JPH06137320A - Dynamic pressure fluid bearing device - Google Patents

Dynamic pressure fluid bearing device

Info

Publication number
JPH06137320A
JPH06137320A JP29160492A JP29160492A JPH06137320A JP H06137320 A JPH06137320 A JP H06137320A JP 29160492 A JP29160492 A JP 29160492A JP 29160492 A JP29160492 A JP 29160492A JP H06137320 A JPH06137320 A JP H06137320A
Authority
JP
Japan
Prior art keywords
radial bearing
radial
clearance
lubricating fluid
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29160492A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tanaka
克彦 田中
Ikunori Sakatani
郁紀 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP29160492A priority Critical patent/JPH06137320A/en
Publication of JPH06137320A publication Critical patent/JPH06137320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To heighten lubricating fluid holding capacity by limiting a taper angle of a taper part as well as to improve durability significantly by improving a drawing-in effect of lubricating fluid supplied to a radial bearing surface. CONSTITUTION:A cylindrical radial bearing surface 3 is arranged in a shaft direction at an interval in two places on an inside diameter surface of a sleeve 2 in which a shaft 1 is fitted. On the other hand, a radial receiving surface 4 is arranged in a lengthwise direction at an interval in two places on the shaft 1, and the radial bearing surface 3 and the radial receiving surface 4 are opposed to each other through a radial bearing clearance 5, and a radial bearing R is constituted. A dynamic pressure generating groove 6 arranged on the radial bearing surface 3 is formed in an asymmetrical herringbone shape groove pattern where anti-shaft end side groove length I1 close to a bending part 6a is longer than shaft end side groove length I2 close to the bending part 6a. A lubricant reservoir 7 having clearance larger than the bearing clearance 5 is arranged in a place between the two radial bearing surfaces 3 on the inside diameter surface of the sleeve 2, and the place continuing to the bearing clearance 5 forms a taper part 8 toward the bearing clearance 5. This taper angle (3q) is larger than 10 deg. and is smaller than 60 deg.. An air vent hole 15 passing penetratingly in a radial direction through the intermediate sleeve 2 of the lubricant reservoir 7 puts inside and outside atmospheric pressures of the sleeve 2 in the same condition even if a temperature is changed, and prevents lubricating fluid in the radial bearing clearance 5 from leaking outside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、情報機器,事務機,測
定機器等に用いられる動圧流体軸受装置の耐久性の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of durability of a hydrodynamic bearing device used in information equipment, office machines, measuring equipment and the like.

【0002】[0002]

【従来の技術】従来の動圧流体軸受装置は、例えば図2
に示すように、軸1が嵌合しているスリーブ2の内径面
に、円筒状のラジアル軸受面3が、軸方向に間隔をおい
て2ヵ所に設けられている。一方、スリーブ2に嵌合す
る軸1には、長手方向に間隔をおいて2ヵ所にラジアル
受面4が設けられている。ラジアル軸受面3とラジアル
受面4とは軸受すきま5を介して対向してラジアル軸受
Rを構成している。ラジアル軸受面3には、軸方向に対
称なやじり状の多数の溝からなるヘリングボーン状の動
圧発生用の溝6が設けられている。そして、軸1又はス
リーブ2のどちらかが回転すると、そのヘリングボーン
状の動圧発生用の溝6のポンピング作用でラジアル軸受
すきま5に保持される極めて少量の潤滑剤に圧力が発生
して、流体動力学的潤滑をおこなうようになされてい
る。二カ所の軸受すきま5,5の間の個所には、軸受す
きま5より大きなすきまの潤滑剤溜り7が設けてある。
潤滑剤溜り7から軸受すきま5に連なる箇所は、軸受す
きま5に向かってせまくなるテーパ部8となっている。
2. Description of the Related Art A conventional hydrodynamic bearing device is shown in FIG.
As shown in (1), the cylindrical radial bearing surface 3 is provided at two locations on the inner diameter surface of the sleeve 2 with which the shaft 1 is fitted, with a space in the axial direction. On the other hand, the shaft 1 fitted into the sleeve 2 is provided with radial receiving surfaces 4 at two positions spaced apart in the longitudinal direction. The radial bearing surface 3 and the radial receiving surface 4 face each other through a bearing clearance 5 to form a radial bearing R. The radial bearing surface 3 is provided with a herringbone-shaped groove 6 for generating a dynamic pressure, which is composed of a large number of grooved grooves that are symmetrical in the axial direction. Then, when either the shaft 1 or the sleeve 2 rotates, a pressure is generated in an extremely small amount of lubricant retained in the radial bearing clearance 5 by the pumping action of the herringbone-shaped groove 6 for generating dynamic pressure, It is designed to perform hydrodynamic lubrication. A lubricant reservoir 7 having a clearance larger than that of the bearing clearance 5 is provided between the two bearing clearances 5 and 5.
A portion extending from the lubricant reservoir 7 to the bearing clearance 5 is a tapered portion 8 that narrows toward the bearing clearance 5.

【0003】従来のテーパ部8にあっては、テーパ角度
θが、切削加工の標準面取りである90°または60°
に加工されていた。
In the conventional taper portion 8, the taper angle θ is 90 ° or 60 ° which is a standard chamfer for cutting.
Was processed into.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の動圧流体軸受装置は、テーパ部8のテーパ角度θが
60°又は90°と大きいため、毛細管現象による潤滑
流体の保持力が弱く、高速回転で遠心力が作用する場合
や、外部衝撃が作用する場合には、ラジアル軸受すきま
5に補給する役目を果たすテーパ部8の潤滑流体が飛散
して無くなってしまうという問題点があった。
However, in the above-described conventional hydrodynamic bearing device, since the taper angle θ of the taper portion 8 is as large as 60 ° or 90 °, the retaining force of the lubricating fluid due to the capillary phenomenon is weak and the high speed is achieved. When the centrifugal force is applied by the rotation or when the external impact is applied, there is a problem that the lubricating fluid in the taper portion 8 which serves to replenish the radial bearing clearance 5 is scattered and disappears.

【0005】また、高温環境で使用すると、ラジアル軸
受すきま5の潤滑流体が蒸発により徐々に失われるが、
ラジアル軸受面3の加工誤差および動圧発生用の溝6の
加工誤差によっては、潤滑流体を軸受面から押し出す力
が作用して、テーパ部8からラジアル軸受すきま5への
潤滑流体の補給が行われないという問題点があった。そ
こで、本発明は、テーパ部における潤滑流体の保持能力
を高め、かつラジアル軸受面3へ補給する潤滑流体の引
込み効果を高めて耐久性を大幅に改善できる動圧流体軸
受装置を提供して、上記従来の問題点を解決することを
目的としている。
When used in a high temperature environment, the lubricating fluid in the radial bearing clearance 5 is gradually lost due to evaporation,
Depending on the processing error of the radial bearing surface 3 and the processing error of the groove 6 for generating dynamic pressure, a force for pushing the lubricating fluid out of the bearing surface acts to replenish the lubricating fluid from the tapered portion 8 to the radial bearing clearance 5. There was a problem that I was not denied. Therefore, the present invention provides a hydrodynamic bearing device in which the ability to retain a lubricating fluid in the taper portion is enhanced, and the effect of drawing the lubricating fluid to be supplied to the radial bearing surface 3 is enhanced to significantly improve durability. It is intended to solve the above-mentioned conventional problems.

【0006】[0006]

【課題を解決するための手段】本発明は、スリーブに設
けた円筒状のラジアル軸受面が軸に設けたラジアル受面
と軸受すきまを介して対向し、前記ラジアル軸受面とラ
ジアル受面との少なくとも一方にヘリングボーン状の動
圧発生用の溝が設けられ、前記スリーブは軸受すきまに
隣接するテーパ部を有する動圧流体軸受装置において、
前記テーパ部のテーパ角度が10°よりも大きくて60
°より小さいことを特徴とする。
According to the present invention, a cylindrical radial bearing surface provided on a sleeve faces a radial bearing surface provided on a shaft through a bearing clearance, and the radial bearing surface and the radial bearing surface are opposed to each other. A herringbone-shaped groove for dynamic pressure generation is provided on at least one side, and the sleeve is a hydrodynamic bearing device having a tapered portion adjacent to a bearing clearance,
The taper angle of the taper part is larger than 10 ° and 60
It is characterized by being smaller than °.

【0007】[0007]

【作用】この発明はテーパ部のテーパ角度を10°より
も大きくて60°より小さく形成しているので、毛細管
現象に基づくテーパ部における潤滑流体の保持能力が高
く、しかも潤滑流体を保持できるテーパ部の空間体積を
大きくとれる。また、ヘリングボーン状の溝は前記テー
パ部に連なる方の溝の軸方向長さが他方の溝に軸方向長
さより長くて非対称のヘリングボーン状の溝であると、
ラジアル軸受面への潤滑流体の引き込み作用が高くな
る。
In the present invention, since the taper angle of the taper portion is formed to be larger than 10 ° and smaller than 60 °, the taper portion based on the capillary phenomenon has a high ability to retain the lubricating fluid, and further, the taper capable of retaining the lubricating fluid. The space volume of the part can be large. Further, the herringbone-shaped groove is an asymmetric herringbone-shaped groove in which the axial length of one of the grooves connected to the tapered portion is longer than the axial length of the other groove,
The action of drawing the lubricating fluid to the radial bearing surface is enhanced.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。なお、従来と同一または相当部分には同一符号を
付してある。図1は、本発明の一実施例の縦断面図であ
り、軸1が嵌合しているスリーブ2の内径面に、円筒状
のラジアル軸受面3が軸方向に間隔をおいて二カ所に設
けられている。一方、軸1には、長手方向に間隔をおい
て二カ所にラジアル受面4が設けられており、ラジアル
軸受面3とラジアル受面4とはラジアル軸受すきま5を
介して対向してラジアル軸受Rを構成している。ラジア
ル軸受面3には、ヘリングボーン状の動圧発生用の溝6
が設けられている。この動圧発生用の溝6は、屈曲部6
aより反軸端側の溝長さl1 の方が屈曲部6aより軸端
側の溝長さl2より長い非対称形のヘリングボーン状の
溝パターンになっている。
Embodiments of the present invention will be described below with reference to the drawings. The same or corresponding parts as in the conventional case are designated by the same reference numerals. FIG. 1 is a vertical cross-sectional view of an embodiment of the present invention, in which a cylindrical radial bearing surface 3 is axially spaced at two positions on an inner diameter surface of a sleeve 2 with which a shaft 1 is fitted. It is provided. On the other hand, the shaft 1 is provided with radial receiving surfaces 4 at two locations spaced apart in the longitudinal direction. The radial bearing surface 3 and the radial receiving surface 4 face each other with a radial bearing clearance 5 therebetween. It constitutes R. The radial bearing surface 3 has a herringbone-shaped groove 6 for generating dynamic pressure.
Is provided. The groove 6 for generating the dynamic pressure has a bent portion 6
The groove length l 1 on the opposite shaft end side from a is longer than the groove length l 2 on the shaft end side from the bent portion 6a, which is an asymmetric herringbone groove pattern.

【0009】スリーブ2の内径面には、二カ所のラジア
ル軸受面3の間の個所に軸受すきま5より大きなすきま
の潤滑剤溜り7が設けてある。この潤滑剤溜り7から軸
受すきま5に連なる箇所は、軸受すきま5に向かってせ
まくなるテーパ部8となっている。前記テーパ部8のテ
ーパ角度θの大きさは、10°よりも大きくて60°よ
り小さい角度に形成されている。
On the inner diameter surface of the sleeve 2, a lubricant reservoir 7 having a clearance larger than the bearing clearance 5 is provided at a location between the two radial bearing surfaces 3. A portion extending from the lubricant reservoir 7 to the bearing clearance 5 is a tapered portion 8 that narrows toward the bearing clearance 5. The taper angle θ of the taper portion 8 is formed to be larger than 10 ° and smaller than 60 °.

【0010】なお、潤滑剤溜り7の中間部には、スリー
ブ2を半径方向に貫通する空気抜き孔15が設けられて
いる。この空気抜き孔15は、温度変化があってもスリ
ーブ2の内外の気圧を同一にして、ラジアル軸受すきま
5内の潤滑流体が外部へ洩れるのを防止するものであ
る。軸1の下面はスラスト受面9、スリーブ2の下面に
取りつけたスラスト板10にはスラスト受面9に対向す
るスラスト軸受面11が動圧発生用の溝12を有して設
けられ、平面型のスラスト軸受Sを構成している。
An air vent hole 15 is provided in the middle portion of the lubricant reservoir 7 so as to penetrate the sleeve 2 in the radial direction. The air vent hole 15 keeps the air pressure inside and outside the sleeve 2 the same even if the temperature changes, and prevents the lubricating fluid in the radial bearing clearance 5 from leaking to the outside. The lower surface of the shaft 1 is a thrust receiving surface 9, and the thrust plate 10 attached to the lower surface of the sleeve 2 is provided with a thrust bearing surface 11 facing the thrust receiving surface 9 having a groove 12 for generating a dynamic pressure. The thrust bearing S of FIG.

【0011】また、スラスト軸受Sの動圧発生用の溝1
2は、スラスト受面9に設けても、スラスト受面9に対
向するスラスト軸受面11にもうけても良く、あるいは
スラスト受面9とスラスト軸受面11との両方に設けて
も良い。なお、スラスト軸受Sは動圧発生用の溝のない
点接触式のピボット軸受にしても良い。そのスリーブ2
の下端部の内径面3に、下方のラジアル軸受面3より大
径の潤滑剤溜り16が設けられ、この潤滑剤溜り16か
らスリーブ2を半径方向に貫通する空気抜き孔17が設
けられている。
Further, the groove 1 for generating the dynamic pressure of the thrust bearing S
2 may be provided on the thrust receiving surface 9 or on the thrust bearing surface 11 facing the thrust receiving surface 9, or may be provided on both the thrust receiving surface 9 and the thrust bearing surface 11. The thrust bearing S may be a point-contact type pivot bearing without a groove for generating dynamic pressure. Its sleeve 2
A lubricant reservoir 16 having a diameter larger than that of the lower radial bearing surface 3 is provided on the inner diameter surface 3 at the lower end of the, and an air vent hole 17 penetrating the sleeve 2 from the lubricant reservoir 16 in the radial direction is provided.

【0012】この動圧流体軸受装置は、ラジアル軸受す
きま5及びスラスト受面9とスラスト軸受面11との間
のスラスト軸受すきまに毛細管現象により保持される極
めて少量の潤滑剤で潤滑される。次に作用を説明する。
潤滑溜り7には、予め潤滑流体が充填されている。本発
明は、この潤滑剤溜り7の両端部を先細りのテーパ状に
してあるため、潤滑剤溜り7内の潤滑流体が軸1とスリ
ーブ2との間のすきまが狭くなる方に毛細管現象で引っ
張られ易くなっている。しかして、テーパ部8のテーパ
角度θが10°未満の場合は、潤滑流体を保持する体積
が少なくなり過ぎる。一方、テーパ角度θが60°以上
になると、毛細管現象による潤滑流体保持能力が弱くな
る。
This hydrodynamic bearing device is lubricated with an extremely small amount of lubricant which is retained in the radial bearing clearance 5 and the thrust bearing clearance between the thrust bearing surface 9 and the thrust bearing surface 11 by a capillary phenomenon. Next, the operation will be described.
The lubricating pool 7 is filled with a lubricating fluid in advance. According to the present invention, since both ends of the lubricant reservoir 7 are tapered, the lubricating fluid in the lubricant reservoir 7 is pulled by the capillary phenomenon toward the narrower clearance between the shaft 1 and the sleeve 2. It is easy to be beaten. However, when the taper angle θ of the taper portion 8 is less than 10 °, the volume for holding the lubricating fluid becomes too small. On the other hand, when the taper angle θ is 60 ° or more, the lubricating fluid retaining ability due to the capillary phenomenon becomes weak.

【0013】特に、スリーブ2が回転する場合は、テー
パ角度θを小さくすることにより、テーパ部8に保持さ
れる潤滑流体に働く遠心力の影響が緩和され、潤滑流体
の飛散を少なくできる。いま、軸1が回転すると、ラジ
アル軸受Rの動圧発生用の溝6のポンピング作用によっ
てラジアル軸受すきま5の潤滑流体は、ヘリングボーン
状の溝の屈曲部6aへ流入する。そして溝の屈曲部6a
に充満した潤滑流体は、ラジアル軸受すきま5を通って
ラジアル軸受すきま5の軸方向両端部に移行して循環す
る。この実施例の場合、テーパ部8につながるヘリング
ボーン状の動圧発生用の溝6のパターンが非対称に構成
されているので、溝長さl1 の長い内側パターンの溝で
発生する圧力が、溝長さl2 の短い外側パターンの溝の
それより大きくなり、ラジアル軸受すきま5内の潤滑流
体がラジアル軸受Rの軸端側により多く流れる。その結
果、テーパ部8に保持されている潤滑流体をラジアル軸
受すきま5に引き込む作用が高まる。
In particular, when the sleeve 2 is rotated, the taper angle θ is reduced to reduce the influence of the centrifugal force acting on the lubricating fluid held in the taper portion 8 and reduce the scattering of the lubricating fluid. Now, when the shaft 1 rotates, the lubricating fluid in the radial bearing clearance 5 flows into the bent portion 6a of the herringbone groove by the pumping action of the groove 6 for generating the dynamic pressure of the radial bearing R. And the bent portion 6a of the groove
The lubricating fluid that has filled the space passes through the radial bearing clearance 5 and moves to both axial ends of the radial bearing clearance 5 to circulate. In the case of this embodiment, since the pattern of the herringbone-shaped groove 6 for generating a dynamic pressure connected to the tapered portion 8 is asymmetrical, the pressure generated in the groove of the long inner pattern having the groove length l 1 is It becomes larger than that of the groove of the outer pattern having a short groove length l 2 , and the lubricating fluid in the radial bearing clearance 5 flows more to the shaft end side of the radial bearing R. As a result, the action of drawing the lubricating fluid held in the tapered portion 8 into the radial bearing clearance 5 is enhanced.

【0014】従って、ラジアル軸受すきま5の潤滑流体
が蒸発により徐々に減少しても、テーパ部8からラジア
ル軸受すきま5に潤滑流体を円滑に補給できる。また、
この実施例のように、内側の溝が外側の溝より長い非対
称溝のヘリングボーン状の動圧発生用の溝にすると、軸
受スパン(上側の軸受すきま5の最大圧力発生箇所と、
下側の軸受すきま5の最大圧力発生箇所との間隔)が大
きくとれるから、外部モーメントに対して強い軸受装置
とすることができる利点がある。
Therefore, even if the lubricating fluid in the radial bearing clearance 5 gradually decreases due to evaporation, the lubricating fluid can be smoothly replenished from the tapered portion 8 to the radial bearing clearance 5. Also,
As in this embodiment, when the inner groove is a herringbone-shaped groove for generating dynamic pressure, which is an asymmetric groove longer than the outer groove, the bearing span (the maximum pressure generation point of the upper bearing clearance 5 and
Since the distance between the lower bearing clearance 5 and the position where the maximum pressure is generated is large, there is an advantage that the bearing device can be strong against an external moment.

【0015】こうしてラジアル軸受Rにおいては、動圧
発生用の溝6のポンピング作用による動圧が発生し、ラ
ジアル軸受すきま5内の潤滑流体の圧力が高くなり、軸
1はスリーブ2のラジアル軸受面3に非接触で半径方向
に支持される。一方、スラスト軸受Sにおいては、スラ
スト軸受面11の動圧発生用の溝12のポンピング作用
によって動圧が発生し、軸1はスラスト板10のスラス
ト軸受面11に非接触で支持される。
Thus, in the radial bearing R, the dynamic pressure is generated by the pumping action of the groove 6 for generating the dynamic pressure, the pressure of the lubricating fluid in the radial bearing clearance 5 becomes high, and the shaft 1 becomes the radial bearing surface of the sleeve 2. It is supported in a radial direction without contacting with 3. On the other hand, in the thrust bearing S, dynamic pressure is generated by the pumping action of the groove 12 for generating dynamic pressure on the thrust bearing surface 11, and the shaft 1 is supported in non-contact with the thrust bearing surface 11 of the thrust plate 10.

【0016】動圧流体軸受装置の起動・停止時並びに回
転中の潤滑流体の飛散による軸受外への流出、および潤
滑流体の蒸発により、ラジアル軸受すきま5内の潤滑流
体の減少が起こっても、潤滑剤溜り7からテーパ部8を
経て、テーパすきまのせまい方に向かって、潤滑流体が
毛細管現象で自動的に、且つ効果的に徐々に補給され
る。したがって、長期間にわたって軸受性能の劣化がな
く、優れた耐久性が得られる。
Even when the amount of the lubricating fluid in the radial bearing clearance 5 decreases due to the outflow of the lubricating fluid to the outside of the bearing due to the scattering of the lubricating fluid during the start / stop of the hydrodynamic bearing device and during rotation, and the evaporation of the lubricating fluid, Lubricating fluid is gradually and automatically gradually replenished by the capillary phenomenon from the lubricant reservoir 7 through the taper portion 8 toward the narrow side of the taper clearance. Therefore, the bearing performance does not deteriorate for a long period of time, and excellent durability can be obtained.

【0017】なお、上記実施例のラジアル軸受Rにおけ
る動圧発生用の溝6は、軸1のラジアル受面4に設けて
もスリーブ2のラジアル軸受面3に設けてもよく、ある
いはラジアル軸受面3とラジアル受面4との双方に設け
ても良い。また、軸1とスリーブ2のどちらが回転して
も良いが、動圧発生用の溝6によって潤滑流体が引き込
まれるので、潤滑流体の引き込み効果を有効にするため
に動圧発生用の溝6はテーパ部8側に設けることが好ま
しい。
The groove 6 for generating the dynamic pressure in the radial bearing R of the above embodiment may be provided on the radial bearing surface 4 of the shaft 1 or the radial bearing surface 3 of the sleeve 2, or the radial bearing surface. 3 and the radial receiving surface 4 may be provided. Further, either the shaft 1 or the sleeve 2 may rotate, but since the lubricating fluid is drawn in by the groove 6 for generating the dynamic pressure, the groove 6 for generating the dynamic pressure is formed in order to make the drawing effect of the lubricating fluid effective. It is preferable to provide the taper portion 8 side.

【0018】[0018]

【発明の効果】以上説明したように、本発明の動圧流体
軸受装置は、円筒状のラジアル軸受面と、そのラジアル
軸受面に軸受すきまを介して対向するラジアル受面との
少なくとも一方にヘリングボーン状の動圧発生用の溝が
設けられ、前記スリーブは軸受すきまに隣接するテーパ
部を有し、テーパ部のテーパ角度が10°よりも大きく
て60°より小さいものとした。そのため、テーパ部に
おける潤滑流体の保持能力が高まり、高速回転時および
外部衝撃が加わる使用条件でも、耐久性が延びるという
効果がある。
As described above, in the hydrodynamic bearing device of the present invention, at least one of the cylindrical radial bearing surface and the radial receiving surface facing the radial bearing surface via the bearing clearance is herring. Bone-shaped grooves for generating dynamic pressure are provided, the sleeve has a tapered portion adjacent to the bearing clearance, and the taper angle of the tapered portion is larger than 10 ° and smaller than 60 °. Therefore, the ability of the tapered portion to retain the lubricating fluid is enhanced, and durability is extended even under high-speed rotation and use conditions in which an external impact is applied.

【0019】また、ヘリングボーン状の動圧発生用の溝
を非対称溝として、テーパ部からの潤滑流体をラジアル
軸受面に円滑に供給できるようにすると、高温中で使用
され潤滑流体の蒸発が無視できないような使用条件で
も、耐久性が延びるという効果を奏する。
If the herringbone-shaped groove for generating the dynamic pressure is an asymmetric groove so that the lubricating fluid from the tapered portion can be smoothly supplied to the radial bearing surface, it is used at high temperature and the evaporation of the lubricating fluid is neglected. Even under usage conditions that cannot be achieved, it has the effect of extending durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動圧流体軸受装置の一実施例の縦断面
図である。
FIG. 1 is a vertical sectional view of an embodiment of a hydrodynamic bearing device of the present invention.

【図2】従来の動圧流体軸受装置の縦断面図である。FIG. 2 is a vertical cross-sectional view of a conventional hydrodynamic bearing device.

【符号の説明】 1 軸 2 スリーブ 3 ラジアル軸受面 4 ラジアル受面 5 軸受すきま 6 動圧発生用の溝 7 潤滑剤溜り 8 テーパ部[Explanation of symbols] 1 shaft 2 sleeve 3 radial bearing surface 4 radial receiving surface 5 bearing clearance 6 groove for generating dynamic pressure 7 lubricant reservoir 8 taper part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スリーブに設けた円筒状のラジアル軸受
面が軸に設けたラジアル受面と軸受すきまを介して対向
し、前記ラジアル軸受面とラジアル受面との少なくとも
一方にヘリングボーン状の動圧発生用の溝が設けられ、
前記スリーブは軸受すきまに隣接するテーパ部を有する
動圧流体軸受装置において、 前記テーパ部のテーパ角度が10°よりも大きくて60
°より小さいことを特徴とする動圧流体軸受装置。
1. A cylindrical radial bearing surface provided on a sleeve faces a radial receiving surface provided on a shaft through a bearing clearance, and at least one of the radial bearing surface and the radial receiving surface has a herringbone movement. A groove for pressure generation is provided,
In the hydrodynamic bearing device, wherein the sleeve has a taper portion adjacent to the bearing clearance, the taper portion has a taper angle of more than 10 ° and 60 degrees or less.
A hydrodynamic bearing device characterized by being smaller than °.
JP29160492A 1992-10-29 1992-10-29 Dynamic pressure fluid bearing device Pending JPH06137320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29160492A JPH06137320A (en) 1992-10-29 1992-10-29 Dynamic pressure fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29160492A JPH06137320A (en) 1992-10-29 1992-10-29 Dynamic pressure fluid bearing device

Publications (1)

Publication Number Publication Date
JPH06137320A true JPH06137320A (en) 1994-05-17

Family

ID=17771101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29160492A Pending JPH06137320A (en) 1992-10-29 1992-10-29 Dynamic pressure fluid bearing device

Country Status (1)

Country Link
JP (1) JPH06137320A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364532B1 (en) 1999-05-14 2002-04-02 Matsushita Electric Industrial Co., Ltd. Hydrodynamic bearing and motor having the same
WO2003087597A1 (en) * 2002-04-16 2003-10-23 Citizen Watch Co., Ltd. Bearing device and motor using the bearing device
JP2005320985A (en) * 2004-05-06 2005-11-17 Matsushita Electric Ind Co Ltd Dynamic pressure fluid bearing device
US7059052B2 (en) 1997-03-06 2006-06-13 Ntn Corporation Hydrodynamic type porous oil-impregnated bearing
CN100356074C (en) * 2004-07-29 2007-12-19 松下电器产业株式会社 Hydrodynamic bearing device
JP2018194174A (en) * 2018-08-20 2018-12-06 株式会社リコー Drive transmission device and image formation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7059052B2 (en) 1997-03-06 2006-06-13 Ntn Corporation Hydrodynamic type porous oil-impregnated bearing
DE19809770B4 (en) * 1997-03-06 2006-06-29 Ntn Corp. Hydrodynamic, porous, oil-impregnated bearing
US6364532B1 (en) 1999-05-14 2002-04-02 Matsushita Electric Industrial Co., Ltd. Hydrodynamic bearing and motor having the same
WO2003087597A1 (en) * 2002-04-16 2003-10-23 Citizen Watch Co., Ltd. Bearing device and motor using the bearing device
JP2005320985A (en) * 2004-05-06 2005-11-17 Matsushita Electric Ind Co Ltd Dynamic pressure fluid bearing device
CN100356074C (en) * 2004-07-29 2007-12-19 松下电器产业株式会社 Hydrodynamic bearing device
JP2018194174A (en) * 2018-08-20 2018-12-06 株式会社リコー Drive transmission device and image formation device

Similar Documents

Publication Publication Date Title
KR930010408B1 (en) Dynamic pressure type fluid bearing apparatus
US5320433A (en) Rolling contact bearing assembly
US5906440A (en) Dynamic pressure type fluid bearing device
JPH06137320A (en) Dynamic pressure fluid bearing device
KR100480758B1 (en) Dynamic pressure type fluid bearing device
JP2538080B2 (en) Hydrodynamic bearing device
JPH0368768B2 (en)
US20030179965A1 (en) Slide bearing
JPH11336753A (en) Self-aligning roller bearing
JP2764298B2 (en) Dynamic pressure bearing device
JPH04248014A (en) Dynamic pressure fluid bearing device
JPH037610Y2 (en)
JPH11201142A (en) Dynamic pressure bearing
JPH04236817A (en) Sliding thrust bearing
JPH0545246U (en) Rolling bearing device
JPS5817219A (en) Dynamic-pressure radial bearing device
JP2002021844A (en) Fluid bearing device
JPH11182532A (en) Dynamic pressure fluid bearing device
JP3572796B2 (en) Hydrodynamic bearing
JP2002048133A (en) Fluid bearing apparatus
JPH0635655U (en) Rolling bearing lubricator
JP4487701B2 (en) Hydrodynamic fluid bearing device and polygon scanner motor provided with the same
TWM649945U (en) Stable hydrodynamic bearing
JP2538080C (en)
JP2002188635A (en) Fluid bearing device