normal model using the first defect degree and the second defect degree as input vectors, and the first defect degree and the second defect degree are input. As a vector, a normal signal defect degree calculation unit that calculates a normal signal defect degree that is a defect degree of a normal signal from the overall normal model, and a defect detection threshold setting unit that sets a defect detection threshold based on the normal signal defect degree Prepare.
 前記検出部は、前記正常軸受と同種の転がり軸受である評価軸受で支持された軸体を回転させた状態の測定結果である評価信号を取得する評価情報取得部と、前記評価信号を所定の時間長さで複数のセグメントに分割する評価分割部と、分割された前記評価信号の各セグメントに対し、前記第一特徴量を用いて第一評価ベクトル、および前記第二特徴量を用いて第二評価ベクトルを生成する評価ベクトル生成部と、前記第一評価ベクトルを用いて前記評価信号の前記第一正常モデルに対する第一評価欠陥度と、前記第二評価ベクトルを用いて前記評価信号の前記第二正常モデルに対する第二評価欠陥度とを算出する評価欠陥度算出部と、前記第一評価欠陥度、および前記第二評価欠陥度を入力ベクトルとして、前記総合正常モデルから評価信号の欠陥度である評価信号欠陥度を算出する評価信号欠陥度算出部と、前記評価信号欠陥度を前記欠陥検出閾値と比較し、評価信号に含まれる全情報のうち、欠陥度が欠陥検出閾値を超える割合を欠陥率として算出する欠陥率算出部と、前記欠陥率が所定の欠陥率閾値を超えた場合に評価信号を取得した転がり軸受に欠陥があると判断する判断部とを備える。 The detection unit includes an evaluation information acquisition unit that acquires an evaluation signal that is a measurement result of a state in which a shaft body supported by an evaluation bearing that is a rolling bearing of the same type as the normal bearing is rotated; An evaluation dividing unit that divides into a plurality of segments by time length, and a first evaluation vector using the first feature amount and a second feature amount for each segment of the divided evaluation signal An evaluation vector generation unit for generating two evaluation vectors, a first evaluation defect degree for the first normal model of the evaluation signal using the first evaluation vector, and the evaluation signal using the second evaluation vector An evaluation defect degree calculation unit for calculating a second evaluation defect degree with respect to the second normal model, the first evaluation defect degree, and the second evaluation defect degree as input vectors for evaluation from the general normal model The evaluation signal defect degree calculation unit that calculates the defect degree of the evaluation signal is compared with the defect detection threshold, and the defect degree is detected as a defect out of all the information included in the evaluation signal. A defect rate calculating unit that calculates a ratio exceeding the threshold as a defect rate; and a determination unit that determines that the rolling bearing that has obtained the evaluation signal has a defect when the defect rate exceeds a predetermined defect rate threshold.
 また、上記目的を達成するために、本発明の1つである欠陥モデル作成プログラムは、欠陥のない転がり軸受である正常軸受で支持された軸体を回転させた状態の測定結果である正常信号を取得し、比較的小さな欠陥を有する前記正常軸受と同種の転がり軸受である第一軸受で支持された軸体を回転させた状態の測定結果である第一信号を取得し、前記正常軸受と同種の転がり軸受であり前記第一軸受よりも大きな欠陥を有する第二軸受で支持された軸体を回転させた状態の測定結果である第二信号を取得する基準情報取得部と、前記正常信号、前記第一信号、および前記第二信号に基づく情報を所定の時間長さで複数のセグメントに分割する分割部と、前記正常信号、前記第一信号、および前記第二信号の各セグメントに対して、特徴量を算出して初期個数の初期特徴量からなる初期特徴ベクトルを作成する初期特徴ベクトル作成部と、作成された初期特徴ベクトルを用いて正常信号と第一信号、および正常信号と第二信号をそれぞれ教師有学習で分類し、第一信号を分類するに際し寄与度の高い特徴量である第一特徴量と、第二信号を分類するに際し寄与度の高い特徴量である第二特徴量を初期特徴量からそれぞれ抽出する高寄与特徴量抽出部と、前記第一特徴量を用いて前記正常信号に基づく第一正常ベクトルと、前記第一信号に基づく第一特徴ベクトルを再構成し、前記第二特徴量を用いて前記正常信号に基づく第二正常ベクトルと、前記第二信号に基づく第二特徴ベクトルを再構成するベクトル再構成部と、前記第一正常ベクトル、および前記第二正常ベクトルをそれぞれ用いて第一正常モデル、および第二正常モデルを学習により作成する正常モデル学習部と、前記第一特徴ベクトルを用いて前記第一正常モデルに対する第一欠陥度と、前記第二特徴ベクトルを用いて前記第二正常モデルに対する第二欠陥度とを算出する基準欠陥度算出部と、前記第一欠陥度、および前記第二欠陥度を入力ベクトルとして総合正常モデルを作成する総合正常モデル作成部と、前記第一欠陥度、および前記第二欠陥度を入力ベクトルとして、前記総合正常モデルから正常信号の欠陥度である正常信号欠陥度を算出する正常信号欠陥度算出部と、前記正常信号欠陥度に基づき欠陥検出閾値を設定する欠陥検出閾値設定部とを含み、各処理をコンピュータに実行させることにより上記各処理部を実現する。 In order to achieve the above object, a defect model creation program that is one of the present invention is a normal signal that is a measurement result in a state in which a shaft supported by a normal bearing that is a rolling bearing without a defect is rotated. To obtain a first signal that is a measurement result of a state in which a shaft body supported by a first bearing that is a rolling bearing of the same type as the normal bearing having a relatively small defect is rotated, and the normal bearing A reference information acquisition unit that acquires a second signal that is a measurement result of a state in which a shaft body supported by a second bearing that is a rolling bearing of the same type and has a larger defect than the first bearing is rotated, and the normal signal A division unit that divides information based on the first signal and the second signal into a plurality of segments with a predetermined time length; and for each segment of the normal signal, the first signal, and the second signal Feature quantity An initial feature vector creation unit that creates an initial feature vector composed of an initial number of initial feature quantities by calculation, and uses the created initial feature vector to teach the normal signal and the first signal, and the normal signal and the second signal, respectively. The initial feature value is the first feature value, which is a feature value with a high contribution when classifying the first signal, and the second feature value with a high contribution value when the second signal is classified. A high-contribution feature amount extraction unit that respectively extracts the first feature vector, the first normal vector based on the normal signal using the first feature amount, and the first feature vector based on the first signal, and the second feature A second normal vector based on the normal signal using a quantity, a vector reconstruction unit for reconstructing a second feature vector based on the second signal, the first normal vector, and the second normal vector. A normal model learning unit that uses the first feature vector to create a first normal model and a second normal model by learning; a first defect degree for the first normal model using the first feature vector; and the second feature vector. A reference defect degree calculation unit that calculates a second defect degree with respect to the second normal model using, and an overall normal model creation part that creates an overall normal model using the first defect degree and the second defect degree as input vectors A normal signal defect degree calculation unit that calculates a normal signal defect degree that is a defect degree of a normal signal from the overall normal model using the first defect degree and the second defect degree as input vectors; and the normal signal defect And a defect detection threshold value setting unit that sets a defect detection threshold value based on the degree, and each processing unit is realized by causing the computer to execute each process.
 また、上記目的を達成するために、本発明の1つである欠陥検出プログラムは、上記の欠陥モデル作成プログラムにより作成された欠陥モデルを用いて転がり軸受の欠陥を検出する欠陥検出プログラムであって、測定対象の転がり軸受である評価軸受で支持された軸体を回転させた状態の測定結果である評価信号を取得する評価情報取得部と、前記評価信号を所定の時間長さで複数のセグメントに分割する評価分割部と、分割された前記評価信号の各セグメントに対し、前記第一特徴量を用いて第一評価ベクトル、および前記第二特徴量を用いて第二評価ベクトルを生成する評価ベクトル生成部と、前記第一評価ベクトルを用いて前記評価信号の前記第一正常モデルに対する第一評価欠陥度と、前記第二評価ベクトルを用いて前記評価信号の前記第二正常モデルに対する第二評価欠陥度とを算出する評価欠陥度算出部と、前記第一評価欠陥度、および前記第二評価欠陥度を入力ベクトルとして、前記総合正常モデルから評価信号の欠陥度である評価信号欠陥度を算出する評価信号欠陥度算出部と、前記評価信号欠陥度を前記欠陥検出閾値と比較し、評価信号に含まれる全情報のうち、欠陥度が欠陥検出閾値を超える割合を欠陥率として算出する欠陥率算出部と、前記欠陥率が所定の欠陥率閾値を超えた場合に評価信号を取得した転がり軸受に欠陥があると判断する判断部とを含み、各処理をコンピュータに実行させることにより上記各処理部を実現する。 In order to achieve the above object, a defect detection program according to one aspect of the present invention is a defect detection program for detecting a defect in a rolling bearing using a defect model created by the defect model creation program. An evaluation information acquisition unit that acquires an evaluation signal that is a measurement result in a state in which a shaft body supported by an evaluation bearing that is a rolling bearing to be measured is rotated; and a plurality of segments of the evaluation signal for a predetermined time length An evaluation dividing unit that divides the evaluation signal into two segments, and an evaluation that generates a first evaluation vector using the first feature amount and a second evaluation vector using the second feature amount for each segment of the divided evaluation signal A vector generation unit; a first evaluation defect degree of the evaluation signal with respect to the first normal model using the first evaluation vector; and the evaluation signal using the second evaluation vector. An evaluation defect degree calculation unit for calculating a second evaluation defect degree with respect to the second normal model, a defect of an evaluation signal from the general normal model, with the first evaluation defect degree and the second evaluation defect degree as input vectors An evaluation signal defect degree calculation unit that calculates an evaluation signal defect degree that is a degree, and the evaluation signal defect degree is compared with the defect detection threshold value, and the defect degree exceeds the defect detection threshold value among all information included in the evaluation signal A defect rate calculation unit that calculates a ratio as a defect rate, and a determination unit that determines that the rolling bearing that has obtained the evaluation signal has a defect when the defect rate exceeds a predetermined defect rate threshold, and performs each process. The above processing units are realized by causing the computer to execute them.
 これらによれば、転がり軸受の欠陥検出精度を向上させることが可能となる。なお、前記プログラムが記録された記録媒体を実施することも本発明の実施に該当する。 According to these, it becomes possible to improve the defect detection accuracy of the rolling bearing. Note that the execution of the recording medium in which the program is recorded also corresponds to the implementation of the present invention.
 本発明によれば、例えば従来技術よりも軽微な欠陥を検出することが可能になるなど欠陥検出精度を向上させることが可能である。 According to the present invention, it is possible to improve the defect detection accuracy, for example, by making it possible to detect defects that are lighter than those of the prior art.
本実施の形態に係る測定装置の概略を示す図である。It is a figure which shows the outline of the measuring apparatus which concerns on this Embodiment. 本実施の形態に係る欠陥検出システムの機能構成を示すブロック図である。It is a block diagram which shows the function structure of the defect detection system which concerns on this Embodiment. 本実施の形態に係る分割部の分割状態を模式的に示す図である。It is a figure which shows typically the division | segmentation state of the division part which concerns on this Embodiment. モデル学習部と検出部とが別体になった場合を示す図である。It is a figure which shows the case where a model learning part and a detection part become a different body.
 次に、本発明に係る転がり軸受の欠陥検出システム、転がり軸受の欠陥モデル作成プログラム、および、転がり軸受の欠陥検出プログラムの実施の形態について、図面を参照しつつ説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Next, embodiments of a rolling bearing defect detection system, a rolling bearing defect model creation program, and a rolling bearing defect detection program according to the present invention will be described with reference to the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 また、図面は、本発明を示すために適宜強調や省略、比率の調整を行った模式的な図となっており、実際の形状や位置関係、比率とは異なる場合がある。 Also, the drawings are schematic diagrams in which emphasis, omission, and ratio adjustment are performed as appropriate to show the present invention, and may differ from actual shapes, positional relationships, and ratios.
 図1は、測定装置の概略を示す図であり、(a)部に示す図は測定装置の正面図、(b)部に示す図は(a)部に対応する断面側面図である。 FIG. 1 is a diagram showing an outline of a measuring device, in which a diagram shown in part (a) is a front view of the measuring device, and a diagram shown in part (b) is a sectional side view corresponding to the part (a).
 同図に示すように、測定装置200は、基体205と、軸体201と、測定対象の転がり軸受である対象軸受210と、駆動装置202と、錘203と、付勢部材204と、測定センサ(後述)と、記録装置206を備えている。なお本実施の形態の場合、測定装置200は、軸体201を対象軸受210と、欠陥のないことが保証された補助軸受211とで支持する構造が採用されている。 As shown in the figure, a measuring apparatus 200 includes a base body 205, a shaft body 201, a target bearing 210 that is a rolling bearing to be measured, a driving device 202, a weight 203, a biasing member 204, and a measurement sensor. (Described later) and a recording device 206. In the case of the present embodiment, the measuring apparatus 200 employs a structure in which the shaft body 201 is supported by the target bearing 210 and the auxiliary bearing 211 that is guaranteed not to be defective.
 基体205は、測定装置200の構造的基礎となる部材であり、軸体201を回転可能に保持する部材である。 The base body 205 is a member that is a structural basis of the measuring apparatus 200, and is a member that rotatably holds the shaft body 201.
 軸体201は、対象軸受210等を介して基体205に回転可能に保持される棒状の部材である。軸体201は、対象軸受210の内輪に適合する形状であれば、材質や長さなど特に限定されるものでは無いが、対象軸受210の実際の使用態様にできる限り合致させることが好ましい。 The shaft body 201 is a rod-like member that is rotatably held by the base body 205 via the target bearing 210 or the like. The shaft body 201 is not particularly limited in material and length as long as it has a shape that fits the inner ring of the target bearing 210, but it is preferable to match the actual usage of the target bearing 210 as much as possible.
 対象軸受210は、測定対象の転がり軸受である。対象軸受210は、転がり軸受であれば大きさや種類など特に限定されるものでは無いが、本実施の形態の場合は、対象軸受210は、アンギュラ玉軸受である。また、対象軸受210としては、欠陥のない転がり軸受である正常軸受と、比較的小さな欠陥を有する転がり軸受である第一軸受と、前記第一軸受よりも大きな欠陥を有する第二軸受が準備されており、測定装置200は、対象軸受210として同一種類の転がり軸受であって異なる欠陥状態の転がり軸受を交換して使用することができるものとなっている。 The target bearing 210 is a rolling bearing to be measured. The target bearing 210 is not particularly limited as long as it is a rolling bearing, but in the case of the present embodiment, the target bearing 210 is an angular ball bearing. Further, as the target bearing 210, a normal bearing which is a rolling bearing having no defect, a first bearing which is a rolling bearing having a relatively small defect, and a second bearing having a defect larger than the first bearing are prepared. In the measuring apparatus 200, the same type of rolling bearing can be used as the target bearing 210, and the rolling bearings in different defective states can be exchanged and used.
 正常軸受は、未使用の転がり軸受であって、製品検査により傷などがないと認められる軸受である。第一軸受は、荷重負荷時に対象軸受210の玉と外輪軌道面に生じる楕円状の接触部の短軸半径をbとした場合、例えばその2倍の2bの直径の円筒穴を外輪の内周面に設けた軸受である。第二軸受は、例えば従来の欠陥検出方法である特性周波数ピークの変化量により欠陥を特定する方法でも検出可能な直径の円筒穴を外輪の内周に設けた軸受である。本実施の形態の場合、第二軸受に設けた円筒穴の直径は6bである。なお、穴は放電加工により設けた。 Normal bearings are unused rolling bearings that are recognized as having no scratches by product inspection. When the short axis radius of the elliptical contact portion generated on the ball of the target bearing 210 and the outer ring raceway surface is defined as b when the load is applied, the first bearing has, for example, a cylindrical hole with a diameter of 2b that is twice that of the inner circumference of the outer ring. It is a bearing provided on the surface. The second bearing is, for example, a bearing in which a cylindrical hole having a diameter that can be detected by a method of specifying a defect by a change amount of a characteristic frequency peak, which is a conventional defect detection method, is provided on the inner periphery of the outer ring. In the present embodiment, the diameter of the cylindrical hole provided in the second bearing is 6b. The holes were formed by electric discharge machining.
 ここで、本明細書、および請求の範囲内で用いている「欠陥」とは、上記の様に人為的に設けた穴、溝、傷等を含み、さらに、軸受を使用したことによる発生する疲労はく離および疲労損傷、潤滑油劣化、シール不具合による面荒れなどを含む文言である。 Here, “defects” used in the present specification and claims include holes, grooves, scratches and the like that are artificially provided as described above, and are further generated by using a bearing. The term includes fatigue peeling and fatigue damage, lubricant deterioration, and surface roughness due to seal failure.
 補助軸受211は、本実施の形態の場合、軸体201を安定して回転させるために備えられるものであり、正常軸受と同じ状態の軸受が採用されている。 In the case of the present embodiment, the auxiliary bearing 211 is provided to stably rotate the shaft body 201, and a bearing in the same state as a normal bearing is employed.
 駆動装置202は、軸体201を回転駆動させる装置である。駆動装置202の種類などは特に限定されるものでは無いが、本実施の形態の場合、動力源であるモータの振動ができる限り軸体201などに伝わらないように基体205と切り離された場所に固定されるモータ(図示せず)からベルトを介して駆動装置202は動力を得ている。また、駆動装置202は、軸体201と防振部材を備えた継手により接続されている。 The drive device 202 is a device that drives the shaft body 201 to rotate. The type of the driving device 202 is not particularly limited, but in the case of the present embodiment, the drive device 202 is separated from the base body 205 so that the vibration of the motor as a power source is not transmitted to the shaft body 201 as much as possible. The driving device 202 receives power from a fixed motor (not shown) via a belt. The driving device 202 is connected to the shaft body 201 by a joint provided with a vibration isolating member.
 錘203は、放射方向の一つであって鉛直下向きの負荷を軸体201にかける部材である。錘203の重さは、評価すべき転がり軸受の使用態様に近づけることが好ましい。 The weight 203 is a member that applies a vertically downward load to the shaft body 201 in one of the radial directions. The weight of the weight 203 is preferably close to the usage of the rolling bearing to be evaluated.
 付勢部材204は、軸体201に対し軸方向に負荷をかける部材である。付勢部材204の種類は特に限定されるものでは無いが、本実施の形態の場合、板バネが採用されている。付勢部材204が軸体201に与える負荷は、錘203と同様であり、評価すべき転がり軸受の使用態様に近づけることが好ましい。 The urging member 204 is a member that applies a load to the shaft body 201 in the axial direction. The type of the urging member 204 is not particularly limited, but in the case of the present embodiment, a leaf spring is employed. The load applied to the shaft body 201 by the urging member 204 is the same as that of the weight 203, and is preferably close to the usage mode of the rolling bearing to be evaluated.
 測定センサは、特に限定されるものではなく、音を測定するセンサなどでもかまわないが、本実施の形態の場合、測定センサは、軸体201の回転により対象軸受210に起因する振動(振動加速度)を測定するセンサである。ただし、対象軸受210に測定センサを直接取り付けることは、一般的に困難であると考えられるため、本実施の形態の場合、振動センサは基体205に取り付けられており、対象軸受210の振動ばかりでなく、他の要因により発生する振動も測定する。 The measurement sensor is not particularly limited and may be a sensor that measures sound, but in the case of the present embodiment, the measurement sensor is vibration (vibration acceleration) caused by rotation of the shaft body 201 due to the target bearing 210. ). However, since it is generally considered difficult to attach the measurement sensor directly to the target bearing 210, in the case of the present embodiment, the vibration sensor is attached to the base body 205, and only the vibration of the target bearing 210 is detected. Also measure vibrations caused by other factors.
 測定センサの種類は、特に限定されるものでは無く、転がり軸受の欠陥を検出するために用いられるセンサと同種のセンサを採用することが好ましい。本実施の形態の場合、測定センサは一軸方向の振動加速度を測定するセンサが採用されている。また、測定センサを測定装置200に取り付ける個数、場所も限定されるものではないが、本実施の形態の場合、軸体201の軸方向に対する放射方向であって錘203により軸体201に加えられる負荷の方向(図1中Z方向)の振動を測定する第一センサ221と、放射方向であって第一センサ221が測定する振動の方向と直交する方向であって、水平面内であり装置外部からの拘束力が弱い方向の振動を測定する第二センサ222と、軸体201の軸方向の振動を取得する第三センサ223とを備えている。 The type of the measurement sensor is not particularly limited, and it is preferable to employ the same type of sensor as that used to detect a defect in the rolling bearing. In the case of the present embodiment, a sensor that measures vibration acceleration in a uniaxial direction is employed as the measurement sensor. The number and location of the measurement sensors attached to the measuring apparatus 200 are not limited, but in the case of the present embodiment, the radial direction is the axial direction of the shaft body 201 and is added to the shaft body 201 by the weight 203. A first sensor 221 that measures vibration in the direction of the load (Z direction in FIG. 1), and a direction that is in the radial direction and perpendicular to the direction of vibration that is measured by the first sensor 221 and that is in the horizontal plane and outside the device A second sensor 222 that measures vibration in a direction in which the restraining force from the shaft is weak, and a third sensor 223 that acquires vibration in the axial direction of the shaft body 201.
 このように、対象軸受210をほぼ中心とした三次元方向の振動を測定することで転がり軸受の欠陥の検出精度を向上させることが可能となる。特に、軸体201に対する放射方向で水平面内にあり装置外部からの拘束力が弱い方向の振動を測定することにより、従来の方法では検出できないような微小な欠陥の検出精度も向上させることができる。 As described above, it is possible to improve the detection accuracy of the defect of the rolling bearing by measuring the vibration in the three-dimensional direction about the target bearing 210. In particular, by measuring the vibration in a direction that is in the horizontal plane in the radial direction with respect to the shaft body 201 and in which the restraining force from the outside of the apparatus is weak, it is possible to improve the detection accuracy of minute defects that cannot be detected by the conventional method. .
 記録装置206は、測定センサからの信号を記録する装置である。本実施の形態の場合、第一センサ221、第二センサ222、第三センサ223からの信号を個別に記録している。具体的な記録方法としては、測定センサからのアナログ信号をサンプリング周波数50kHzでデジタル化し、信号を5~60秒程度の時間(本実施の形態の場合は20秒間)記録する。また、正常軸受、第一軸受、第二軸受に対し1回信号を取得するごとに軸受の組み換えを実施し、それぞれに対し11回信号を記録した。これにより対象軸受210の組み換えが信号に与える影響を抑制でき、欠陥の検出精度を向上させることができる。なお、軸体201の回転速度は、特に限定されるものでは無く、対象軸受210の種類などにより制限されるが、本実施の形態の場合、1000rpm以上、2000rpm以下の範囲から選定される回転速度で回転させた。 The recording device 206 is a device that records a signal from the measurement sensor. In this embodiment, signals from the first sensor 221, the second sensor 222, and the third sensor 223 are individually recorded. As a specific recording method, an analog signal from a measurement sensor is digitized at a sampling frequency of 50 kHz, and the signal is recorded for a time of about 5 to 60 seconds (20 seconds in this embodiment). In addition, every time a signal was acquired for the normal bearing, the first bearing, and the second bearing, the bearings were recombined, and the signal was recorded 11 times for each. Thereby, the influence which the recombination of the object bearing 210 has on a signal can be suppressed, and the detection accuracy of a defect can be improved. The rotational speed of the shaft body 201 is not particularly limited, and is limited by the type of the target bearing 210. In the present embodiment, the rotational speed selected from a range of 1000 rpm to 2000 rpm. It was rotated with.
 次に欠陥検出システムの構成について説明する。図2は、欠陥検出システムの機能構成を示すブロック図である。 Next, the configuration of the defect detection system will be described. FIG. 2 is a block diagram illustrating a functional configuration of the defect detection system.
 欠陥検出システム100は、上述の測定装置200などを用いて測定した欠陥状態が既知の転がり軸受の信号を用いてモデルを学習するモデル学習部101と、モデル学習部101によって学習したモデルを用いて欠陥状態が未知の転がり軸受の信号から欠陥の有無を検出する検出部151とを備えるシステムであって、モデル学習部101は、基準情報取得部102と、分割部103と、初期特徴ベクトル作成部104と、高寄与特徴量抽出部105と、ベクトル再構成部106と、正常モデル学習部107と、基準欠陥度算出部108と、総合正常モデル作成部109と、正常信号欠陥度算出部110と、欠陥検出閾値設定部111とを備え、検出部151は、評価情報取得部152と、評価分割部153と、評価ベクトル生成部154と、評価欠陥度算出部155と、評価信号欠陥度算出部156と、欠陥率算出部157と、判断部158とを備えている。 The defect detection system 100 uses a model learning unit 101 that learns a model using a signal of a rolling bearing whose defect state is known measured using the above-described measuring apparatus 200 and the like, and a model learned by the model learning unit 101. A model learning unit 101 includes a reference information acquisition unit 102, a division unit 103, and an initial feature vector generation unit. The detection unit 151 detects the presence or absence of a defect from a rolling bearing signal whose defect state is unknown. 104, a high contribution feature amount extraction unit 105, a vector reconstruction unit 106, a normal model learning unit 107, a reference defect degree calculation unit 108, an overall normal model creation unit 109, and a normal signal defect degree calculation unit 110 A defect detection threshold value setting unit 111, and the detection unit 151 includes an evaluation information acquisition unit 152, an evaluation division unit 153, and an evaluation vector generation unit 15. If, evaluation defect calculation unit 155, an evaluation signal defect calculation unit 156, and a defect rate calculation unit 157, a determining unit 158.
 基準情報取得部102は、測定装置200の記録装置206から信号を取得する処理部である。信号の一つは、対象軸受210が欠陥のない正常軸受であった場合の信号としての正常信号である。また信号の他の一つは、対象軸受210が比較的小さな欠陥である小径の穴が人為的に設けられた正常軸受と同種の転がり軸受である第一軸受であった場合の信号としての第一信号である。また信号の他の一つは、対象軸受210が、正常軸受と同種の転がり軸受であり第一軸受よりも大きな欠陥である矩形の穴が人為的に設けられた第二軸受であった場合の信号としての第二信号である。 The reference information acquisition unit 102 is a processing unit that acquires a signal from the recording device 206 of the measurement device 200. One of the signals is a normal signal as a signal when the target bearing 210 is a normal bearing without a defect. The other one of the signals is the first signal as a signal when the target bearing 210 is a first bearing that is a rolling bearing of the same type as a normal bearing in which a small-diameter hole that is a relatively small defect is artificially provided. One signal. The other one of the signals is when the target bearing 210 is a rolling bearing of the same kind as a normal bearing and a second bearing in which a rectangular hole that is a larger defect than the first bearing is artificially provided. It is the 2nd signal as a signal.
 図3は、分割部の分割状態を模式的に示す図である。 FIG. 3 is a diagram schematically showing the division state of the division unit.
 同図に示すように、分割部103は、基準情報取得部102が取得した正常信号、第一信号、および第二信号をそれぞれ所定の時間長さで分割し、正常セグメント群、第一セグメント群、第二セグメント群を生成する処理部である。図中の文字に重なっている縦線は、分割後であることを示している。分割部103が信号を分割する所定の時間長さは特に限定されるものでは無いが、少なくとも軸体201が複数回回転する程度の時間長さ以上に設定する。本実施の形態の場合、信号はそれぞれ軸体201の5回転分の時間長さで複数のセグメントに分割した。 As shown in the figure, the dividing unit 103 divides the normal signal, the first signal, and the second signal acquired by the reference information acquisition unit 102 by a predetermined time length, respectively, so that a normal segment group and a first segment group are obtained. And a processing unit for generating a second segment group. A vertical line overlapping the character in the figure indicates that it is after division. The predetermined time length for dividing the signal by the dividing unit 103 is not particularly limited, but is set to be at least a time length enough for the shaft body 201 to rotate a plurality of times. In the case of the present embodiment, each signal is divided into a plurality of segments with a time length corresponding to five rotations of the shaft body 201.
 本実施の形態の場合、分割部103は、正常セグメント群、第一セグメント群、および第二セグメント群に対してバンドパスフィルタを適用して複数の周波数帯域を抽出し新しい情を生成している。分割部103が抽出する周波数帯域幅や抽出数は特に限定されるものでは無いが、本実施の形態の場合、20Hz以上200Hz以下(周波数帯域01)、1000Hz以上5000Hz以下(周波数帯域02)、5000Hz以上20000Hz以下(周波数帯域03)の3種類を抽出している。なお、バンドパスフィルタを適用していない生データについても初期特徴ベクトルを作成しているため、本実施の形態では4つの周波数帯域幅のセグメントが作成されることになる。 In the present embodiment, the dividing unit 103 extracts a plurality of frequency bands by applying a band pass filter to the normal segment group, the first segment group, and the second segment group, and generates new information. . The frequency bandwidth and the number of extractions extracted by the dividing unit 103 are not particularly limited, but in the case of the present embodiment, 20 Hz to 200 Hz (frequency band 01), 1000 Hz to 5000 Hz (frequency band 02), and 5000 Hz. Three types of frequency of 20000 Hz or less (frequency band 03) are extracted. Since the initial feature vector is also created for raw data to which the bandpass filter is not applied, four frequency bandwidth segments are created in the present embodiment.
 本実施の形態の場合、分割部103は、抽出された新たな情報を含み時間領域情報である正常セグメント群、第一セグメント群、および第二セグメント群について、それぞれ高速フーリエ変換によりフーリエ変換を行い周波数領域情報を生成し、あらたに正常セグメント群、第一セグメント群、および第二セグメント群に含めている。さらに分割部103は、各セグメントの周波数領域情報をそれぞれ高速フーリエ変換によりフーリエ変換を行いケフレンシ領域情報を生成し、あらたに正常セグメント群、第一セグメント群、および第二セグメント群に含めている。 In the case of the present embodiment, the dividing unit 103 performs Fourier transform by fast Fourier transform on the normal segment group, the first segment group, and the second segment group that are the time domain information including the extracted new information. Frequency domain information is generated and newly included in the normal segment group, the first segment group, and the second segment group. Further, the dividing unit 103 performs Fourier transform on the frequency domain information of each segment by fast Fourier transform to generate quefrency region information, and newly includes it in the normal segment group, the first segment group, and the second segment group.
 以上、分割部103の演算処理により、正常セグメント群には、4種類の周波数帯域について分割されたセグメントと、これらフーリエ変換した周波数領域のセグメントと、さらにフーリエ変換したケフレンシ領域のセグメントが含まれ、12種類のセグメントが含まれることになる。また、正常セグメント群の元となる正常信号は、第一センサ221、第二センサ222、および第三センサ223から得られる信号が含まれ、分割部103はそれぞれのセンサからの情報を個別に処理するため、正常セグメント群には36種類のセグメントが含まれる。これは、第一セグメント群、第二セグメント群についても同様である。 As described above, the normal segment group includes the segment divided for the four types of frequency bands, the frequency domain segment that has undergone Fourier transform, and the segment of the quefrency domain that has undergone Fourier transform, as a result of the arithmetic processing of the division unit 103. Twelve types of segments are included. Moreover, the normal signal which becomes the origin of a normal segment group contains the signal obtained from the 1st sensor 221, the 2nd sensor 222, and the 3rd sensor 223, and the division | segmentation part 103 processes the information from each sensor separately. Therefore, the normal segment group includes 36 types of segments. The same applies to the first segment group and the second segment group.
 また、正常信号、第一信号、および第二信号にはそれぞれ第一センサ221からの信号、第二センサ222からの信号、および第三センサ223からの信号が含まれているため、それぞれに対して分割部103は上記分割をおこなう。 In addition, the normal signal, the first signal, and the second signal include the signal from the first sensor 221, the signal from the second sensor 222, and the signal from the third sensor 223, respectively. The dividing unit 103 performs the above division.
 初期特徴ベクトル作成部104は、分割部103が生成した正常セグメント群、第一セグメント群、第二セグメント群の各セグメントに対して、特徴量を算出し算出結果などに基づき初期個数の初期特徴量からなる初期特徴ベクトルを作成する。各セグメントから算出される特徴量の種類、および算出する個数は、特に限定されるものでは無く、例えば各種統計量などを選定して用いることができる。本実施の形態の場合、各セグメントから算出される特徴量としては、実効値、最大値、波高率、尖度、および歪度の5種類の統計量が選定されている。 The initial feature vector creation unit 104 calculates a feature amount for each segment of the normal segment group, the first segment group, and the second segment group generated by the dividing unit 103, and an initial number of initial feature amounts based on the calculation result Create an initial feature vector consisting of The type of feature quantity calculated from each segment and the number to be calculated are not particularly limited. For example, various statistics can be selected and used. In the case of the present embodiment, five types of statistics, which are an effective value, a maximum value, a crest factor, a kurtosis, and a skewness, are selected as feature amounts calculated from each segment.
 本実施の形態の場合、周波数領域の統計量は、各セグメントをエンベロープ処理した後にフーリエ変換をして得られた周波数領域の波形に対して算出する。またケフレンシ領域の統計量はエンベロープ処理後の周波数領域の情報に再度フーリエ変換をして得られたケフレンシ領域の波形に対して算出する。 In the case of the present embodiment, the frequency domain statistic is calculated with respect to the frequency domain waveform obtained by performing Fourier transform after envelope processing of each segment. Further, the statistic of the quefrency region is calculated with respect to the waveform of the quefrency region obtained by performing Fourier transform again on the frequency region information after the envelope processing.
 本実施の形態の初期特徴ベクトル作成部104が初期特徴ベクトルを作成するため初期特徴量は、第一センサ221、第二センサ222、および第三センサ223のいずれのセンサからの情報であるかの3種類、周波数帯域のいずれの情報であるかの4種類、時間領域情報、周波数領域情報、およびケフレンシ領域情報のいずれの情報であるかの3種類、統計量として算出した特徴量がいずれかであるかの5種を含み、初期特徴量の数である初期個数は180個となる。つまり、本実施の形態の場合、初期特徴ベクトル作成部104は、180個の特徴量からなる初期特徴ベクトルを作成する。 Since the initial feature vector creation unit 104 of the present embodiment creates the initial feature vector, the initial feature amount is information from any of the first sensor 221, the second sensor 222, and the third sensor 223. 3 types, 4 types of information in frequency band, 3 types of information in time domain information, frequency domain information, and quefrency region information, and feature quantity calculated as statistic The initial number that is the number of the initial feature amounts is 180 including five types. That is, in the case of this embodiment, the initial feature vector creation unit 104 creates an initial feature vector composed of 180 feature amounts.
 なお、初期特徴ベクトルは、取得した信号全てに対して作成するのではなく、正常信号、第一信号、および第二信号の各セグメントについてそれぞれ複数個をランダムに選択してもかまわない。 It should be noted that the initial feature vector is not created for all the acquired signals, but a plurality of initial feature vectors may be selected at random for each segment of the normal signal, the first signal, and the second signal.
 高寄与特徴量抽出部105は、作成された初期特徴ベクトルを用いて正常信号と第一信号、および正常信号と第二信号をそれぞれ教師有学習で分類し、第一信号を分類するに際し寄与度の高い特徴量である第一特徴量と、第二信号を分類するに際し寄与度の高い特徴量である第二特徴量を初期特徴量からそれぞれ抽出する処理部である。 The high contribution feature amount extraction unit 105 classifies the normal signal and the first signal, and the normal signal and the second signal by supervised learning using the created initial feature vector, and contributes to classify the first signal. A first feature amount that is a high feature amount and a second feature amount that is a feature amount having a high contribution in classifying the second signal, respectively, from the initial feature amount.
 寄与度の高い特徴量を抽出する方法は、特に限定されるものでは無いが、教師有の機械学習により各特徴量の寄与度を第一信号、および第二信号のそれぞれについて算出し、寄与度の上位から所定個数(例えば10個)抽出などすればよい。 The method for extracting feature amounts having a high contribution is not particularly limited, but the contribution of each feature is calculated for each of the first signal and the second signal by supervised machine learning, and the contribution is calculated. What is necessary is just to extract a predetermined number (for example, 10 pieces) from the upper rank of.
 本実施の形態の場合、高寄与特徴量抽出部105は、教師有の機械学習の一つであるランダムフォレストを用い、正常信号と第一信号とに基づいて第一特徴量を抽出し、正常信号と第二信号とに基づいて第二特徴量を抽出している。 In the case of the present embodiment, the high contribution feature amount extraction unit 105 uses a random forest that is one of supervised machine learning, extracts a first feature amount based on the normal signal and the first signal, A second feature amount is extracted based on the signal and the second signal.
 ランダムフォレストは決定木を利用した分類手法である。入力データから復元抽出により複数の訓練集合を作成し、各訓練集合に対し、決定木による分類を行う。各訓練集合に対する決定木による分類結果について、多数決により最終的な分類を決定する。 Random forest is a classification method using decision trees. A plurality of training sets are created by restoration extraction from the input data, and each training set is classified by a decision tree. The final classification is determined by majority vote for the classification result by the decision tree for each training set.
 ベクトル再構成部106は、高寄与特徴量抽出部105が抽出した第一特徴量を用いて正常信号に基づく各正常セグメント群について第一正常ベクトルを再構成し、第一信号に基づく各第一セグメント群について第一特徴ベクトルを再構成し、第二特徴量を用いて正常信号に基づく各正常セグメント群について第二正常ベクトルを再構成し、第二信号に基づく各第二セグメント群について第二特徴ベクトルを再構成する処理部である。 The vector reconstruction unit 106 reconstructs the first normal vector for each normal segment group based on the normal signal using the first feature amount extracted by the high-contribution feature amount extraction unit 105, and performs each first based on the first signal. The first feature vector is reconstructed for the segment group, the second feature vector is used to reconstruct the second normal vector for each normal segment group based on the normal signal, and the second feature vector is second for each second segment group based on the second signal. It is a processing unit for reconstructing a feature vector.
 本実施の形態の場合、高寄与特徴量抽出部105で378個の特徴量から寄与度の高い上位10個の第一特徴量、および第二特徴量を抽出している。従ってベクトル再構成部106は、10個の第一特徴量に基づき第一正常ベクトル、第一特徴ベクトルを再構成し、第二特徴量に基づき第二正常ベクトル、第二特徴ベクトルを構成している。 In the case of this embodiment, the high contribution feature amount extraction unit 105 extracts the top ten first feature amounts and second feature amounts having a high contribution degree from 378 feature amounts. Accordingly, the vector reconstruction unit 106 reconstructs the first normal vector and the first feature vector based on the ten first feature amounts, and constructs the second normal vector and the second feature vector based on the second feature amount. Yes.
 正常モデル学習部107は、ベクトル再構成部106が作成した第一正常ベクトル、および第二正常ベクトルをそれぞれ用いて第一正常モデル、および第二正常モデルを学習により作成する。 The normal model learning unit 107 creates a first normal model and a second normal model by learning using the first normal vector and the second normal vector created by the vector reconstruction unit 106, respectively.
 本実施の形態の場合、正常モデル学習部107は、教師なし機械学習のアルゴリズムを第一正常ベクトル、および第二正常ベクトルに対してフィットさせて、基準欠陥度を算出するための関数を作成している。具体的には、Local Outlier Factor(以下LOFと記す)を採用している。 In the case of the present embodiment, the normal model learning unit 107 generates a function for calculating the reference defect degree by fitting an unsupervised machine learning algorithm to the first normal vector and the second normal vector. ing. Specifically, a local authorial factor (hereinafter referred to as LOF) is employed.
 基準欠陥度算出部108は、第一特徴ベクトルを用いて第一正常モデルに対する第一欠陥度と、第二特徴ベクトルを用いて第二正常モデルに対する第二欠陥度とを算出する処理部である。 The reference defect degree calculation unit 108 is a processing unit that calculates the first defect degree for the first normal model using the first feature vector and the second defect degree for the second normal model using the second feature vector. .
 総合正常モデル作成部109は、基準欠陥度算出部108が算出した第一欠陥度、および第二欠陥度を入力ベクトルとして総合正常モデルを作成する処理部である。 The comprehensive normal model creation unit 109 is a processing unit that creates a comprehensive normal model using the first defect degree and the second defect degree calculated by the reference defect degree calculation unit 108 as input vectors.
 本実施の形態の場合、総合正常モデル作成部109は、正常モデル学習部107と同様LOFを採用している。 In the case of the present embodiment, the general normal model creation unit 109 adopts the LOF similarly to the normal model learning unit 107.
 正常信号欠陥度算出部110は、第一欠陥度、および第二欠陥度を入力ベクトルとして、総合正常モデル作成部109が作成した総合正常モデルから正常信号の欠陥度である正常信号欠陥度を算出する処理部である。 The normal signal defect degree calculation unit 110 calculates a normal signal defect degree that is a defect degree of a normal signal from the overall normal model created by the overall normal model creation unit 109 using the first defect degree and the second defect degree as input vectors. Is a processing unit.
 欠陥検出閾値設定部111は、正常信号欠陥度に基づき欠陥検出閾値を設定する処理部である。具体的に例えば、欠陥検出閾値設定部111は、全ての正常信号欠陥度の平均+5×標準偏差の値を欠陥検出閾値として設定する。 The defect detection threshold value setting unit 111 is a processing unit that sets a defect detection threshold value based on the normal signal defect degree. Specifically, for example, the defect detection threshold setting unit 111 sets an average of all normal signal defect degrees + 5 × standard deviation as the defect detection threshold.
 なお、欠陥検出閾値設定部111は、外部からの情報、例えば人が入力した情報に基づき欠陥検出閾値を設定してもかまわない。 The defect detection threshold setting unit 111 may set the defect detection threshold based on information from the outside, for example, information input by a person.
 評価情報取得部152は、モデル学習部101で使用された正常軸受と同種の転がり軸受である評価軸受で支持された軸体を回転させた状態の測定結果である評価信号を取得する処理部である。 The evaluation information acquisition unit 152 is a processing unit that acquires an evaluation signal that is a measurement result of a state in which a shaft body supported by an evaluation bearing that is a rolling bearing of the same type as the normal bearing used in the model learning unit 101 is rotated. is there.
 本実施の形態の場合、正常軸受と同種の転がり軸受が用いられている産業機械などの実機300にモデル学習部101で使用した測定センサと同種の測定センサを用い、測定装置200と同様の個数、および配置で取り付けられた複数の測定センサが評価軸受の近傍に取り付けられている。そして、評価情報取得部152は、測定装置200と同様に実機記録装置306に記録された信号を取得している。 In the case of the present embodiment, a measurement sensor of the same type as the measurement sensor used in the model learning unit 101 is used in an actual machine 300 such as an industrial machine in which the same type of rolling bearing as that of a normal bearing is used, and the same number as that of the measuring apparatus 200 is used. And a plurality of measurement sensors mounted in an arrangement are mounted in the vicinity of the evaluation bearing. Then, the evaluation information acquisition unit 152 acquires the signal recorded in the real machine recording device 306 as in the measurement device 200.
 評価分割部153は、評価情報取得部152が取得した評価信号をモデル学習部101と同じ、またはほぼ同じ所定の時間長さで複数のセグメントに分割する。本実施の形態の場合、評価分割部153は、分割部103と同じ、またはほぼ同じ周波数帯域で周波数帯域情報を抽出している。さらに、評価分割部153は、分割部103と同様に各セグメントに対しフーリエ変換を行って周波数領域情報を作成し、さらにフーリエ変換を行ってケフレンシ領域情報を作成する。 The evaluation dividing unit 153 divides the evaluation signal acquired by the evaluation information acquiring unit 152 into a plurality of segments with a predetermined time length that is the same as or substantially the same as that of the model learning unit 101. In the case of the present embodiment, the evaluation dividing unit 153 extracts frequency band information in the same or substantially the same frequency band as the dividing unit 103. Further, the evaluation division unit 153 performs frequency transformation information on each segment to create frequency domain information, and further performs Fourier transformation to create quefrency region information similarly to the division unit 103.
 なお、高寄与特徴量抽出部105で抽出された第一特徴量や第二特徴量に含まれていない特徴量に該当する場合、評価分割部153は、該当する情報を作成しなくてもかまわない。具体的に例えば、第一特徴量や第二特徴量にケフレンシ領域情報であるとの特徴量が含まれていない場合、評価分割部153は周波数領域情報に対しフーリエ変換を行う必要は無い。これにより評価分割部153の処理時間を短縮させることが可能となる。 Note that if the feature amount is not included in the first feature amount or the second feature amount extracted by the high contribution feature amount extraction unit 105, the evaluation division unit 153 may not create the corresponding information. Absent. Specifically, for example, when the first feature value or the second feature value does not include a feature value that is quefrency region information, the evaluation division unit 153 does not need to perform Fourier transform on the frequency region information. As a result, the processing time of the evaluation division unit 153 can be shortened.
 評価ベクトル生成部154は、評価分割部153により分割された評価信号の各セグメントに対し、モデル学習部101から入手した第一特徴量を用いて第一評価ベクトル、および第二特徴量を用いて第二評価ベクトルを生成する処理部である。第一特徴量、および第二特徴量は初期特徴量に比べて特徴量の数が少ないため、評価ベクトル生成部154は、短い時間で各評価ベクトルを生成することができる。 The evaluation vector generation unit 154 uses the first evaluation vector and the second feature amount for each segment of the evaluation signal divided by the evaluation division unit 153, using the first feature amount obtained from the model learning unit 101. It is a process part which produces | generates a 2nd evaluation vector. Since the first feature amount and the second feature amount have a smaller number of feature amounts than the initial feature amount, the evaluation vector generation unit 154 can generate each evaluation vector in a short time.
 評価欠陥度算出部155は、モデル学習部101から第一正常モデル、および第二正常モデルを取得し、評価ベクトル生成部154において作成された第一評価ベクトルを用いて評価信号の第一正常モデルに対する第一評価欠陥度と、前記第二評価ベクトルを用いて評価信号の第二正常モデルに対する第二評価欠陥度とを算出する処理部である。 The evaluation defect degree calculation unit 155 acquires the first normal model and the second normal model from the model learning unit 101, and uses the first evaluation vector created by the evaluation vector generation unit 154 to evaluate the first normal model of the evaluation signal. And a second evaluation defect degree for the second normal model of the evaluation signal using the second evaluation vector.
 評価信号欠陥度算出部156は、評価欠陥度算出部155が算出した第一評価欠陥度、および第二評価欠陥度を入力ベクトルとして、モデル学習部101から取得した総合正常モデルから評価信号の欠陥度である評価信号欠陥度を算出する処理部である。 The evaluation signal defect degree calculation unit 156 uses the first evaluation defect degree and the second evaluation defect degree calculated by the evaluation defect degree calculation unit 155 as input vectors, and the defect of the evaluation signal from the general normal model acquired from the model learning unit 101 It is a processing unit for calculating an evaluation signal defect degree which is a degree.
 欠陥率算出部157は、評価信号欠陥度算出部156が算出した評価信号欠陥度をモデル学習部101から取得した欠陥検出閾値と比較し、評価信号に含まれる全情報のうち、欠陥度が欠陥検出閾値を超える割合を欠陥率として算出する処理部である。 The defect rate calculation unit 157 compares the evaluation signal defect degree calculated by the evaluation signal defect degree calculation unit 156 with the defect detection threshold acquired from the model learning unit 101, and the defect degree is defective among all the information included in the evaluation signal. It is a processing unit that calculates a ratio exceeding the detection threshold as a defect rate.
 判断部158は、欠陥率算出部157が算出した欠陥率が所定の欠陥率閾値を超えた場合に評価信号を取得した転がり軸受である評価軸受に欠陥があると判断する処理部である。 The determination unit 158 is a processing unit that determines that there is a defect in the evaluation bearing that is the rolling bearing that has acquired the evaluation signal when the defect rate calculated by the defect rate calculation unit 157 exceeds a predetermined defect rate threshold.
 本実施の形態の場合、検出部151は、報知部159を備えている。報知部159は、判断部158が評価軸受に欠陥があると判断した場合、その情報を報知する処理部である。 In the case of the present embodiment, the detection unit 151 includes a notification unit 159. When the determination unit 158 determines that the evaluation bearing is defective, the notification unit 159 is a processing unit that notifies the information.
 報知の方法は特に限定されるものでは無いが、音、光、画像、映像、および他のコンピュータなどに情報を送信するなどにより欠陥がある旨を報知すれば良い。 The method of notification is not particularly limited, but it may be notified that there is a defect by transmitting information to sound, light, image, video, and other computers.
 上記の実施の形態によれば、評価軸受を備える実機の運転状況にばらつきがある状況、他の機械からの振動が伝達される状況など、悪条件化においても、従来技術に比べて欠陥検出精度を向上させることが可能であり、さらに従来技術よりも軽微な欠陥を検出することが可能になる。従って、実機において転がり軸受に発生した微小な欠陥の見過ごしによる周辺構造物への影響を軽減させることができる。これによれば、転がり軸受の周辺構造物に対する補修を回避することができるため、実機の稼働率を向上させることが可能になる。 According to the above-described embodiment, the defect detection accuracy is higher than that of the prior art even in adverse conditions such as a situation in which the operation status of the actual machine including the evaluation bearing varies and a situation in which vibration from other machines is transmitted. In addition, it is possible to detect defects that are lighter than those of the prior art. Therefore, it is possible to reduce the influence on the surrounding structure due to oversight of minute defects generated in the rolling bearing in the actual machine. According to this, since it is possible to avoid the repair of the peripheral structure of the rolling bearing, it is possible to improve the operating rate of the actual machine.
 なお、本発明は、上記実施の形態に限定されるものではない。例えば、本明細書において記載した構成要素を任意に組み合わせて、また、構成要素のいくつかを除外して実現される別の実施の形態を本発明の実施の形態としてもよい。また、上記実施の形態に対して本発明の主旨、すなわち、請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。 The present invention is not limited to the above embodiment. For example, another embodiment realized by arbitrarily combining the components described in this specification and excluding some of the components may be used as an embodiment of the present invention. In addition, the present invention includes modifications obtained by making various modifications conceivable by those skilled in the art without departing from the gist of the present invention, that is, the meaning of the words described in the claims. It is.
 例えば、本実施の形態ではモデル学習部101と検出部151とを備えた欠陥検出システム100について説明したが、図4に示すように、モデル学習部101と検出部151とは別体であってもかまわない。具体的には、測定用コンピュータ310にモデル学習部101が備える各処理部を実行させる欠陥モデル作成プログラム301と評価用コンピュータ311に検出部151が備える各処理部を実行させる欠陥検出プログラム312を用いることにより実現できる。 For example, in the present embodiment, the defect detection system 100 including the model learning unit 101 and the detection unit 151 has been described. However, as illustrated in FIG. 4, the model learning unit 101 and the detection unit 151 are separate. It doesn't matter. Specifically, a defect model creation program 301 that causes the measurement computer 310 to execute each processing unit included in the model learning unit 101 and a defect detection program 312 that causes the evaluation computer 311 to execute each processing unit included in the detection unit 151 are used. Can be realized.
 この場合、測定用コンピュータ310と評価用コンピュータ311とが直接通信することにより必要な情報を授受してもよく、また、図4に示すように、測定用コンピュータ310が複数の情報をサーバ313にアップロードしておき、評価用コンピュータ311は、評価対象の転がり軸受に適した情報をサーバ313からダウンロードしてもかまわない。 In this case, the measurement computer 310 and the evaluation computer 311 may directly exchange necessary information, and the measurement computer 310 may send a plurality of information to the server 313 as shown in FIG. The information may be downloaded from the server 313 and the evaluation computer 311 may download information suitable for the rolling bearing to be evaluated.
 また、モデル学習部101が用いる信号は、正常信号、第一信号、および第二信号に限定されるわけではなく、第三信号、第四信号など転がり軸受の欠陥状態が相互に異なる情報をさらに用いてもかまわない。 In addition, the signals used by the model learning unit 101 are not limited to the normal signal, the first signal, and the second signal, and the third signal, the fourth signal, and the like that are different from each other in the defect state of the rolling bearing. You can use it.
 また、測定センサにより測定される信号は、振動加速度に限定されるものではなく、振動の変位、振動の速度などでもかまわない。また、振動ばかりでなく、音などを測定して信号としてもよい。 Also, the signal measured by the measurement sensor is not limited to vibration acceleration, and may be vibration displacement, vibration speed, or the like. Further, not only vibration but also sound may be measured and used as a signal.
 また、抽出する周波数帯域も任意に選定してもよく、抽出した周波数帯域が重複してもかまわない。 Also, the frequency band to be extracted may be arbitrarily selected, and the extracted frequency bands may overlap.
 また、フーリエ変換を必ずしも実行する必要は無く、また、周波数領域情報はケフレンシ領域情報を作成することのみに用い、周波数領域であることを特徴量に含めなくてもかまわない。 Further, it is not always necessary to execute the Fourier transform, and the frequency domain information may be used only for creating the quefrency domain information, and the feature quantity may not be included in the frequency domain.
 また、図2において、各処理部を別個に記載しているが、各処理部に共通するモジュールなどがある場合は共有してもかまわない。 In FIG. 2, each processing unit is described separately. However, if there is a module common to each processing unit, they may be shared.
 本発明は、転がり軸受を備える各種機械に利用可能である。 The present invention is applicable to various machines equipped with rolling bearings.
100 欠陥検出システム
101 モデル学習部
102 基準情報取得部
103 分割部
104 初期特徴ベクトル作成部
105 高寄与特徴量抽出部
106 ベクトル再構成部
107 正常モデル学習部
108 基準欠陥度算出部
109 総合正常モデル作成部
110 正常信号欠陥度算出部
111 欠陥検出閾値設定部
151 検出部
152 評価情報取得部
153 評価分割部
154 評価ベクトル生成部
155 評価欠陥度算出部
156 評価信号欠陥度算出部
157 欠陥率算出部
158 判断部
159 報知部
200 測定装置
201 軸体
202 駆動装置
203 錘
204 付勢部材
205 基体
206 記録装置
210 対象軸受
211 補助軸受
221 第一センサ
222 第二センサ
223 第三センサ
300 実機
301 欠陥モデル作成プログラム
306 実機記録装置
310 測定用コンピュータ
311 評価用コンピュータ
312 欠陥検出プログラム
313 サーバ
DESCRIPTION OF SYMBOLS 100 Defect detection system 101 Model learning part 102 Reference | standard information acquisition part 103 Division | segmentation part 104 Initial feature vector preparation part 105 High contribution feature-value extraction part 106 Vector reconstruction part 107 Normal model learning part 108 Reference | standard defect degree calculation part 109 Comprehensive normal model preparation Unit 110 normal signal defect degree calculation unit 111 defect detection threshold setting unit 151 detection unit 152 evaluation information acquisition unit 153 evaluation division unit 154 evaluation vector generation unit 155 evaluation defect degree calculation unit 156 evaluation signal defect degree calculation unit 157 defect rate calculation unit 158 Determination unit 159 Notifying unit 200 Measuring device 201 Shaft body 202 Drive device 203 Weight 204 Biasing member 205 Base 206 Recording device 210 Target bearing 211 Auxiliary bearing 221 First sensor 222 Second sensor 223 Third sensor 300 Actual machine 301 Defect model creation program 306 Actual machine record Location 310 measuring computer 311 evaluation computer 312 defect detection program 313 server

Claims (10)

  1.  欠陥状態が既知の転がり軸受を用いてモデルを学習するモデル学習部と、学習したモデルを用いて転がり軸受の欠陥を検出する検出部とを備える転がり軸受の欠陥検出システムであって、
     前記モデル学習部は、
     欠陥のない転がり軸受である正常軸受で支持された軸体を回転させた状態の測定結果である正常信号を取得し、比較的小さな欠陥を有する前記正常軸受と同種の転がり軸受である第一軸受で支持された軸体を回転させた状態の測定結果である第一信号を取得し、前記正常軸受と同種の転がり軸受であり前記第一軸受よりも大きな欠陥を有する第二軸受で支持された軸体を回転させた状態の測定結果である第二信号を取得する基準情報取得部と、
     前記正常信号、前記第一信号、および前記第二信号に基づく情報を所定の時間長さで複数のセグメントに分割する分割部と、
     前記正常信号、前記第一信号、および前記第二信号の各セグメントに対して、特徴量を算出して初期個数の初期特徴量からなる初期特徴ベクトルを作成する初期特徴ベクトル作成部と、
     作成された初期特徴ベクトルを用いて正常信号と第一信号、および正常信号と第二信号をそれぞれ教師有学習で分類し、第一信号を分類するに際し寄与度の高い特徴量である第一特徴量と、第二信号を分類するに際し寄与度の高い特徴量である第二特徴量を初期特徴量からそれぞれ抽出する高寄与特徴量抽出部と、
     前記第一特徴量を用いて前記正常信号に基づく第一正常ベクトルと、前記第一信号に基づく第一特徴ベクトルを再構成し、前記第二特徴量を用いて前記正常信号に基づく第二正常ベクトルと、前記第二信号に基づく第二特徴ベクトルを再構成するベクトル再構成部と、
     前記第一正常ベクトル、および前記第二正常ベクトルをそれぞれ用いて第一正常モデル、および第二正常モデルを学習により作成する正常モデル学習部と、
     前記第一特徴ベクトルを用いて前記第一正常モデルに対する第一欠陥度と、前記第二特徴ベクトルを用いて前記第二正常モデルに対する第二欠陥度とを算出する基準欠陥度算出部と、
     前記第一欠陥度、および前記第二欠陥度を入力ベクトルとして総合正常モデルを作成する総合正常モデル作成部と、
     前記第一欠陥度、および前記第二欠陥度を入力ベクトルとして、前記総合正常モデルから正常信号の欠陥度である正常信号欠陥度を算出する正常信号欠陥度算出部と、
     前記正常信号欠陥度に基づき欠陥検出閾値を設定する欠陥検出閾値設定部とを備え、
     前記検出部は、
     前記正常軸受と同種の転がり軸受である評価軸受で支持された軸体を回転させた状態の測定結果である評価信号を取得する評価情報取得部と、
     前記評価信号を所定の時間長さで複数のセグメントに分割する評価分割部と、
     分割された前記評価信号の各セグメントに対し、前記第一特徴量を用いて第一評価ベクトル、および前記第二特徴量を用いて第二評価ベクトルを生成する評価ベクトル生成部と、
     前記第一評価ベクトルを用いて前記評価信号の前記第一正常モデルに対する第一評価欠陥度と、前記第二評価ベクトルを用いて前記評価信号の前記第二正常モデルに対する第二評価欠陥度とを算出する評価欠陥度算出部と、
     前記第一評価欠陥度、および前記第二評価欠陥度を入力ベクトルとして、前記総合正常モデルから評価信号の欠陥度である評価信号欠陥度を算出する評価信号欠陥度算出部と、
     前記評価信号欠陥度を前記欠陥検出閾値と比較し、評価信号に含まれる全情報のうち、欠陥度が欠陥検出閾値を超える割合を欠陥率として算出する欠陥率算出部と、
     前記欠陥率が所定の欠陥率閾値を超えた場合に評価信号を取得した転がり軸受に欠陥があると判断する判断部とを備える
    欠陥検出システム。
    A rolling bearing defect detection system comprising a model learning unit that learns a model using a rolling bearing whose defect state is known, and a detection unit that detects a defect of the rolling bearing using the learned model,
    The model learning unit
    A first bearing which is a rolling bearing of the same type as the normal bearing having a relatively small defect, which obtains a normal signal as a measurement result in a state in which the shaft body supported by the normal bearing which is a rolling bearing having no defect is rotated. The first signal, which is the measurement result of the state where the shaft body supported by the shaft is rotated, is acquired and is supported by a second bearing that is a rolling bearing of the same type as the normal bearing and has a larger defect than the first bearing. A reference information acquisition unit for acquiring a second signal that is a measurement result in a state where the shaft body is rotated;
    A division unit that divides information based on the normal signal, the first signal, and the second signal into a plurality of segments with a predetermined time length;
    An initial feature vector creating unit that creates a feature quantity for each segment of the normal signal, the first signal, and the second signal and creates an initial feature vector including an initial number of initial feature quantities;
    Using the created initial feature vector, the normal signal and the first signal, and the normal signal and the second signal are classified by supervised learning, respectively. A high-contribution feature quantity extraction unit that extracts a second feature quantity, which is a feature quantity having a high contribution in classifying the quantity and the second signal, from the initial feature quantity;
    Reconstructing a first normal vector based on the normal signal using the first feature quantity and a first feature vector based on the first signal, and a second normal vector based on the normal signal using the second feature quantity A vector and a vector reconstruction unit for reconstructing a second feature vector based on the second signal;
    A normal model learning unit that creates a first normal model and a second normal model by learning using the first normal vector and the second normal vector, respectively;
    A reference defect degree calculation unit that calculates a first defect degree for the first normal model using the first feature vector and a second defect degree for the second normal model using the second feature vector;
    An overall normal model creating unit that creates an overall normal model using the first defect degree and the second defect degree as input vectors;
    A normal signal defect degree calculation unit that calculates a normal signal defect degree that is a defect degree of a normal signal from the overall normal model, using the first defect degree and the second defect degree as input vectors;
    A defect detection threshold setting unit that sets a defect detection threshold based on the normal signal defect degree,
    The detector is
    An evaluation information acquisition unit that acquires an evaluation signal that is a measurement result in a state in which a shaft body supported by an evaluation bearing that is a rolling bearing of the same type as the normal bearing is rotated;
    An evaluation dividing unit that divides the evaluation signal into a plurality of segments with a predetermined time length;
    An evaluation vector generation unit that generates a first evaluation vector using the first feature amount and a second evaluation vector using the second feature amount for each segment of the divided evaluation signal;
    A first evaluation defect degree for the first normal model of the evaluation signal using the first evaluation vector, and a second evaluation defect degree for the second normal model of the evaluation signal using the second evaluation vector. An evaluation defect degree calculation unit to calculate,
    An evaluation signal defect degree calculation unit that calculates an evaluation signal defect degree that is a defect degree of an evaluation signal from the overall normal model, using the first evaluation defect degree and the second evaluation defect degree as input vectors;
    A defect rate calculating unit that compares the evaluation signal defect degree with the defect detection threshold value, and calculates a ratio of the defect degree exceeding the defect detection threshold value as a defect rate among all information included in the evaluation signal;
    A defect detection system comprising: a determination unit that determines that the rolling bearing that has obtained the evaluation signal is defective when the defect rate exceeds a predetermined defect rate threshold.
  2.  前記正常信号、前記第一信号、および前記第二信号は、いずれも振動情報である
    請求項1に記載の欠陥検出システム。
    The defect detection system according to claim 1, wherein each of the normal signal, the first signal, and the second signal is vibration information.
  3.  前記正常信号、前記第一信号、前記第二信号、および前記評価信号は、それぞれ測定対象となる転がり軸受の軸方向の振動情報である軸振動情報、第一放射方向の振動情報である第一振動情報、および前記軸方向と前記第一放射方向とに交差する第二放射方向の振動情報である第二振動情報を含む
    請求項2に記載の欠陥検出システム。
    The normal signal, the first signal, the second signal, and the evaluation signal are axial vibration information that is vibration information in the axial direction of the rolling bearing to be measured, and vibration information in the first radial direction, respectively. The defect detection system according to claim 2, comprising vibration information and second vibration information that is vibration information in a second radial direction that intersects the axial direction and the first radial direction.
  4.  前記第二振動の振動方向である前記第二放射方向は、水平面内に含まれ、前記第二放射方向には測定対象の前記軸体と前記転がり軸受との間に外部から力が加えられていない
    請求項3に記載の欠陥検出システム。
    The second radial direction, which is the vibration direction of the second vibration, is included in a horizontal plane, and an external force is applied between the shaft body to be measured and the rolling bearing in the second radial direction. The defect detection system according to claim 3.
  5.  前記分割部は、前記正常信号、前記第一信号、および前記第二信号に対してフーリエ変換を行い周波数領域情報を生成し、
     前記初期特徴ベクトル作成部は、前記周波数領域情報であることも特徴情報の一つとして初期特徴ベクトルを作成する
    請求項1から4のいずれか一項に記載の欠陥検出システム。
    The dividing unit performs a Fourier transform on the normal signal, the first signal, and the second signal to generate frequency domain information,
    The defect detection system according to any one of claims 1 to 4, wherein the initial feature vector creation unit creates an initial feature vector as one of the feature information that is the frequency domain information.
  6.  前記分割部は、前記周波数領域に対してさらにフーリエ変換を行ったケフレンシ領域情報を作成し、
     前記初期特徴ベクトル作成部は、前記ケフレンシ領域情報であることも初期特徴量の一つとして初期特徴ベクトルを作成する
    請求項5に記載の欠陥検出システム。
    The dividing unit creates quefrency region information obtained by performing further Fourier transform on the frequency region,
    The defect detection system according to claim 5, wherein the initial feature vector creation unit creates an initial feature vector as one of the initial feature amounts, which is the kerf region information.
  7.  前記初期特徴量のパラメータは、実効値、最大値、波高率、変調値、尖度、および歪度のうちの少なくとも1つを含む
    請求項1から6のいずれか一項に記載の欠陥検出システム。
    The defect detection system according to claim 1, wherein the parameter of the initial feature amount includes at least one of an effective value, a maximum value, a crest factor, a modulation value, a kurtosis, and a skewness. .
  8.  前記分割部は、前記正常信号、前記第一信号、および前記第二信号に対してバンドパスフィルタを適用して複数の周波数帯域の情報を抽出し、
     前記評価分割部は、前記評価信号に対して同様のバンドパスフィルタを適用して複数の前記周波数帯域の情報を抽出する
    請求項1から7のいずれか一項に記載の欠陥検出システム。
    The dividing unit extracts information of a plurality of frequency bands by applying a band pass filter to the normal signal, the first signal, and the second signal,
    The defect detection system according to any one of claims 1 to 7, wherein the evaluation division unit applies a similar bandpass filter to the evaluation signal to extract information on a plurality of the frequency bands.
  9.  欠陥のない転がり軸受である正常軸受で支持された軸体を回転させた状態の測定結果である正常信号を取得し、比較的小さな欠陥を有する前記正常軸受と同種の転がり軸受である第一軸受で支持された軸体を回転させた状態の測定結果である第一信号を取得し、前記正常軸受と同種の転がり軸受であり前記第一軸受よりも大きな欠陥を有する第二軸受で支持された軸体を回転させた状態の測定結果である第二信号を取得する基準情報取得部と、
     前記正常信号、前記第一信号、および前記第二信号に基づく情報を所定の時間長さで複数のセグメントに分割する分割部と、
     前記正常信号、前記第一信号、および前記第二信号の各セグメントに対して、特徴量を算出して初期個数の初期特徴量からなる初期特徴ベクトルを作成する初期特徴ベクトル作成部と、
     作成された初期特徴ベクトルを用いて正常信号と第一信号、および正常信号と第二信号をそれぞれ教師有学習で分類し、第一信号を分類するに際し寄与度の高い特徴量である第一特徴量と、第二信号を分類するに際し寄与度の高い特徴量である第二特徴量を初期特徴量からそれぞれ抽出する高寄与特徴量抽出部と、
     前記第一特徴量を用いて前記正常信号に基づく第一正常ベクトルと、前記第一信号に基づく第一特徴ベクトルを再構成し、前記第二特徴量を用いて前記正常信号に基づく第二正常ベクトルと、前記第二信号に基づく第二特徴ベクトルを再構成するベクトル再構成部と、
     前記第一正常ベクトル、および前記第二正常ベクトルをそれぞれ用いて第一正常モデル、および第二正常モデルを学習により作成する正常モデル学習部と、
     前記第一特徴ベクトルを用いて前記第一正常モデルに対する第一欠陥度と、前記第二特徴ベクトルを用いて前記第二正常モデルに対する第二欠陥度とを算出する基準欠陥度算出部と、
     前記第一欠陥度、および前記第二欠陥度を入力ベクトルとして総合正常モデルを作成する総合正常モデル作成部と、
     前記第一欠陥度、および前記第二欠陥度を入力ベクトルとして、前記総合正常モデルから正常信号の欠陥度である正常信号欠陥度を算出する正常信号欠陥度算出部と、
     前記正常信号欠陥度に基づき欠陥検出閾値を設定する欠陥検出閾値設定部とを含み、
     各処理をコンピュータに実行させることにより上記各処理部を実現する
    欠陥モデル作成プログラム。
    A first bearing which is a rolling bearing of the same type as the normal bearing having a relatively small defect, which obtains a normal signal as a measurement result in a state in which the shaft body supported by the normal bearing which is a rolling bearing having no defect is rotated. The first signal, which is the measurement result of the state where the shaft body supported by the shaft is rotated, is acquired and is supported by a second bearing that is a rolling bearing of the same type as the normal bearing and has a larger defect than the first bearing. A reference information acquisition unit for acquiring a second signal that is a measurement result in a state where the shaft body is rotated;
    A division unit that divides information based on the normal signal, the first signal, and the second signal into a plurality of segments with a predetermined time length;
    An initial feature vector creating unit that creates a feature quantity for each segment of the normal signal, the first signal, and the second signal and creates an initial feature vector including an initial number of initial feature quantities;
    Using the created initial feature vector, the normal signal and the first signal, and the normal signal and the second signal are classified by supervised learning, respectively. A high-contribution feature quantity extraction unit that extracts a second feature quantity, which is a feature quantity having a high contribution in classifying the quantity and the second signal, from the initial feature quantity;
    Reconstructing a first normal vector based on the normal signal using the first feature quantity and a first feature vector based on the first signal, and a second normal vector based on the normal signal using the second feature quantity A vector and a vector reconstruction unit for reconstructing a second feature vector based on the second signal;
    A normal model learning unit that creates a first normal model and a second normal model by learning using the first normal vector and the second normal vector, respectively;
    A reference defect degree calculation unit that calculates a first defect degree for the first normal model using the first feature vector and a second defect degree for the second normal model using the second feature vector;
    An overall normal model creating unit that creates an overall normal model using the first defect degree and the second defect degree as input vectors;
    A normal signal defect degree calculation unit that calculates a normal signal defect degree that is a defect degree of a normal signal from the overall normal model, using the first defect degree and the second defect degree as input vectors;
    A defect detection threshold setting unit that sets a defect detection threshold based on the normal signal defect degree,
    A defect model creation program for realizing each processing unit by causing a computer to execute each processing.
  10.  請求項9に記載の欠陥モデル作成プログラムにより作成された欠陥モデルを用いて転がり軸受の欠陥を検出する欠陥検出プログラムであって、
     測定対象の転がり軸受である評価軸受で支持された軸体を回転させた状態の測定結果である評価信号を取得する評価情報取得部と、
     前記評価信号を所定の時間長さで複数のセグメントに分割する評価分割部と、
     分割された前記評価信号の各セグメントに対し、前記第一特徴量を用いて第一評価ベクトル、および前記第二特徴量を用いて第二評価ベクトルを生成する評価ベクトル生成部と、
     前記第一評価ベクトルを用いて前記評価信号の前記第一正常モデルに対する第一評価欠陥度と、前記第二評価ベクトルを用いて前記評価信号の前記第二正常モデルに対する第二評価欠陥度とを算出する評価欠陥度算出部と、
     前記第一評価欠陥度、および前記第二評価欠陥度を入力ベクトルとして、前記総合正常モデルから評価信号の欠陥度である評価信号欠陥度を算出する評価信号欠陥度算出部と、
     前記評価信号欠陥度を前記欠陥検出閾値と比較し、評価信号に含まれる全情報のうち、欠陥度が欠陥検出閾値を超える割合を欠陥率として算出する欠陥率算出部と、
     前記欠陥率が所定の欠陥率閾値を超えた場合に評価信号を取得した転がり軸受に欠陥があると判断する判断部とを含み、
     各処理をコンピュータに実行させることにより上記各処理部を実現する転がり軸受の
    欠陥検出プログラム。
    A defect detection program for detecting a defect of a rolling bearing using a defect model created by the defect model creation program according to claim 9,
    An evaluation information acquisition unit that acquires an evaluation signal that is a measurement result in a state in which a shaft body supported by an evaluation bearing that is a rolling bearing to be measured is rotated;
    An evaluation dividing unit that divides the evaluation signal into a plurality of segments with a predetermined time length;
    An evaluation vector generation unit that generates a first evaluation vector using the first feature amount and a second evaluation vector using the second feature amount for each segment of the divided evaluation signal;
    A first evaluation defect degree for the first normal model of the evaluation signal using the first evaluation vector, and a second evaluation defect degree for the second normal model of the evaluation signal using the second evaluation vector. An evaluation defect degree calculation unit to calculate,
    An evaluation signal defect degree calculation unit that calculates an evaluation signal defect degree that is a defect degree of an evaluation signal from the overall normal model, using the first evaluation defect degree and the second evaluation defect degree as input vectors;
    A defect rate calculating unit that compares the evaluation signal defect degree with the defect detection threshold value, and calculates a ratio of the defect degree exceeding the defect detection threshold value as a defect rate among all information included in the evaluation signal;
    A determination unit that determines that the rolling bearing that acquired the evaluation signal has a defect when the defect rate exceeds a predetermined defect rate threshold,
    A rolling bearing defect detection program that realizes each processing unit by causing a computer to execute each processing.
PCT/JP2019/007758 2018-03-01 2019-02-28 Defect detection system, defect model creation program, and defect detection program WO2019168086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-036642 2018-03-01
JP2018036642A JP6950891B2 (en) 2018-03-01 2018-03-01 Defect detection system, defect modeling program, and defect detection program

Publications (1)

Publication Number Publication Date
WO2019168086A1 true WO2019168086A1 (en) 2019-09-06

Family

ID=67805419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007758 WO2019168086A1 (en) 2018-03-01 2019-02-28 Defect detection system, defect model creation program, and defect detection program

Country Status (2)

Country Link
JP (1) JP6950891B2 (en)
WO (1) WO2019168086A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117058106A (en) * 2023-08-16 2023-11-14 广东理工学院 Method for measuring flatness and surface defects of flexible glass based on random forest

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366729B2 (en) * 2019-12-17 2023-10-23 Ntn株式会社 Bearing inspection equipment, inspection methods, and inspection programs
KR102313723B1 (en) * 2019-12-19 2021-10-15 울산대학교 산학협력단 Fault Diagnosis Device and Method of Rotating Equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062154A (en) * 2003-07-29 2005-03-10 Nsk Ltd Abnormality diagnostic device and roller bearing device comprising the same
JP2012242336A (en) * 2011-05-23 2012-12-10 Chiyoda Corp Bearing diagnosis method and system
JP2017173321A (en) * 2016-03-17 2017-09-28 Ntn株式会社 State monitoring system and wind power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062154A (en) * 2003-07-29 2005-03-10 Nsk Ltd Abnormality diagnostic device and roller bearing device comprising the same
JP2012242336A (en) * 2011-05-23 2012-12-10 Chiyoda Corp Bearing diagnosis method and system
JP2017173321A (en) * 2016-03-17 2017-09-28 Ntn株式会社 State monitoring system and wind power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117058106A (en) * 2023-08-16 2023-11-14 广东理工学院 Method for measuring flatness and surface defects of flexible glass based on random forest

Also Published As

Publication number Publication date
JP2019152979A (en) 2019-09-12
JP6950891B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
Bediaga et al. Ball bearing damage detection using traditional signal processing algorithms
WO2019168086A1 (en) Defect detection system, defect model creation program, and defect detection program
Batista et al. A classifier fusion system for bearing fault diagnosis
US10725439B2 (en) Apparatus and method for monitoring a device having a movable part
JP6196093B2 (en) Vibration analysis method for bearing device, vibration analysis device for bearing device, and state monitoring device for rolling bearing
Khan et al. Automated bearing fault diagnosis using 2D analysis of vibration acceleration signals under variable speed conditions
US10520354B2 (en) Apparatus and method for diagnosing rotor shaft
KR102120756B1 (en) Automatic diagnosis method for rotating machinery using real-time vibration analysis
Li et al. Early fault diagnosis of rotating machinery by combining differential rational spline-based LMD and K–L divergence
Boudiaf et al. A summary of vibration analysis techniques for fault detection and diagnosis in bearing
KR20190102980A (en) Monitoring method and for detecting the formation of a degradation in at least one moving part of a rotating mechanism and associated system
Paliwal et al. Wavelet and scalar indicator based fault assessment approach for rolling element bearings
Rama Krishna et al. Machinery bearing fault diagnosis using variational mode decomposition and support vector machine as a classifier
Shakya et al. Bearing diagnosis using proximity probe and accelerometer
Attoui et al. Novel machinery monitoring strategy based on time–frequency domain similarity measurement with limited labeled data
Wang Analysis of fault detection in rolling element bearings
Chi et al. Spectral DCS-based feature extraction method for rolling element bearing pseudo-fault in rotor-bearing system
JP6497919B2 (en) Diagnosis method and diagnosis system for equipment including rotating body and its bearing
Aye Statistical approach for tapered bearing fault detection using different methods
JP2015031563A (en) Method for analyzing vibration of bearing device, apparatus for analyzing vibration of bearing device, and device for monitoring state of rolling bearing
CN117836599A (en) Method for detecting bearing defects in a rotating system and monitoring system for implementing said method
Kohlheb et al. Embedded autoencoder-based condition monitoring of rotating machinery
Yassine et al. Bearing fault classification based on envelope analysis and artificial neural network
Mustafa et al. Experimental research on machinery fault simulator (MFS): A review
CN113994088A (en) Method for computer-implemented monitoring of components of a wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760582

Country of ref document: EP

Kind code of ref document: A1