JPH06137309A - Variable capacity type hydraulic pump control device - Google Patents

Variable capacity type hydraulic pump control device

Info

Publication number
JPH06137309A
JPH06137309A JP4314175A JP31417592A JPH06137309A JP H06137309 A JPH06137309 A JP H06137309A JP 4314175 A JP4314175 A JP 4314175A JP 31417592 A JP31417592 A JP 31417592A JP H06137309 A JPH06137309 A JP H06137309A
Authority
JP
Japan
Prior art keywords
pressure
control
hydraulic
switching
switched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4314175A
Other languages
Japanese (ja)
Other versions
JP3145810B2 (en
Inventor
Kazuyuki Sugiyama
和幸 杉山
Kiyonobu Hirose
清信 広瀬
Manabu Ozawa
学 小澤
Masao Takagi
政男 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP31417592A priority Critical patent/JP3145810B2/en
Publication of JPH06137309A publication Critical patent/JPH06137309A/en
Application granted granted Critical
Publication of JP3145810B2 publication Critical patent/JP3145810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To prevent the unevenness in discharge quantity of pressure oil by selectively switching a control pressure switching means and other control pressure means on high pressure side according to the kind of a switched directional control valve at the time of switching either one of plural kinds of directional control valves from neutral position in the low rotating speed are of a motor. CONSTITUTION:When either one of plural kinds of directional control valves 22A, 22B is switched from neutral position in the low rotating speed area of a motor 9, a set pressure of a pressure reducing valve 21 and a pressure higher than this can be selected as the control pressure supplied to a capacity control means 16 according to the kinds of the directional control valves 22A, 22B. When the higher pressure is selected, both the capacity variable parts 11A, 11B of hydraulic pumps 10A, 10B can be held in minimum tilting position. When both the capacity variable parts 11A, 11B are laid in the minimum tilting position, each hydraulic pump 10A, 10B has less unevenness in discharge quantity of pressure oil, compared with a position in the course of tilting, and the pressure oil of the substantially equal flow rate can be discharged from each hydraulic pump 10A, 10B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば油圧ショベル等
の建設機械に好適に用いられる可変容量型油圧ポンプ制
御装置に関し、特に、左,右の走行用油圧モータにそれ
ぞれ別の可変容量型油圧ポンプから圧油を供給するよう
にした可変容量型油圧ポンプ制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable displacement hydraulic pump control device that is preferably used for construction machines such as hydraulic excavators, and particularly to variable displacement hydraulic motors for left and right traveling hydraulic motors. The present invention relates to a variable displacement hydraulic pump control device that supplies pressure oil from a pump.

【0002】[0002]

【従来の技術】図4ないし図6に従来技術の可変容量型
油圧ポンプ制御装置が設けられた油圧ショベルおよびそ
の油圧回路を示す。
2. Description of the Related Art FIGS. 4 to 6 show a hydraulic excavator provided with a conventional variable displacement hydraulic pump control device and its hydraulic circuit.

【0003】図において、1は左,右一対の履帯1A,
1Aを備え、矢示A,B方向に前進、後進する下部走行
体、2は該下部走行体1上に旋回可能に搭載された上部
旋回体を示し、該上部旋回体2には機械室3と、該機械
室3の前部に位置する運転室4と、機械室3の後部に位
置するカウンタウエイト5とが設けられ、機械室3内に
は後述の原動機9および該原動機9によって駆動される
各油圧ポンプ10A,10B等が設けられている。
In the figure, 1 is a pair of left and right crawler belts 1A,
1A, an undercarriage 2 which moves forward and backward in the directions of arrows A and B, 2 indicates an upper revolving structure rotatably mounted on the lower revolving structure 1, and the upper revolving structure 2 includes a machine room 3 A driver's cab 4 located at the front of the machine room 3 and a counterweight 5 located at the rear of the machine room 3, and inside the machine room 3 is driven by a prime mover 9 and a prime mover 9 described later. The respective hydraulic pumps 10A, 10B, etc. are provided.

【0004】6は上部旋回体2の前部に設けられた作業
装置を示し、該作業装置6は、ブーム6A,アーム6
B,バケット6C等から大略構成され、ブーム6Aは
左,右のブームシリンダ6D,6D(図5参照)によっ
て矢示C,D方向に俯仰動されるようになっている。
Reference numeral 6 denotes a working device provided in the front part of the upper swing body 2. The working device 6 includes a boom 6A and an arm 6
B, a bucket 6C, etc. are generally configured, and the boom 6A is lifted and lowered in the directions C and D indicated by the left and right boom cylinders 6D and 6D (see FIG. 5).

【0005】7,7は下部走行体1に設けられた左,右
の走行用減速機(一方のみ図示)、8A,8Bは該各減
速機7と共に下部走行体1に設けられ、複数の油圧アク
チュエータを構成する左,右の走行用油圧モータを示
し、該走行用油圧モータ8A,8Bは図5に示す如くそ
れぞれ別の油圧ポンプ10A,10Bから圧油が供給さ
れることにより、それぞれ減速機7を介して下部走行体
1の各履帯1Aを駆動させる。
Reference numerals 7 and 7 are left and right traveling speed reducers (only one is shown) provided on the lower traveling body 1, and 8A and 8B are provided on the lower traveling body 1 together with the respective speed reducers 7 to provide a plurality of hydraulic pressures. The left and right traveling hydraulic motors constituting the actuator are shown. The traveling hydraulic motors 8A and 8B are supplied with pressure oil from separate hydraulic pumps 10A and 10B, respectively, as shown in FIG. Each crawler belt 1A of the lower traveling body 1 is driven via 7.

【0006】9は運転室4内に設けられる原動機、10
A,10Bは該原動機9によって回転駆動される可変容
量型油圧ポンプを示し、該油圧ポンプ10A,10Bは
それぞれ容量可変部11A,11Bを有し、該容量可変
部11A,11Bが後述のレギュレータ16で傾転駆動
されることにより容量、即ち圧油の吐出量Qが可変に制
御される。そして、該油圧ポンプ10A,10Bはタン
ク12と共にそれぞれ一対の主管路13A,14A、1
3B,14Bを介して走行用油圧モータ8A,8Bに接
続され、該走行用油圧モータ8A,8Bに個別に圧油を
給排するようになっている。また、該油圧ポンプ10
A,10Bはタンク12と共に主管路15A,15Bを
介して各ブームシリンダ6Dに接続され、該各ブームシ
リンダ6Dを伸縮すべく圧油を給排する。
Reference numeral 9 denotes a prime mover provided in the cab 4, and 10
Reference characters A and 10B denote variable displacement hydraulic pumps that are rotationally driven by the prime mover 9, and the hydraulic pumps 10A and 10B have variable displacement units 11A and 11B, respectively, and the variable displacement units 11A and 11B are regulators 16 to be described later. The displacement, that is, the discharge amount Q of the pressure oil is variably controlled by being tilt-driven by. The hydraulic pumps 10A and 10B together with the tank 12 have a pair of main pipelines 13A, 14A, 1
It is connected to the traveling hydraulic motors 8A and 8B via 3B and 14B, and the pressure oil is individually supplied to and discharged from the traveling hydraulic motors 8A and 8B. Also, the hydraulic pump 10
A and 10B are connected to the boom cylinders 6D together with the tank 12 through main pipe lines 15A and 15B, and supply and discharge pressure oil to expand and contract the boom cylinders 6D.

【0007】16,16は油圧ポンプ10A,10Bの
容量可変部11A,11Bを傾転駆動する容量制御手段
としてのレギュレータを示し、該各レギュレータ16は
制御管路17,17A,17Bを介して副油圧源となる
パイロットポンプ18、タンク12に接続され、制御管
路17からの制御圧Pに応じて油圧ポンプ10A,10
Bの容量可変部11A,11Bを傾転させることによ
り、図6に示す特性線19A,19B如く油圧ポンプ1
0A,10Bの吐出量Qを制御圧Pに基づき可変に制御
する。
Reference numerals 16 and 16 denote regulators as displacement control means for tilt-driving the variable displacement portions 11A and 11B of the hydraulic pumps 10A and 10B. Each regulator 16 is a sub-device via control pipe lines 17, 17A and 17B. The hydraulic pumps 10A, 10 are connected to the pilot pump 18 serving as a hydraulic pressure source and the tank 12 in accordance with the control pressure P from the control pipeline 17.
By tilting the capacity variable portions 11A and 11B of B, the hydraulic pump 1 is moved as shown by characteristic lines 19A and 19B in FIG.
The discharge amount Q of 0A and 10B is variably controlled based on the control pressure P.

【0008】20は制御管路17と制御管路17A,1
7Bとの間に設けられた制御圧切換手段としての電磁弁
を示し、該電磁弁20は後述するコントローラ40から
の切換信号により低圧側の切換位置aから高圧側の切換
位置bに切換えられ、制御管路17を制御管路17A,
17Bに切換接続する。
Reference numeral 20 is a control line 17 and control lines 17A, 1
7B shows a solenoid valve as a control pressure switching means provided between the solenoid valve 20 and the solenoid valve 7B. The solenoid valve 20 is switched from a low pressure side switching position a to a high pressure side switching position b by a switching signal from a controller 40 described later. The control line 17 is connected to the control line 17A,
Switch to 17B.

【0009】21はパイロットポンプ18、タンク12
と電磁弁20との間で制御管路17Bの途中に設けられ
た減圧弁を示し、該減圧弁21は電磁弁20が切換位置
bに切換えられたときに制御管路17内の制御圧Pを設
定圧P1 (図6参照)以下まで減圧するようになってい
る。
Reference numeral 21 is a pilot pump 18 and a tank 12.
Shows a pressure reducing valve provided in the middle of the control line 17B between the solenoid valve 20 and the solenoid valve 20, and the pressure reducing valve 21 controls the control pressure P in the control line 17 when the solenoid valve 20 is switched to the switching position b. Is reduced to below the set pressure P1 (see FIG. 6).

【0010】22A,22Bはそれぞれ主管路13A,
14A、13B,14B等の途中に設けられた左,右の
方向切換弁としての走行用制御弁を示し、該走行用制御
弁22A,22Bは油圧パイロット式の方向切換弁によ
って構成され、運転室4に設けられる減圧弁型油圧パイ
ロット弁23A,23Bの操作レバー24A,24Bを
手動操作することにより図5に示す中立位置から左,右
の切換位置に切換操作され、油圧ポンプ10A,10B
から走行用油圧モータ8A,8Bに給排する圧油の流量
および方向を制御する。
22A and 22B are main pipelines 13A and 13A, respectively.
14A, 13B, 14B, etc., showing traveling control valves as left and right directional control valves provided in the middle, the traveling control valves 22A, 22B being constituted by hydraulic pilot type directional control valves, By manually operating the operating levers 24A and 24B of the pressure reducing valve type hydraulic pilot valves 23A and 23B provided in FIG. 4, the neutral position shown in FIG. 5 is switched to the left and right switching positions, and the hydraulic pumps 10A and 10B.
The flow rate and the direction of the pressure oil supplied to and discharged from the traveling hydraulic motors 8A, 8B are controlled.

【0011】ここで、油圧パイロット弁23A,23B
は高圧側が管路25,25A,25Bを介してパイロッ
トポンプ18に接続され、低圧側が管路26A,26B
を介してタンク12に接続され、出力側がそれぞれパイ
ロット管路27A,28A、27B,28Bを介して走
行用制御弁22A,22Bの各油圧パイロット部に接続
されている。
Here, the hydraulic pilot valves 23A, 23B
The high pressure side is connected to the pilot pump 18 via the pipelines 25, 25A, 25B, and the low pressure side is pipelines 26A, 26B.
To the tank 12, and the output side is connected to the respective hydraulic pilot portions of the traveling control valves 22A and 22B via the pilot conduits 27A, 28A, 27B and 28B, respectively.

【0012】29A,29Bは主管路15A,15B等
の途中に設けられた作業用制御弁を示し、該作業用制御
弁29A,29Bは油圧パイロット式の方向切換弁によ
って構成され、運転室4に設けられる他の減圧弁型油圧
パイロット弁30の操作レバー31を手動操作すること
により図5に示す中立位置から共に左,右の切換位置に
切換操作され、油圧ポンプ10A,10Bから各ブーム
シリンダ6Dに給排する圧油の流量および方向を制御す
る。この場合、油圧パイロット弁30は高圧側が管路2
5,25Aを介してパイロットポンプ18に接続され、
低圧側が管路26Aを介してタンク12に接続され、出
力側が作業用制御弁29A,29Bの各油圧パイロット
部に共通のパイロット管路32A,32Aを介して接続
されている。
Reference numerals 29A and 29B denote work control valves provided in the middle of the main pipelines 15A and 15B, and the work control valves 29A and 29B are constituted by hydraulic pilot type directional control valves and are provided in the cab 4. By manually operating the operating lever 31 of the other pressure reducing valve type hydraulic pilot valve 30 provided, both the left and right switching positions are switched from the neutral position shown in FIG. 5, and the hydraulic cylinders 10A, 10B are used to move the boom cylinders 6D. Controls the flow rate and direction of pressure oil supplied to and discharged from. In this case, the hydraulic pilot valve 30 has the high pressure side on the conduit 2
Connected to the pilot pump 18 via 5, 25A,
The low-pressure side is connected to the tank 12 via the pipeline 26A, and the output side is connected to the hydraulic pilot portions of the work control valves 29A and 29B via common pilot pipelines 32A and 32A.

【0013】33,34は管路25から分岐し、パイロ
ットポンプ18とタンク12との間を走行用制御弁22
A,22B、作業用制御弁29A,29Bを介して接続
する分岐管路を示し、該分岐管路33は走行用制御弁2
2A,22Bが共に中立位置に復帰しているときに絞り
35を介してパイロットポンプ18とタンク12とを連
通させ、走行用制御弁22A,22Bの少なくともいず
れか一方が中立位置から切換えられたときには前記連通
状態が遮断される。また、分岐管路34は作業用制御弁
29A,29Bが共に中立位置に復帰しているときに絞
り36を介してパイロットポンプ18とタンク12とを
連通させ、走行用制御弁29A,29Bが中立位置から
切換えられたときには前記連通状態が遮断される。
Reference numerals 33 and 34 branch off from the pipe line 25, and a traveling control valve 22 is provided between the pilot pump 18 and the tank 12.
A, 22B and a control pipe for working 29A, 29B show a branch pipe line connected to the branch pipe line 33, and the branch pipe line 33 is the traveling control valve 2
When both 2A and 22B are returned to the neutral position, the pilot pump 18 and the tank 12 are communicated with each other via the throttle 35, and when at least one of the traveling control valves 22A and 22B is switched from the neutral position. The communication state is cut off. The branch pipe 34 connects the pilot pump 18 and the tank 12 via the throttle 36 when the work control valves 29A and 29B are both returned to the neutral position, and the travel control valves 29A and 29B are neutralized. When the position is switched, the communication state is cut off.

【0014】37は走行用制御弁22Aと絞り35との
間に位置して分岐管路33の途中に設けられた走行用の
操作検出手段としての圧力スイッチを示し、該圧力スイ
ッチ37は走行用制御弁22A,22Bが共に中立位置
に復帰しているときに、分岐管路33内が低圧となるの
で開成し、走行用制御弁22A,22Bの少なくともい
ずれか一方が中立位置から切換操作されたときには閉成
することによって、コントローラ40に検出信号を出力
する。
Reference numeral 37 denotes a pressure switch as an operation detecting means for traveling which is provided between the traveling control valve 22A and the throttle 35 and is provided in the middle of the branch conduit 33. The pressure switch 37 is for traveling. When the control valves 22A and 22B are both returned to the neutral position, the inside of the branch pipe line 33 becomes low in pressure, so that the valve is opened and at least one of the traveling control valves 22A and 22B is switched from the neutral position. By sometimes closing, a detection signal is output to the controller 40.

【0015】38は作業用制御弁29Aと絞り36との
間に位置して分岐管路34の途中に設けられた作業用の
操作検出手段としての圧力スイッチを示し、該圧力スイ
ッチ38は作業用制御弁29A,29Bが中立位置に復
帰しているときに、分岐管路34内が低圧となるので開
成し、作業用制御弁29A,29Bが中立位置から切換
操作されたときには閉成することによって、コントロー
ラ40に検出信号を出力する。
A pressure switch 38 is located between the work control valve 29A and the throttle 36 and is provided in the middle of the branch conduit 34 as a work operation detecting means. The pressure switch 38 is a work switch. When the control valves 29A and 29B are returned to the neutral position, the pressure inside the branch pipe line 34 becomes low, and thus the valves are opened, and when the work control valves 29A and 29B are switched from the neutral position, the valves are closed. , And outputs a detection signal to the controller 40.

【0016】39は前記原動機9に設けられた回転数検
出手段としての回転数センサを示し、該回転数センサ3
9は原動機9の実回転数を検出し、その検出信号をコン
トローラ40に出力する。40はマイクロコンピュータ
等によって構成されるコントローラを示し、該コントロ
ーラ40はその入力側が圧力スイッチ37,38および
回転数センサ39等に接続され、出力側が電磁弁20等
に接続されている。そして、該コントローラ40は圧力
スイッチ37,38および回転数センサ39からの検出
信号に基づき、原動機9が所定の低回転数領域にあると
きに、走行用制御弁22A,22B、作業用制御弁29
A,29Bの少なくともいずれかが中立位置から切換操
作されると、電磁弁20に切換信号を出力し、該電磁弁
20を切換位置aから切換位置bに切換えさせるように
なっている。
Reference numeral 39 denotes a rotation speed sensor as rotation speed detection means provided in the prime mover 9, and the rotation speed sensor 3
9 detects the actual number of revolutions of the prime mover 9 and outputs the detection signal to the controller 40. Reference numeral 40 denotes a controller composed of a microcomputer or the like, the input side of the controller 40 is connected to the pressure switches 37 and 38, the rotation speed sensor 39 and the like, and the output side is connected to the solenoid valve 20 and the like. Then, the controller 40, based on the detection signals from the pressure switches 37 and 38 and the rotation speed sensor 39, when the prime mover 9 is in a predetermined low rotation speed region, the traveling control valves 22A and 22B and the work control valve 29.
When at least one of A and 29B is switched from the neutral position, a switching signal is output to the solenoid valve 20 to switch the solenoid valve 20 from the switching position a to the switching position b.

【0017】さらに、41はパイロットポンプ18とタ
ンク12との間に位置して管路42の途中に設けられた
低圧リリーフ弁を示し、該リリーフ弁41はギアポンプ
等からなるパイロットポンプ18の吐出圧を、例えば4
0 Kg/cm2程度の圧力P2 (P2 >P1 )に制限し、こ
れ以上の圧力をタンク12にリリーフさせることによ
り、過剰圧がパイロットポンプ18等に作用するのを防
している。
Further, 41 is a pilot pump 18 and a pump.
Located between the link 12 and the conduit 12
A low pressure relief valve is shown, the relief valve 41 being a gear pump
The discharge pressure of the pilot pump 18 including
0 Kg / cm2Limit the pressure to about P2 (P2> P1)
By relieving the tank 12 with a pressure higher than this,
Prevents excessive pressure from acting on the pilot pump 18 etc.
Stop is doing.

【0018】このように構成される従来技術では、原動
機9によって油圧ポンプ10A,10Bおよびパイロッ
トポンプ18を回転駆動し、例えば運転室4内の操作レ
バー24A,24Bを傾転操作したときには、走行用制
御弁22A,22Bが中立位置から切換位置に切換えら
れ、油圧ポンプ10A,10Bからの圧油がそれぞれ主
管路13A,14A、13B,14Bを介して左,右の
走行用油圧モータ8A,8Bに給排されるので、該走行
用油圧モータ8A,8Bにより各減速機7を介して左,
右の履帯1A,1Aが駆動され、油圧ショベルが図4中
の矢示A,B方向に前進または後退する。
In the prior art having such a configuration, the prime mover 9 rotationally drives the hydraulic pumps 10A, 10B and the pilot pump 18, and, for example, when the operation levers 24A, 24B in the operator's cab 4 are tilted, they are used for traveling. The control valves 22A, 22B are switched from the neutral position to the switching position, and the pressure oil from the hydraulic pumps 10A, 10B is supplied to the left and right traveling hydraulic motors 8A, 8B via the main pipelines 13A, 14A, 13B, 14B, respectively. Since the oil is supplied and discharged, the traveling hydraulic motors 8A and 8B are used to drive the respective speed reducers 7 to the left,
The right crawler belts 1A, 1A are driven, and the hydraulic excavator moves forward or backward in the directions of arrows A, B in FIG.

【0019】また、運転室4内の操作レバー31を傾転
操作し、作業用制御弁29A,29Bを中立位置から
左,右の切換位置に切換えたときには、油圧ポンプ10
A,10Bからの圧油が主管路15Aまたは15Bを介
して各ブームシリンダ6Dに給排されるので、該各ブー
ムシリンダ6Dにより作業装置6のブーム6Aを図4中
の矢示C,D方向に俯仰動することができ、バケット6
Cによって土砂等の掘削作業を行うことができる。
When the operation lever 31 in the operator's cab 4 is tilted to switch the work control valves 29A and 29B from the neutral position to the left and right switching positions, the hydraulic pump 10 is operated.
Since the pressure oil from A and 10B is supplied to and discharged from each boom cylinder 6D through the main conduit 15A or 15B, the boom cylinder 6D causes the boom 6A of the working device 6 to move in the directions indicated by arrows C and D in FIG. You can lie down on the bucket 6
With C, excavation work such as earth and sand can be performed.

【0020】そして、コントローラ40は圧力スイッチ
37,38および回転数センサ39からの検出信号に基
づき、原動機9が所定の低回転数領域にあるときに、走
行用制御弁22A,22B、作業用制御弁29A,29
Bの少なくともいずれかが中立位置から切換操作される
と、電磁弁20に切換信号を出力して該電磁弁20を切
換位置aから切換位置bに切換えさせるので、制御管路
17を介して各レギュレータ16に供給される制御圧P
が図6に示す特性線19A,19Bの如く減圧弁21の
設定圧P1 まで上昇するようになり、各レギュレータ1
6はこのときの制御圧Pに応じて油圧ポンプ10A,1
0Bの容量可変部11A,11Bを傾転角が小さくなる
ように傾転させ、油圧ポンプ10A,10Bの吐出量Q
を減少させる。
Then, the controller 40, based on the detection signals from the pressure switches 37, 38 and the rotation speed sensor 39, when the prime mover 9 is in a predetermined low rotation speed region, the traveling control valves 22A, 22B and the work control. Valve 29A, 29
When at least one of B is switched from the neutral position, a switching signal is output to the solenoid valve 20 to switch the solenoid valve 20 from the switching position a to the switching position b. Control pressure P supplied to the regulator 16
Will rise to the set pressure P1 of the pressure reducing valve 21 as indicated by the characteristic lines 19A and 19B shown in FIG.
6 is a hydraulic pump 10A, 1 according to the control pressure P at this time.
The displacement variable units 11A and 11B of 0B are tilted so that the tilt angle is small, and the discharge amount Q of the hydraulic pumps 10A and 10B is changed.
To reduce.

【0021】この場合、例えば運転者が操作レバー24
A,24Bまたは31を傾転操作して、走行用制御弁2
2A,22Bまたは作業用制御弁29A,29Bを中立
位置から切換位置に向けストロークさせるときに、パイ
ロットポンプ18から管路25,25Aおよび分岐管路
33,34等を介してタンク12へと排出される圧油
は、分岐管路33または34の途中位置で走行用制御弁
22A,22Bまたは作業用制御弁29A,29Bによ
り遮断されるから、分岐管路33または34内の圧力が
これによって上昇し、圧力スイッチ37または38はこ
のときの圧力で閉成され、検出信号をコントローラ40
に出力する。
In this case, for example, the driver operates the operation lever 24.
A, 24B or 31 is tilted to control the traveling control valve 2
2A, 22B or the work control valves 29A, 29B are discharged from the pilot pump 18 to the tank 12 via the pipe lines 25, 25A and the branch pipe lines 33, 34 when the stroke is made from the neutral position to the switching position. Since the pressure oil to be supplied is shut off by the traveling control valves 22A, 22B or the work control valves 29A, 29B at an intermediate position of the branch pipeline 33 or 34, the pressure in the branch pipeline 33 or 34 is increased by this. , The pressure switch 37 or 38 is closed by the pressure at this time, and the detection signal is sent to the controller 40.
Output to.

【0022】そして、コントローラ40は回転数センサ
39からの回転数検出信号に基づき原動機9が低回転数
領域にあると判定した状態で、圧力スイッチ37または
38から検出信号を読込むと、電磁弁20に切換信号を
出力して該電磁弁20を切換位置aから切換位置bに切
換えさせる。この結果、制御管路17から各レギュレー
タ16に供給される制御圧Pは図6に示す特性線19
A,19Bの如く減圧弁21の設定圧P1 まで上昇し、
該各レギュレータ16がこのときの制御圧P、即ち設定
圧P1 に基づき油圧ポンプ10A,10Bの吐出量Qを
図6に例示する吐出量Qa ,Qb 程度まで減少させるこ
とにより、原動機9にかかる負荷を低く抑えてエンジン
ストール(エンスト)を防止する過負荷防止制御が行わ
れる。
When the controller 40 reads the detection signal from the pressure switch 37 or 38 in the state where the motor 9 determines that the prime mover 9 is in the low rotation speed region based on the rotation speed detection signal from the rotation speed sensor 39, the solenoid valve 20 is read. A switching signal is output to switch the solenoid valve 20 from the switching position a to the switching position b. As a result, the control pressure P supplied from the control line 17 to each regulator 16 is the characteristic line 19 shown in FIG.
As in A and 19B, the pressure rises to the set pressure P1 of the pressure reducing valve 21,
The regulator 16 reduces the discharge amount Q of the hydraulic pumps 10A and 10B to the discharge amounts Qa and Qb illustrated in FIG. 6 based on the control pressure P at this time, that is, the set pressure P1 to load the prime mover 9. Is controlled to prevent engine stall (stalling) by overload prevention control.

【0023】[0023]

【発明が解決しようとする課題】ところで、上述した従
来技術では、パイロットポンプ18、タンク12と電磁
弁20との間で制御管路17Bの途中に減圧弁21を設
け、コントローラ40により電磁弁20を切換位置aか
ら切換位置bに切換えて、原動機9の過負荷防止制御を
行うときに、制御管路17内の制御圧Pを減圧弁21の
設定圧P1 (図6参照)まで減圧し、各レギュレータ1
6に供給する制御圧Pがこの設定圧P1 を越えて上昇す
るのを規制するようしているから、原動機9の低回転数
領域で、走行用制御弁22A,22B、作業用制御弁2
9A,29Bの少なくともいずれかが中立位置から切換
操作されたときに、油圧ポンプ10A,10Bから吐出
される圧油の吐出量Qが図6に示す吐出量Qa ,Qb 以
下まで低下するのを抑えることができ、例えば走行用油
圧モータ8A,8Bまたは各ブームシリンダ6Dに吐出
量Qa ,Qb 程度の圧油を供給でき、これらの作動速度
が原動機9の低回転数領域で大幅に低下するのを防止す
るようにしている。
By the way, in the above-mentioned prior art, the pressure reducing valve 21 is provided in the middle of the control line 17B between the pilot pump 18, the tank 12 and the solenoid valve 20, and the solenoid valve 20 is controlled by the controller 40. Is switched from the switching position a to the switching position b, and when the overload prevention control of the prime mover 9 is performed, the control pressure P in the control line 17 is reduced to the set pressure P1 (see FIG. 6) of the pressure reducing valve 21, Each regulator 1
Since the control pressure P supplied to 6 exceeds the set pressure P1 and is controlled to rise, in the low speed region of the prime mover 9, the traveling control valves 22A and 22B and the working control valve 2 are controlled.
When at least one of 9A and 29B is switched from the neutral position, the discharge amount Q of the pressure oil discharged from the hydraulic pumps 10A and 10B is prevented from decreasing below the discharge amounts Qa and Qb shown in FIG. For example, it is possible to supply the hydraulic oil for traveling 8A, 8B or each boom cylinder 6D with the pressure oil of the discharge amounts Qa, Qb, and the operating speed of these can be significantly reduced in the low rotation speed region of the prime mover 9. I try to prevent it.

【0024】しかし、従来技術では、油圧ポンプ10
A,10Bの製造時にそれぞれの部品等に僅かでも寸法
誤差があると、油圧ポンプ10A,10Bの容量可変部
11A,11Bを各レギュレータ16で傾転駆動する場
合に、図6に示す特性線19A,19Bの如く油圧ポン
プ10A,10Bの吐出量Qに誤差が生じてしまう。そ
して、制御管路17からの制御圧Pを減圧弁21により
設定圧P1 まで減圧しているときには、油圧ポンプ10
A,10Bから吐出される圧油の吐出量Qa ,Qb に流
量差が生じるので、走行用制御弁22A,22Bを共に
中立位置から切換操作して油圧ポンプ10A,10Bか
らの圧油を走行用油圧モータ8A,8Bにそれぞれ給排
するときに、該走行用油圧モータ8A,8Bの回転速度
に前記流量差に基づく速度差が生じ、該走行用油圧モー
タ8A,8Bにより左,右の履帯1A,1Aがそれぞれ
異なる速度で駆動されることがある。
However, in the prior art, the hydraulic pump 10
When there is a slight dimensional error in the respective parts when manufacturing A and 10B, the characteristic line 19A shown in FIG. 6 is used when the displacement varying parts 11A and 11B of the hydraulic pumps 10A and 10B are tilt-driven by the respective regulators 16. , 19B, an error occurs in the discharge amount Q of the hydraulic pumps 10A, 10B. When the control pressure P from the control line 17 is reduced to the set pressure P1 by the pressure reducing valve 21, the hydraulic pump 10
Since there is a flow rate difference between the discharge amounts Qa and Qb of the pressure oil discharged from A and 10B, the travel control valves 22A and 22B are both switched from the neutral position to operate the pressure oil from the hydraulic pumps 10A and 10B. When the hydraulic motors 8A and 8B are supplied to and discharged from the hydraulic motors 8A and 8B respectively, a speed difference occurs in the rotational speeds of the traveling hydraulic motors 8A and 8B based on the flow rate difference, and the traveling hydraulic motors 8A and 8B cause left and right crawler belts 1A. , 1A may be driven at different speeds.

【0025】このため従来技術では、例えば油圧ショベ
ルを図4中の矢示A方向に前進させてトレーラ等に積み
込むようなときに、走行用油圧モータ8A,8Bにより
左,右の履帯1A,1Aがそれぞれ異なる速度で駆動さ
れて油圧ショベルが蛇行し、油圧ショベルをトレーラ等
に直進させて積み込むのが難しくなるという問題があ
る。
Therefore, in the prior art, for example, when the hydraulic excavator is advanced in the direction of arrow A in FIG. 4 to be loaded on the trailer or the like, the traveling hydraulic motors 8A, 8B are used to drive the left and right crawler belts 1A, 1A. However, there is a problem in that the hydraulic excavators meander as they are driven at different speeds, making it difficult to move the hydraulic excavator straight to a trailer or the like and load it.

【0026】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明は原動機の低回転数領域で過負荷
防止制御等を行なうときに、各油圧ポンプから吐出され
る圧油の吐出量にバラツキが生じるのを防止でき、例え
ば油圧ショベルの走行用油圧回路等に組み込んだときに
油圧ショベルを直進させてトレーラ等に簡単に積み込む
ことができるようにした可変容量型油圧ポンプ制御装置
を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems of the prior art. The present invention discharges pressure oil discharged from each hydraulic pump when performing overload prevention control or the like in a low speed region of a prime mover. A variable displacement hydraulic pump control device that can prevent variations in quantity and that can be easily loaded on a trailer by moving the hydraulic excavator straight when installed in a hydraulic circuit for traveling of a hydraulic excavator, etc. It is intended to be provided.

【0027】[0027]

【課題を解決するための手段】上述した課題を解決する
ために第1の発明が採用する構成の特徴は、各容量制御
手段を副油圧源に接続する制御管路の途中に、前記副油
圧源に対して制御圧切換手段と並列に接続され、高圧側
に切換えられたときに前記各容量制御手段に供給する制
御圧を減圧弁の設定圧よりも高い圧力に切換える他の制
御圧切換手段と、該他の制御圧切換手段と前記制御圧切
換手段とを介する制御圧のうち、高圧側の制御圧を選択
して前記各容量制御弁に供給する高圧選択手段とを設
け、コントローラは、原動機の低回転数領域で、複数種
の方向切換弁のいずれかが中立位置から切換操作された
ときに、切換操作された前記方向切換弁の種類に応じて
前記制御圧切換手段と他の制御圧切換手段とを選択的に
高圧側に切換える構成としたことにある。
The feature of the configuration adopted by the first invention to solve the above-mentioned problems is that the auxiliary hydraulic pressure is provided in the middle of a control line connecting each capacity control means to the auxiliary hydraulic pressure source. Another control pressure switching means connected in parallel with the control pressure switching means to the power source and switching the control pressure supplied to each of the capacity control means to a pressure higher than the set pressure of the pressure reducing valve when switched to the high pressure side. And a high pressure selecting means for selecting a high pressure side control pressure among the control pressures via the other control pressure switching means and the control pressure switching means and supplying the high pressure side control pressure to each of the displacement control valves. When any one of a plurality of types of directional control valves is switched from the neutral position in the low rotation speed region of the prime mover, the control pressure switching means and other controls are operated according to the type of the directional control valve that has been switched. A mechanism for selectively switching the pressure switching means to the high pressure side. Lies in the fact that with the.

【0028】また、第2の発明が採用する構成の特徴
は、コントローラを、原動機の低回転数領域で、複数種
の方向切換弁のいずれかが中立位置から切換操作された
ときに、制御圧切換手段を高圧側に切換える構成とし、
かつ該制御圧切換手段が高圧側に切換えられたときに、
切換操作された前記方向切換弁の種類に応じて各容量制
御手段に供給する制御圧を減圧弁の設定圧と該設定圧よ
りも高い圧力とに選択的に切換える制御圧選択手段を設
けたことにある。
Further, the feature of the configuration adopted by the second invention is that the controller controls the control pressure when any one of the plural kinds of directional control valves is switched from the neutral position in the low rotation speed region of the prime mover. The switching means is configured to switch to the high voltage side,
And when the control pressure switching means is switched to the high pressure side,
Control pressure selection means is provided for selectively switching the control pressure supplied to each capacity control means between the set pressure of the pressure reducing valve and a pressure higher than the set pressure in accordance with the type of the directional control valve that has been switched. It is in.

【0029】[0029]

【作用】上記構成により、原動機の低回転数領域で、複
数種の方向切換弁のいずれかが中立位置から切換操作さ
れたときには、容量制御手段に供給する制御圧を方向切
換弁の種類に応じて減圧弁の設定圧とこれよりも高い圧
力とに選択でき、高い圧力を選択したときには、各油圧
ポンプの容量可変部を共に最小傾転位置に保持すること
ができる。そして、該各油圧ポンプは容量可変部が共に
最小傾転位置になったときに、傾転途中の位置よりも圧
油の吐出量にバラツキが生じることはなくなるので、各
油圧ポンプから実質的に等しい流量の圧油を吐出させる
ことができる。
With the above construction, when any of a plurality of types of directional control valves is switched from the neutral position in the low rotation speed region of the prime mover, the control pressure supplied to the capacity control means depends on the type of directional control valve. The set pressure of the pressure reducing valve and a pressure higher than this can be selected, and when the high pressure is selected, both the variable volume portions of the respective hydraulic pumps can be held at the minimum tilt position. Further, in each of the hydraulic pumps, when the displacement changing parts are both in the minimum tilting position, there is no more variation in the discharge amount of the pressure oil than in the position in the middle of tilting. It is possible to discharge the pressure oil at the same flow rate.

【0030】[0030]

【実施例】以下、本発明の実施例を図1ないし図3に基
づき説明する。なお、実施例では前述した図4ないし図
6に示す従来技術と同一の構成要素に同一の符号を付
し、その説明を省略するものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In the embodiment, the same components as those of the prior art shown in FIGS. 4 to 6 described above are designated by the same reference numerals, and the description thereof will be omitted.

【0031】図1および図2は本発明の第1の実施例を
示している。
1 and 2 show a first embodiment of the present invention.

【0032】図中、50は本実施例で用いる制御管路5
1と制御管路51A,51Bとの間に設けられた他の制
御圧切換手段としての電磁弁を示し、該電磁弁50はタ
ンク12、パイロットポンプ18と各レギュレータ16
との間に位置し、これらに対して電磁弁20と並列に配
設されている。そして、該電磁弁50は後述するコント
ローラ54からの切換信号により低圧側の切換位置aか
ら高圧側の切換位置bに切換えられ、制御管路51を制
御管路51A,51Bのいずれかに切換接続する。ここ
で、該制御管路51は従来技術で述べた制御管路17と
並列に設けられ、制御管路51Aは制御管路17Aと共
にタンク12に接続され、制御管路51Bは制御管路1
7Bと共にパイロットポンプ18に接続されている。
In the figure, 50 is a control line 5 used in this embodiment.
1 and the control lines 51A and 51B, the electromagnetic valve as another control pressure switching means is shown. The electromagnetic valve 50 is a tank 12, a pilot pump 18, and each regulator 16
Between them and are arranged in parallel with the solenoid valve 20. Then, the solenoid valve 50 is switched from the switching position a on the low pressure side to the switching position b on the high pressure side by a switching signal from a controller 54, which will be described later, and the control line 51 is switched and connected to either of the control lines 51A and 51B. To do. Here, the control line 51 is provided in parallel with the control line 17 described in the related art, the control line 51A is connected to the tank 12 together with the control line 17A, and the control line 51B is connected to the control line 1.
It is connected to the pilot pump 18 together with 7B.

【0033】52は制御管路17,51のうち高圧側を
選択する高圧選択手段としてのシャトル弁、53は該シ
ャトル弁52で選択した高圧側の制御圧Pを各レギュレ
ータ16に供給する他の制御管路を示し、該制御管路5
3は、コントローラ54からの切換信号により電磁弁5
0が切換位置aから切換位置bに切換えられたときに、
シャトル弁52で制御管路51からの制御圧Pを選択さ
せることにより各レギュレータ16に減圧弁21の設定
圧P1 よりも高い圧力、即ち低圧リリーフ弁41の設定
圧である圧力P2 を制御圧Pとして供給する。
Reference numeral 52 denotes a shuttle valve as a high pressure selecting means for selecting the high pressure side of the control pipes 17, 51, and 53 denotes another control pressure P on the high pressure side selected by the shuttle valve 52 to each regulator 16. A control line is shown, and the control line 5
3 is a solenoid valve 5 in response to a switching signal from the controller 54.
When 0 is switched from the switching position a to the switching position b,
By selecting the control pressure P from the control line 51 with the shuttle valve 52, the pressure higher than the set pressure P1 of the pressure reducing valve 21, that is, the pressure P2 which is the set pressure of the low pressure relief valve 41 is applied to each regulator 16 as the control pressure P. Supply as.

【0034】また、コントローラ54からの切換信号に
より電磁弁20が切換位置aから切換位置bに切換えら
れ、電磁弁50が切換位置aに復帰したときに、制御管
路53はシャトル弁52で制御管路17からの制御圧P
を選択させることにより、各レギュレータ16に減圧弁
21の設定圧P1 (P1 <P2 )を制御圧Pとして供給
する。
When the solenoid valve 20 is switched from the switching position a to the switching position b by the switching signal from the controller 54 and the electromagnetic valve 50 returns to the switching position a, the control line 53 is controlled by the shuttle valve 52. Control pressure P from line 17
Is selected, the set pressure P1 (P1 <P2) of the pressure reducing valve 21 is supplied to each regulator 16 as the control pressure P.

【0035】さらに、54はマイクロコンピュータ等に
よって構成されるコントローラを示し、該コントローラ
54は従来技術で述べたコントローラ40とほぼ同様
に、その入力側が圧力スイッチ37,38および回転数
センサ39等に接続されているものの、該コントローラ
54は出力側が電磁弁20,50等に接続されている。
そして、該コントローラ54はその記憶回路内に図2に
示すプログラム等を格納し、電磁弁20,50の切換制
御処理を行うことにより、原動機9の過負荷防止制御を
実行させるようになっている。また、該コントローラ5
4の記憶回路にはその記憶エリア(図示せず)内に、原
動機9の回転数が所定の低回転数領域内にあるか否かを
判定する判定値等が格納されている。
Further, reference numeral 54 denotes a controller composed of a microcomputer or the like, and the controller 54 has its input side connected to the pressure switches 37, 38, the rotation speed sensor 39, etc., similarly to the controller 40 described in the prior art. However, the output side of the controller 54 is connected to the solenoid valves 20, 50 and the like.
The controller 54 stores the program shown in FIG. 2 in its storage circuit and performs switching control processing of the solenoid valves 20 and 50 to execute overload prevention control of the prime mover 9. . In addition, the controller 5
The storage circuit of No. 4 stores, in its storage area (not shown), a determination value or the like for determining whether or not the rotation speed of the prime mover 9 is within a predetermined low rotation speed region.

【0036】本実施例による可変容量型油圧ポンプ制御
装置は上述の如き構成を有するもので、その基本的な作
動については従来技術によるものと格別差異はない。
The variable displacement hydraulic pump control device according to the present embodiment has the above-mentioned structure, and its basic operation is not significantly different from that of the prior art.

【0037】そこで、コントローラ54による電磁弁2
0,50の切換制御処理について図2を参照して説明す
る。
Therefore, the solenoid valve 2 by the controller 54
The switching control processing of 0 and 50 will be described with reference to FIG.

【0038】まず、処理動作がスタートすると、ステッ
プ1で走行用の圧力スイッチ37、作業用の圧力スイッ
チ38および回転数センサ39からそれぞれの検出信号
を読込み、ステップ2に移って原動機9の回転数が所定
の低回転数領域内にあるか否かを回転数センサ39から
の回転数検出信号に基づいて判定し、「NO」と判定し
たときには原動機9の回転数が比較的高く、エンストを
起こす可能性は非常に少ないので、ステップ3に移って
電磁弁20,50を共に切換位置aに保持し、図1に示
す制御管路53から各レギュレータ16に供給する制御
圧Pをタンク圧程度まで低下させることにより、該各レ
ギュレータ16で油圧ポンプ10A,10Bの容量可変
部11A,11Bを最大傾転位置へと傾転させて、油圧
ポンプ10A,10Bから吐出される圧油の吐出量を図
6に示す最大吐出量Qt 程度に設定し、ステップ4でリ
ターンしてステップ1以降の処理を繰り返す。
First, when the processing operation is started, in step 1, the respective detection signals are read from the traveling pressure switch 37, the working pressure switch 38, and the rotation speed sensor 39, and the routine proceeds to step 2, where the rotation speed of the prime mover 9 is read. Is within a predetermined low rotation speed region based on the rotation speed detection signal from the rotation speed sensor 39, and when the result is "NO", the rotation speed of the prime mover 9 is relatively high and an engine stall occurs. Since the possibility is very low, the process moves to step 3 and both the solenoid valves 20 and 50 are held at the switching position a, and the control pressure P supplied from the control line 53 shown in FIG. By lowering the pressure, each of the regulators 16 tilts the capacity varying portions 11A, 11B of the hydraulic pumps 10A, 10B to the maximum tilt position, and the hydraulic pumps 10A, 1B. The discharge amount of pressure oil discharged from the B set to the maximum discharge amount of about Qt shown in FIG. 6, repeat steps 1 and subsequent treatment with returns at step 4.

【0039】次に、ステップ2で「YES」と判定した
ときには原動機9の回転数が所定の低回転数領域内にあ
り、エンストの可能性があるから、ステップ5に移って
走行用の圧力スイッチ37が閉成されているか否かを判
定し、「YES」と判定したときには走行用制御弁22
A,22Bの少なくともいずれかが中立位置から切換操
作され、油圧モータ8A,8Bの少なくともいずれかが
油圧ポンプ10A,10Bからの圧油により回転駆動さ
れているので、油圧ポンプ10A,10Bからの回転負
荷により原動機9がエンストを起こすのを防止すべく、
ステップ6に移って電磁弁50に切換信号を出力し、該
電磁弁50を切換位置aから切換位置bに切換えさせ
る。
Next, when "YES" is determined in step 2, since the rotation speed of the prime mover 9 is within a predetermined low rotation speed range and there is a possibility of engine stalling, the process moves to step 5 and the traveling pressure switch is used. It is determined whether or not 37 is closed, and when the determination is "YES", the traveling control valve 22
Since at least one of A and 22B is switched from the neutral position and at least one of hydraulic motors 8A and 8B is rotationally driven by the pressure oil from hydraulic pumps 10A and 10B, rotation from hydraulic pumps 10A and 10B is performed. To prevent the prime mover 9 from stall due to load,
In step 6, a switching signal is output to the solenoid valve 50 to switch the solenoid valve 50 from the switching position a to the switching position b.

【0040】そして、このときには低圧リリーフ弁41
で設定されたパイロットポンプ18からの圧力P2 が制
御管路51B、シャトル弁52等を介して制御管路53
内に制御圧Pとして導かれるから、各レギュレータ16
に減圧弁21の設定圧P1 よりも高い圧力P2 (P2 >
P1 )を制御圧Pとして供給でき、各レギュレータ16
により油圧ポンプ10A,10Bの容量可変部11A,
11Bを最小傾転位置まで傾転させることができる。
At this time, the low pressure relief valve 41
The pressure P2 from the pilot pump 18 set by the control line 53 is controlled via the control line 51B, the shuttle valve 52 and the like.
Since the control pressure P is introduced into each regulator 16,
The pressure P2 (P2> higher than the set pressure P1 of the pressure reducing valve 21).
P1) can be supplied as control pressure P, and each regulator 16
With the variable capacity portion 11A of the hydraulic pumps 10A and 10B,
11B can be tilted to the minimum tilt position.

【0041】これによって、油圧ポンプ10A,10B
から吐出される圧油の吐出量Qを最小吐出量Qn まで下
げることができ、図6に示す如くこのときの吐出量Qn
に油圧ポンプ10A,10B間でバラツキが生じるのを
防止できる。また、ステップ6で電磁弁50を切換位置
aから切換位置bに切換えた後にはステップ7でリター
ンし、ステップ1以降の処理を繰り返す。
As a result, the hydraulic pumps 10A, 10B
The discharge amount Q of the pressure oil discharged from the can be reduced to the minimum discharge amount Qn, and as shown in FIG.
In addition, it is possible to prevent variations between the hydraulic pumps 10A and 10B. Further, after switching the solenoid valve 50 from the switching position a to the switching position b in step 6, the process returns in step 7 and the processes from step 1 onward are repeated.

【0042】一方、ステップ5で「NO」と判定したと
きには走行用の圧力スイッチ37が開成され、走行用制
御弁22A,22Bは共に中立位置に復帰して走行用油
圧モータ8A,8Bは停止しているので、ステップ8に
移って作業用の圧力スイッチ38が閉成されているか否
かを判定し、「YES」と判定したときには作業用制御
弁29A,29Bが中立位置から切換操作され、各ブー
ムシリンダ6Dを油圧ポンプ10A,10Bからの圧油
で作動させているので、油圧ポンプ10A,10Bから
の回転負荷により原動機9がエンストを起こすのを防止
すべく、ステップ9に移って電磁弁20に切換信号を出
力し、該電磁弁20を切換位置aから切換位置bに切換
えさせる。
On the other hand, when it is judged "NO" in step 5, the traveling pressure switch 37 is opened, the traveling control valves 22A and 22B are both returned to the neutral position, and the traveling hydraulic motors 8A and 8B are stopped. Therefore, the routine proceeds to step 8 to judge whether or not the work pressure switch 38 is closed, and when it is judged to be "YES", the work control valves 29A and 29B are switched from the neutral position, and Since the boom cylinder 6D is operated by the pressure oil from the hydraulic pumps 10A and 10B, in order to prevent the prime mover 9 from stall due to the rotational load from the hydraulic pumps 10A and 10B, the process proceeds to step 9 and the solenoid valve 20 is operated. A switching signal is output to switch the solenoid valve 20 from the switching position a to the switching position b.

【0043】そして、この場合には電磁弁20は切換位
置bに切換えられているのに対し、電磁弁50は切換位
置aにあるので、パイロットポンプ18からの制御圧P
は減圧弁21により設定圧P1 まで減圧され、この設定
圧P1 を制御圧Pとして各レギュレータ16に供給でき
る。これによって、原動機9の低回転数領域で、作業用
制御弁29A,29Bが中立位置から切換操作されたと
きには、油圧ポンプ10A,10Bから吐出される圧油
の吐出量Qが図6に示す吐出量Qa ,Qb 程度に抑える
ことができ、原動機9に過負荷が作用するのを防止でき
ると共に、各ブームシリンダ6Dに吐出量Qa ,Qb の
圧油を供給してこれらの作動速度が原動機9の低回転数
領域で大きく低下するのも防止できる。
In this case, the solenoid valve 20 is switched to the switching position b, while the solenoid valve 50 is at the switching position a, so the control pressure P from the pilot pump 18 is changed.
Is reduced to a set pressure P1 by a pressure reducing valve 21, and this set pressure P1 can be supplied to each regulator 16 as a control pressure P. As a result, when the work control valves 29A and 29B are switched from the neutral position in the low rotation speed region of the prime mover 9, the discharge amount Q of the pressure oil discharged from the hydraulic pumps 10A and 10B is the discharge amount shown in FIG. The quantity Qa, Qb can be suppressed to an extent that an overload can be prevented from acting on the prime mover 9 and, at the same time, the operating speed of the prime mover 9 can be controlled by supplying the hydraulic oil of the discharge quantity Qa, Qb to each boom cylinder 6D. It is also possible to prevent a large decrease in the low rotation speed region.

【0044】また、ステップ8で「NO」と判定したと
きには圧力スイッチ37,38が共に開成され、走行用
制御弁22A,22Bおよび作業用制御弁29A,29
Bは中立位置にあり、油圧ポンプ10A,10Bの回転
負荷で原動機9がエンストを起こすことはないから、ス
テップ3に移って電磁弁20,50を共に切換位置aに
復帰させ、ステップ4でリターンする。
When it is determined to be "NO" in step 8, the pressure switches 37 and 38 are both opened, and the traveling control valves 22A and 22B and the work control valves 29A and 29 are operated.
Since B is in the neutral position and the prime mover 9 does not stall due to the rotational load of the hydraulic pumps 10A and 10B, the routine proceeds to step 3, where both solenoid valves 20 and 50 are returned to the switching position a, and the routine returns at step 4. To do.

【0045】かくして、本実施例によれば、例えば油圧
ショベルを図4中の矢示A方向に前進させてトレーラ等
に積み込むような場合に、左,右の操作レバー24A,
24Bを共に傾転して走行用制御弁22A,22Bを共
に中立位置から大きく切換操作すれば、制御管路53内
の制御圧Pが自動的に図6に示す圧力P2 となり、各レ
ギュレータ16によって油圧ポンプ10A,10Bの容
量可変部11A,11Bを最小傾転位置まで傾転駆動で
きるから、油圧ポンプ10A,10Bから吐出される圧
油の吐出量Qを共に最小吐出量Qn まで下げることがで
き、図6に示す如く油圧ポンプ10A,10B間で吐出
量Qn にバラツキが生じるのを防止できる。
Thus, according to this embodiment, for example, when the hydraulic excavator is advanced in the direction of arrow A in FIG. 4 to be loaded on the trailer or the like, the left and right operation levers 24A,
When both 24B are tilted and the traveling control valves 22A and 22B are both largely switched from the neutral position, the control pressure P in the control line 53 automatically becomes the pressure P2 shown in FIG. Since the variable displacement parts 11A and 11B of the hydraulic pumps 10A and 10B can be tilt-driven to the minimum tilt position, both the discharge amount Q of the pressure oil discharged from the hydraulic pumps 10A and 10B can be reduced to the minimum discharge amount Qn. As shown in FIG. 6, it is possible to prevent variation in the discharge amount Qn between the hydraulic pumps 10A and 10B.

【0046】従って本実施例では、原動機9の低回転数
領域で油圧ショベルを走行させるときに、各レギュレー
タ16で油圧ポンプ10A,10Bの容量可変部11
A,11Bを共に最小傾転位置に固定して、油圧ポンプ
10A,10Bから走行用油圧モータ8A,8Bにそれ
ぞれ給排する圧油に流量差が生じるのを防止でき、該走
行用油圧モータ8A,8Bにより左,右の履帯1A,1
Aを実質的に等しい速度で駆動することにより、例えば
油圧ショベルをトレーラ等に直進させて簡単に積み込む
ことができる。
Therefore, in this embodiment, when the hydraulic excavator is run in the low rotation speed region of the prime mover 9, each regulator 16 causes the capacity varying portion 11 of the hydraulic pumps 10A and 10B to move.
By fixing both A and 11B to the minimum tilt position, it is possible to prevent a difference in flow rate between the hydraulic oils supplied to and discharged from the hydraulic pumps 10A and 10B to the traveling hydraulic motors 8A and 8B. , 8B, left and right tracks 1A, 1
By driving A at substantially the same speed, for example, a hydraulic excavator can be moved straight onto a trailer or the like and easily loaded.

【0047】また、油圧ショベルを停止させ、各ブーム
シリンダ6Dを油圧ポンプ10A,10Bからの圧油で
作動させるべく、操作レバー31を傾転操作して作業用
制御弁29A,29Bを比較的大きくストロークさせた
ときには、制御管路53内の制御圧Pを減圧弁21の設
定圧P1 (図6参照)まで従来技術と同様に減圧でき、
各レギュレータ16に供給する制御圧Pがこの設定圧P
1 となるから、原動機9の低回転数領域で油圧ポンプ1
0A,10Bから吐出される圧油の吐出量Qが図6に示
す吐出量Qa ,Qb となり、各ブームシリンダ6Dに向
けて吐出量Qa,Qb 程度の圧油を供給でき、これらの
作動速度が原動機9の低回転数領域で大きく低下するの
を防止できる等、種々の効果を奏する。
Further, in order to stop the hydraulic excavator and operate the boom cylinders 6D with the pressure oil from the hydraulic pumps 10A and 10B, the operating lever 31 is tilted to make the work control valves 29A and 29B relatively large. When the stroke is made, the control pressure P in the control line 53 can be reduced to the set pressure P1 (see FIG. 6) of the pressure reducing valve 21 in the same manner as in the prior art,
The control pressure P supplied to each regulator 16 is the set pressure P
Since it becomes 1, the hydraulic pump 1 is operated in the low speed region of the prime mover 9.
The discharge amount Q of the pressure oil discharged from 0A, 10B becomes the discharge amounts Qa, Qb shown in FIG. 6, and it is possible to supply the pressure oil of about the discharge amount Qa, Qb toward each boom cylinder 6D, and these operating speeds are Various effects can be achieved, such as a large reduction in the low rotation speed region of the prime mover 9 can be prevented.

【0048】次に、図3は本発明の第2の実施例を示
し、本実施例の特徴は、制御管路17Bの途中に従来技
術で用いている減圧弁21に替えて、制御圧選択手段と
しての油圧パイロット式切換弁61を設けたことにあ
る。
Next, FIG. 3 shows a second embodiment of the present invention. The feature of this embodiment is that the pressure reducing valve 21 used in the prior art is replaced in the middle of the control line 17B, and the control pressure is selected. The hydraulic pilot type switching valve 61 is provided as a means.

【0049】ここで、該切換弁61は左,右の油圧パイ
ロット部がパイロット管路62A,62Bに接続され、
該パイロット管路62Aは電磁弁20と切換弁61との
間で制御管路17Bの途中からパイロット圧を導くよう
になっている。また、パイロット管路62Bは走行用制
御弁22Aと絞り35との間で分岐管路33の途中から
パイロット圧を導き、走行用制御弁22A,22Bの少
なくともいずれかが中立位置から切換操作されたときに
は切換弁61を高圧位置cに保持するようになってい
る。
Here, the switching valve 61 has left and right hydraulic pilot portions connected to the pilot lines 62A and 62B,
The pilot line 62A guides the pilot pressure between the solenoid valve 20 and the switching valve 61 from the middle of the control line 17B. The pilot line 62B guides the pilot pressure from the middle of the branch line 33 between the traveling control valve 22A and the throttle 35, and at least one of the traveling control valves 22A and 22B is switched from the neutral position. At times, the switching valve 61 is held at the high pressure position c.

【0050】そして、原動機9の低回転数領域で、走行
用制御弁22A,22Bが中立位置から切換操作される
と、圧力スイッチ37が閉成され、コントローラ40に
より電磁弁20が切換位置aから切換位置bに切換えら
れると共に、切換弁61は高圧位置cに保持されるか
ら、このときには低圧リリーフ弁41で設定されたパイ
ロットポンプ18からの圧力P2 を各レギュレータ16
に制御圧Pとして供給でき、各レギュレータ16により
油圧ポンプ10A,10Bの容量可変部11A,11B
を最小傾転位置まで傾転させ、油圧ポンプ10A,10
Bから吐出される圧油の吐出量Qを最小吐出量Qn まで
下げることができる。
When the traveling control valves 22A and 22B are switched from the neutral position in the low rotation speed region of the prime mover 9, the pressure switch 37 is closed and the controller 40 causes the solenoid valve 20 to switch from the switching position a. Since the switching valve 61 is switched to the switching position b and the switching valve 61 is held at the high pressure position c, at this time, the pressure P2 from the pilot pump 18 set by the low pressure relief valve 41 is applied to each regulator 16.
Can be supplied as a control pressure P to each of the hydraulic pumps 10A and 10B by the regulators 16 and the variable capacity portions 11A and 11B of the hydraulic pumps 10A and 10B.
The hydraulic pumps 10A, 10
The discharge amount Q of the pressure oil discharged from B can be reduced to the minimum discharge amount Qn.

【0051】一方、原動機9の低回転数領域で、走行用
制御弁22A,22Bが共に中立位置にあり、作業用制
御弁29A,29Bが中立位置から切換操作されたとき
には、圧力スイッチ38が閉成され、コントローラ40
は電磁弁20を切換位置aから切換位置bに切換えさせ
る。しかし、このときには走行用制御弁22Aと絞り3
5との間で分岐管路33の途中からパイロット圧を導く
パイロット管路62Bの圧力はタンク圧程度まで低下
し、切換弁61は減圧弁となって高圧位置cから減圧位
置dに切換わるので、制御管路17内の制御圧Pを従来
技術と同様に設定圧P1 (図6参照)に減圧でき、各レ
ギュレータ16に供給する制御圧Pがこの設定圧P1 を
越えて上昇するのを規制できる。
On the other hand, when the drive control valves 22A and 22B are both in the neutral position and the work control valves 29A and 29B are switched from the neutral position in the low speed region of the prime mover 9, the pressure switch 38 is closed. Controller 40
Causes the solenoid valve 20 to switch from the switching position a to the switching position b. However, at this time, the traveling control valve 22A and the throttle 3
The pressure in the pilot line 62B that guides the pilot pressure from the middle of the branch line 33 to 5 decreases to about the tank pressure, and the switching valve 61 becomes a pressure reducing valve and switches from the high pressure position c to the pressure reducing position d. The control pressure P in the control line 17 can be reduced to the set pressure P1 (see FIG. 6) as in the prior art, and the control pressure P supplied to each regulator 16 is restricted from rising above the set pressure P1. it can.

【0052】かくして、このように構成される本実施例
でも、前記第1の実施例とほぼ同様の作用効果を得るこ
とができるが、特に本実施例では、従来技術で用いてい
る減圧弁21にパイロット管路62Bを実質的に追加す
るだけで油圧パイロット式切換弁61を構成でき、第1
の実施例に比較して油圧回路全体を大幅に簡略化するこ
とができる。
Thus, in this embodiment having such a structure, it is possible to obtain substantially the same operational effects as in the first embodiment, but especially in this embodiment, the pressure reducing valve 21 used in the prior art is used. The hydraulic pilot type switching valve 61 can be constructed only by substantially adding the pilot conduit 62B to
It is possible to greatly simplify the entire hydraulic circuit as compared with the above embodiment.

【0053】なお、前記第1の実施例では、図2に示す
ステップ5で走行用の圧力スイッチ37が閉成されてい
ると判定したときに、ステップ6に移って電磁弁50に
切換信号を出力し、該電磁弁50を切換位置aから切換
位置bに切換えさせるものとして述べたが、これに替え
て、ステップ6では電磁弁20,50に切換信号を出力
し、該電磁弁20,50を共に切換位置aから切換位置
bに切換えさせるようにしてもよく、この場合でも同様
の作用効果を得ることができる。そして、この場合に
は、電磁弁50を第2の発明の構成要件である制御圧選
択手段として作動させることができる。
In the first embodiment, when it is determined in step 5 shown in FIG. 2 that the traveling pressure switch 37 is closed, the process proceeds to step 6 and a switching signal is sent to the solenoid valve 50. Although it has been described that the electromagnetic valve 50 is output and the electromagnetic valve 50 is switched from the switching position a to the switching position b, instead of this, a switching signal is output to the electromagnetic valves 20 and 50 in step 6, and the electromagnetic valves 20 and 50 are output. Both may be switched from the switching position a to the switching position b, and in this case, the same effect can be obtained. Then, in this case, the solenoid valve 50 can be operated as the control pressure selecting means which is a constituent feature of the second invention.

【0054】また、前記各実施例では、作業用制御弁2
9A,29Bを中立位置から切換操作することによっ
て、各ブームシリンダ6Dを油圧ポンプ10A,10B
からの圧油で作動させるものとして述べたが、本発明は
これに限らず、油圧ポンプ10A,10Bからの圧油で
各ブームシリンダ6Dに加えてアームシリンダ、バケッ
トシリンダおよび旋回用油圧モータ等を作動させるよう
にした油圧回路にも適用することができる。
In each of the above embodiments, the work control valve 2 is used.
By switching the 9A and 29B from the neutral position, the boom cylinders 6D are moved to the hydraulic pumps 10A and 10B.
Although the present invention is not limited to this, the present invention is not limited to this, and in addition to the boom cylinders 6D, the arm cylinders, the bucket cylinders, the turning hydraulic motor, and the like are applied with the pressure oil from the hydraulic pumps 10A and 10B. It can also be applied to a hydraulic circuit adapted to operate.

【0055】さらに、前記各実施例では、油圧ショベル
の油圧回路を例に挙げて説明したが、本発明はこれに限
らず、油圧クレーン等のように下部走行体等を備えた建
設機械の油圧回路に用いることができる。
Furthermore, in each of the above-mentioned embodiments, the hydraulic circuit of the hydraulic excavator has been described as an example, but the present invention is not limited to this, and the hydraulic pressure of a construction machine having a lower traveling body such as a hydraulic crane. Can be used in circuits.

【0056】[0056]

【発明の効果】以上詳述した通り本発明によれば、原動
機の低回転数領域で複数種の方向切換弁のいずれかが中
立位置から切換操作されたときに、切換操作された方向
切換弁の種類に応じて容量制御手段に供給する制御圧
を、減圧弁の設定圧と該設定圧よりも高い圧力とに選択
的に切換える構成としたから、容量制御手段に供給する
制御圧を減圧弁の設定圧よりも高い圧力に選択したとき
には、各油圧ポンプの容量可変部を共に最小傾転位置に
保持することが可能となり、この最小傾転位置で各油圧
ポンプから吐出される圧油の吐出量を一定にでき、各油
圧ポンプ毎に吐出量にバラツキが生じるのを確実に防止
できる。従って、例えば油圧ショベルを前進させてトレ
ーラ等に積み込むようなときに、原動機の回転数を低下
させた状態で各油圧ポンプから実質的に等しい流量の圧
油を吐出させることができ、油圧ショベルをトレーラ等
に直進させて簡単に積み込むことができる等、種々の効
果を奏する。
As described above in detail, according to the present invention, when any one of a plurality of types of directional control valves is switched from the neutral position in the low engine speed region, the directional control valve is switched. The control pressure to be supplied to the capacity control means is selectively switched between the set pressure of the pressure reducing valve and a pressure higher than the set pressure, so that the control pressure to be supplied to the capacity control means is reduced. When a pressure higher than the set pressure is selected, it becomes possible to hold both the variable displacement parts of each hydraulic pump in the minimum tilt position, and discharge the pressure oil discharged from each hydraulic pump at this minimum tilt position. The amount can be made constant, and it is possible to reliably prevent the discharge amount from varying for each hydraulic pump. Therefore, for example, when the hydraulic excavator is moved forward and loaded on a trailer or the like, it is possible to discharge the pressure oil of substantially the same flow rate from each hydraulic pump in a state where the rotation speed of the prime mover is reduced, and It has various effects such as being able to be straightly loaded onto a trailer or the like and easily loaded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による可変容量型油圧ポ
ンプ制御装置を示す油圧回路図である。
FIG. 1 is a hydraulic circuit diagram showing a variable displacement hydraulic pump control device according to a first embodiment of the present invention.

【図2】電磁弁の切換制御処理を示す流れ図である。FIG. 2 is a flow chart showing a switching control process of a solenoid valve.

【図3】本発明の第2の実施例による可変容量型油圧ポ
ンプ制御装置を示す油圧回路図である。
FIG. 3 is a hydraulic circuit diagram showing a variable displacement hydraulic pump control device according to a second embodiment of the present invention.

【図4】従来技術による油圧ショベルを示す斜視図であ
る。
FIG. 4 is a perspective view showing a conventional hydraulic excavator.

【図5】従来技術による可変容量型油圧ポンプ制御装置
を示す油圧回路図である。
FIG. 5 is a hydraulic circuit diagram showing a variable displacement hydraulic pump control device according to a conventional technique.

【図6】過負荷防止制御用の制御圧と油圧ポンプの吐出
量との関係を示す特性線図である。
FIG. 6 is a characteristic diagram showing a relationship between a control pressure for overload prevention control and a discharge amount of a hydraulic pump.

【符号の説明】[Explanation of symbols]

1 下部走行体 2 上部旋回体 6 作業装置 6D ブームシリンダ 8A,8B 走行用油圧モータ 9 原動機 10A,10B 可変容量型油圧ポンプ 11A,11B 容量可変部 12 タンク 13A,13B,14A,14B,15A,15B 主
管路 16 レギュレータ(容量制御手段) 17,17A,17B,51,51A,51B,53
制御管路 18 パイロットポンプ(副油圧源) 20 電磁弁(制御圧切換手段) 21 減圧弁 22A,22B 走行用制御弁(方向切換弁) 29A,29B 作業用制御弁(方向切換弁) 37,38 圧力スイッチ(操作検出手段) 39 回転数センサ(回転数検出手段) 40,54 コントローラ 41 低圧リリーフ弁 50 電磁弁(他の制御圧切換手段) 52 シャトル弁(高圧選択手段) 61 油圧パイロット式切換弁(制御圧選択手段) 62A,62B パイロット管路
1 Lower Traveling Body 2 Upper Revolving Body 6 Working Device 6D Boom Cylinder 8A, 8B Traveling Hydraulic Motor 9 Motors 10A, 10B Variable Capacity Hydraulic Pumps 11A, 11B Capacity Variable Section 12 Tanks 13A, 13B, 14A, 14B, 15A, 15B Main pipeline 16 Regulator (capacity control means) 17, 17A, 17B, 51, 51A, 51B, 53
Control pipe 18 Pilot pump (auxiliary hydraulic power source) 20 Electromagnetic valve (control pressure switching means) 21 Pressure reducing valve 22A, 22B Travel control valve (direction switching valve) 29A, 29B Work control valve (direction switching valve) 37, 38 Pressure switch (operation detection means) 39 Rotation speed sensor (rotation speed detection means) 40, 54 Controller 41 Low pressure relief valve 50 Electromagnetic valve (other control pressure switching means) 52 Shuttle valve (high pressure selection means) 61 Hydraulic pilot type switching valve (Control pressure selection means) 62A, 62B Pilot line

フロントページの続き (72)発明者 高木 政男 茨城県土浦市神立町650番地 日立建機エ ンジニアリング株式会社内Front Page Continuation (72) Inventor Masao Takagi 650, Kazunachi-cho, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Engineering Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原動機と、該原動機によって駆動され、
それぞれ容量可変部を有する複数の可変容量型油圧ポン
プと、外部からの制御圧により該各油圧ポンプの容量可
変部を傾転駆動し、該各油圧ポンプの容量を制御する複
数の容量制御手段と、該各容量制御手段を副油圧源に接
続する制御管路の途中に設けられ、該副油圧源から各容
量制御手段に供給する制御圧を低圧側と高圧側とに切換
える制御圧切換手段と、該制御圧切換手段と副油圧源と
の間に位置して前記制御管路の途中に設けられ、該制御
圧切換手段が高圧側に切換えられたときに前記制御圧を
設定圧まで減圧する減圧弁と、前記各油圧ポンプおよび
タンクを複数種の油圧アクチュエータに接続する各主管
路の途中にそれぞれ設けられ、前記各油圧ポンプから各
油圧アクチュエータに供給する圧油の流量および方向を
制御する複数種の方向切換弁と、該各方向切換弁が中立
位置から切換操作されたか否かを検出する複数の操作検
出手段と、前記原動機の回転数を検出する回転数検出手
段と、該回転数検出手段および前記各操作検出手段から
の検出信号に基づき前記制御圧切換手段に切換信号を出
力し、該制御圧切換手段を切換制御するコントローラと
からなる可変容量型油圧ポンプ制御装置において、前記
各容量制御手段を副油圧源に接続する制御管路の途中に
は、前記副油圧源に対して制御圧切換手段と並列に接続
され、高圧側に切換えられたときに前記各容量制御手段
に供給する制御圧を前記減圧弁の設定圧よりも高い圧力
に切換える他の制御圧切換手段と、該他の制御圧切換手
段と前記制御圧切換手段とを介する制御圧のうち、高圧
側の制御圧を選択して前記各容量制御弁に供給する高圧
選択手段とを設け、前記コントローラは、前記原動機の
低回転数領域で、前記複数種の方向切換弁のいずれかが
中立位置から切換操作されたときに、切換操作された前
記方向切換弁の種類に応じて前記制御圧切換手段と他の
制御圧切換手段とを選択的に高圧側に切換える構成とし
たことを特徴とする可変容量型油圧ポンプ制御装置。
1. A prime mover and driven by the prime mover,
A plurality of variable displacement hydraulic pumps each having a variable displacement portion; and a plurality of displacement control means for tilt-driving the variable displacement portion of each hydraulic pump by external control pressure to control the displacement of each hydraulic pump. A control pressure switching means that is provided in the middle of a control line connecting each of the displacement control means to the auxiliary hydraulic pressure source, and that switches the control pressure supplied from the auxiliary hydraulic pressure source to each of the displacement control means between a low pressure side and a high pressure side. Provided between the control pressure switching means and the sub-hydraulic power source and provided in the middle of the control line, and when the control pressure switching means is switched to the high pressure side, the control pressure is reduced to a set pressure. A plurality of pressure reducing valves and a plurality of pressure control valves that are provided in the middle of the main pipes that connect the hydraulic pumps and the tanks to a plurality of types of hydraulic actuators and that control the flow rate and direction of the pressure oil supplied from the hydraulic pumps to the hydraulic actuators. Seed A directional control valve, a plurality of operation detecting means for detecting whether or not each directional control valve is switched from a neutral position, a rotational speed detecting means for detecting the rotational speed of the prime mover, the rotational speed detecting means, and A variable displacement hydraulic pump control device comprising a controller that outputs a switching signal to the control pressure switching means based on a detection signal from each operation detecting means, and controls switching of the control pressure switching means. Is connected in parallel to the control pressure switching means with respect to the sub-hydraulic power source in the middle of the control line connecting the sub-hydraulic power source, and the control pressure supplied to each of the capacity control means when switched to the high pressure side. Is controlled to a pressure higher than the set pressure of the pressure reducing valve, and the control pressure on the high pressure side is selected from the control pressures via the other control pressure switching means and the control pressure switching means. The above capacity system And a high pressure selecting means for supplying the valve to the controller, wherein the controller performs the switching operation when one of the directional switching valves of the plurality of types is switched from a neutral position in a low rotation speed region of the prime mover. A variable displacement hydraulic pump control device, characterized in that the control pressure switching means and other control pressure switching means are selectively switched to a high pressure side in accordance with the type of the directional control valve.
【請求項2】 原動機と、該原動機によって駆動され、
それぞれ容量可変部を有する複数の可変容量型油圧ポン
プと、外部からの制御圧により該各油圧ポンプの容量可
変部を傾転駆動し、該各油圧ポンプの容量を制御する複
数の容量制御手段と、該各容量制御手段を副油圧源に接
続する制御管路の途中に設けられ、該副油圧源から各容
量制御手段に供給する制御圧を低圧側と高圧側とに切換
える制御圧切換手段と、該制御圧切換手段と副油圧源と
の間に位置して前記制御管路の途中に設けられ、該制御
圧切換手段が高圧側に切換えられたときに前記制御圧を
設定圧まで減圧する減圧弁と、前記各油圧ポンプおよび
タンクを複数種の油圧アクチュエータに接続する各主管
路の途中にそれぞれ設けられ、前記各油圧ポンプから各
油圧アクチュエータに供給する圧油の流量および方向を
制御する複数種の方向切換弁と、該各方向切換弁が中立
位置から切換操作されたか否かを検出する複数の操作検
出手段と、前記原動機の回転数を検出する回転数検出手
段と、該回転数検出手段および前記各操作検出手段から
の検出信号に基づき前記制御圧切換手段に切換信号を出
力し、該制御圧切換手段を切換制御するコントローラと
からなる可変容量型油圧ポンプ制御装置において、前記
コントローラは、前記原動機の低回転数領域で、前記複
数種の方向切換弁のいずれかが中立位置から切換操作さ
れたときに、前記制御圧切換手段を高圧側に切換える構
成とし、かつ該制御圧切換手段が高圧側に切換えられた
ときに、切換操作された前記方向切換弁の種類に応じて
前記各容量制御手段に供給する制御圧を前記減圧弁の設
定圧と該設定圧よりも高い圧力とに選択的に切換える制
御圧選択手段を設けたことを特徴とする可変容量型油圧
ポンプ制御装置。
2. A prime mover, driven by the prime mover,
A plurality of variable displacement hydraulic pumps each having a variable displacement portion; and a plurality of displacement control means for tilt-driving the variable displacement portion of each hydraulic pump by external control pressure to control the displacement of each hydraulic pump. A control pressure switching means that is provided in the middle of a control line connecting each of the displacement control means to the auxiliary hydraulic pressure source, and that switches the control pressure supplied from the auxiliary hydraulic pressure source to each of the displacement control means between a low pressure side and a high pressure side. Provided between the control pressure switching means and the sub-hydraulic power source and provided in the middle of the control line, and when the control pressure switching means is switched to the high pressure side, the control pressure is reduced to a set pressure. A plurality of pressure reducing valves and a plurality of pressure control valves that are provided in the middle of the main pipes that connect the hydraulic pumps and the tanks to a plurality of types of hydraulic actuators and that control the flow rate and direction of the pressure oil supplied from the hydraulic pumps to the hydraulic actuators. Seed A directional control valve, a plurality of operation detecting means for detecting whether or not each directional control valve is switched from a neutral position, a rotational speed detecting means for detecting the rotational speed of the prime mover, the rotational speed detecting means, and A variable displacement hydraulic pump control device comprising a controller that outputs a switching signal to the control pressure switching means based on a detection signal from each of the operation detecting means, and controls switching of the control pressure switching means. The control pressure switching means is configured to switch to the high pressure side when any one of the plurality of types of directional control valves is switched from the neutral position in the low rotation speed region of the prime mover, and the control pressure switching means has a high pressure side. When the pressure is switched to the side, the control pressure supplied to each of the displacement control means is set to the set pressure of the pressure reducing valve and a pressure higher than the set pressure according to the type of the directional control valve that has been switched. Variable displacement hydraulic pump control system is characterized by providing a control pressure selection means for switching the 択的.
JP31417592A 1992-10-29 1992-10-29 Variable displacement hydraulic pump controller Expired - Fee Related JP3145810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31417592A JP3145810B2 (en) 1992-10-29 1992-10-29 Variable displacement hydraulic pump controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31417592A JP3145810B2 (en) 1992-10-29 1992-10-29 Variable displacement hydraulic pump controller

Publications (2)

Publication Number Publication Date
JPH06137309A true JPH06137309A (en) 1994-05-17
JP3145810B2 JP3145810B2 (en) 2001-03-12

Family

ID=18050159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31417592A Expired - Fee Related JP3145810B2 (en) 1992-10-29 1992-10-29 Variable displacement hydraulic pump controller

Country Status (1)

Country Link
JP (1) JP3145810B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077671A (en) * 2008-09-25 2010-04-08 Sumitomo (Shi) Construction Machinery Co Ltd Hydraulic pump control device
JP2010078047A (en) * 2008-09-25 2010-04-08 Sumitomo (Shi) Construction Machinery Co Ltd Hydraulic pump control device
CN102900007A (en) * 2012-09-07 2013-01-30 徐州万邦道路工程装备服务股份公司 Independent opening and closing controlling oil circuit for left material hopper and right material hopper of paver
CN103267038A (en) * 2013-05-09 2013-08-28 洛阳理工学院 Hydraulic control loop capable of controlling multiple lifting platforms
CN106050766A (en) * 2016-06-02 2016-10-26 江苏大学 Hydraulic control system of rudder blade platform

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077671A (en) * 2008-09-25 2010-04-08 Sumitomo (Shi) Construction Machinery Co Ltd Hydraulic pump control device
JP2010078047A (en) * 2008-09-25 2010-04-08 Sumitomo (Shi) Construction Machinery Co Ltd Hydraulic pump control device
CN102900007A (en) * 2012-09-07 2013-01-30 徐州万邦道路工程装备服务股份公司 Independent opening and closing controlling oil circuit for left material hopper and right material hopper of paver
CN103267038A (en) * 2013-05-09 2013-08-28 洛阳理工学院 Hydraulic control loop capable of controlling multiple lifting platforms
CN103267038B (en) * 2013-05-09 2017-02-08 洛阳理工学院 Hydraulic control loop capable of controlling multiple lifting platforms
CN106050766A (en) * 2016-06-02 2016-10-26 江苏大学 Hydraulic control system of rudder blade platform

Also Published As

Publication number Publication date
JP3145810B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
KR910009256B1 (en) Hydraulic driver for civil construction machine
KR101741291B1 (en) Hydraulic work machine
US6244048B1 (en) Hydraulique drive device
WO1997003292A1 (en) Hydraulic driving device
KR101144396B1 (en) Hydraulic control system in the swing combined motion of an excavator
CN109757116B (en) Hydraulic drive device
JP2583148B2 (en) Hydraulic control circuit of hydraulic excavator
JPH11303814A (en) Pressurized oil supply device
AU2002313244B2 (en) Hydraulic driving unit for working machine, and method of hydraulic drive
JP3145810B2 (en) Variable displacement hydraulic pump controller
JP3491940B2 (en) Control device for variable displacement hydraulic pump
JPH0932045A (en) Hydraulic circuit of hydraulically driving work vehicle
JPH07167104A (en) Variable displacement hydraulic pump control device
CN113316673B (en) Working machine
JP3209885B2 (en) Hydraulic circuit of hydraulic excavator with loader front
JP2721383B2 (en) Hydraulic circuit of work machine
JP3965932B2 (en) Hydraulic control circuit of excavator
JP2948065B2 (en) Hydraulic drive for construction machinery
JP3469980B2 (en) Boom swing hydraulic excavator
JPH09324446A (en) Hydraulic drive device for construction vehicle
JP2003028101A (en) Hydraulic control device of construction machine
JP3205910B2 (en) Operation control device of multiple actuators by single variable displacement pump
JP3142640B2 (en) Hydraulic working machine hydraulic circuit
JP2871871B2 (en) Hydraulic drive for construction machinery
JP3784149B2 (en) Hydraulic pump cut-off device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees