JPH06136600A - Method for roughening stainless steel surface - Google Patents

Method for roughening stainless steel surface

Info

Publication number
JPH06136600A
JPH06136600A JP26513792A JP26513792A JPH06136600A JP H06136600 A JPH06136600 A JP H06136600A JP 26513792 A JP26513792 A JP 26513792A JP 26513792 A JP26513792 A JP 26513792A JP H06136600 A JPH06136600 A JP H06136600A
Authority
JP
Japan
Prior art keywords
stainless steel
electrolysis
nitric acid
present
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26513792A
Other languages
Japanese (ja)
Inventor
Shigeru Kitani
滋 木谷
Yoshio Hayashi
美生 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26513792A priority Critical patent/JPH06136600A/en
Publication of JPH06136600A publication Critical patent/JPH06136600A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel

Abstract

PURPOSE:To roughen the surface of stainless steel with a sufficient anchor effect by anodizing the stainless steel in nitric acid or in an aq. soln. consisting essentially of nitric acid. CONSTITUTION:A stainless steel is anodized in nitric acid or in an aq. soln. consisting essentially of nitric acid. The stainless steel is anodized and cathodized in nitric acid or in an aq. soln. consisting essentially of nitric acid. Consequently, a coating film is formed or an adhesive is applied on the surface with greater working effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼の粗面化
方法、特に全面的に多数の孔食状侵食または粒界侵食を
生じさせるステンレス鋼の粗面化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface roughening method for stainless steel, and more particularly to a surface roughening method for stainless steel which causes a large number of pitting corrosion or grain boundary corrosion.

【0002】[0002]

【従来の技術】ステンレス鋼に塗装やコ−ティングをす
る場合に塗膜やコ−ティング材の付着性を高めるために
ステンレス鋼を粗面化する(凹凸を多くする)ことがあ
る。特に、PTFE( ポリ四フッ化エチレン) は付着力が弱
いので、ステンレス鋼表面の凹凸を大きくして「アンカ
−効果」、つまり船のいかりが投錯時に海底にひっかか
るのと同様な効果により付着力を高めることが不可欠で
あるといわれる。
2. Description of the Related Art When coating or coating stainless steel, the surface of stainless steel is sometimes roughened (increased unevenness) in order to improve the adhesion of a coating film or a coating material. In particular, since PTFE (polytetrafluoroethylene) has a weak adhesive force, the unevenness of the stainless steel surface is increased to provide the "anchor effect", that is, the effect similar to the anchor of a ship being caught on the seabed when it is thrown. It is said that it is indispensable to improve the fit.

【0003】また、ステンレス鋼を接着剤で接合する場
合、めっきをする場合、あるいは電極や触媒として用い
る場合などにも、表面の凹凸が多い( 大きい)ことや表
面積が大きいことが有利に働くことが多い。
Also, when stainless steel is bonded with an adhesive, when it is plated, or when it is used as an electrode or a catalyst, it is advantageous that a large number of surface irregularities (large) and a large surface area work well. There are many.

【0004】このような目的に対して、ステンレス鋼を
粗面化する方法としては、硝フッ酸、塩酸+塩化第二鉄
溶液などで酸洗するのが一般的な方法であるが、付着力
を向上させるための顕著な改善効果は得られない。この
理由は酸洗後の表面の凹凸の形状が「ひっかかり」の少
ないものであることも一因と考えられる。
For such a purpose, a common method for roughening stainless steel is to pickle it with nitric hydrofluoric acid, hydrochloric acid + ferric chloride solution, etc. No significant improvement effect for improving It is considered that this is partly due to the fact that the shape of the surface irregularities after pickling has less "scratching".

【0005】また、ブラストやホ−ニングのように粒状
物を被処理材表面に吹き付けて粗面化する方法もある
が、被処理物が薄板の場合には板が反りかえったり加工
硬化するなどの不都合が起こりやすい。
There is also a method of spraying a granular material onto the surface of the material to be treated such as blasting or honing to roughen the surface. However, when the material to be treated is a thin plate, the plate is warped or work-hardened. Inconvenience is likely to occur.

【0006】ユニ−クな方法として、特公昭61- 59399
号公報には塩化第二鉄水溶液中で電解後、浸漬してステ
ンレス鋼表面に多くの孔食を発生させ、アンカ−効果が
期待できる凹凸を付与する方法が開示されている。しか
し、この方法は全面的に均一に孔食を発生させることが
難しく、被処理材の表面状態によっては局部的に深い孔
食が発生し、他の部分では孔食が発生しないような現象
が起こりやすいため、工業生産における品質管理が困難
である。
As a unique method, Japanese Patent Publication Sho 61-59399
The publication discloses a method of electrolyzing in an aqueous solution of ferric chloride and then immersing it to cause a lot of pitting corrosion on the surface of the stainless steel, thereby providing unevenness with which an anchor effect can be expected. However, it is difficult for this method to uniformly generate pitting corrosion over the entire surface, and there is a phenomenon in which deep pitting corrosion occurs locally depending on the surface condition of the material to be treated and pitting corrosion does not occur in other portions. Since it easily occurs, quality control in industrial production is difficult.

【0007】また、耐酸インキや塗料を霧状に塗布後腐
食性溶液を作用させる方法( 特公昭62-12310号公報参
照) やフォトレジストを用いる方法( 特開平4-99288 号
公報参照) が開示されているが、いずれも処理工程の所
要時間が長く、処理コストが高いという欠点があり、大
量生産に適する安価な方法とは云えない。
Also disclosed are a method of applying an acid-resistant ink or paint in a mist state and then applying a corrosive solution (see Japanese Patent Publication No. 62-12310) and a method of using a photoresist (see Japanese Patent Laid-Open No. 4-99288). However, all of them have drawbacks of long processing time and high processing cost, and cannot be said to be inexpensive methods suitable for mass production.

【0008】[0008]

【発明が解決しようとする課題】ここに、本発明の目的
は、ステンレス鋼の粗面化方法、特に塗膜やコーティン
グ材の付着性を高めるために行う安価なステンレス鋼の
粗面化方法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for surface roughening stainless steel, and more particularly, an inexpensive method for surface roughening stainless steel for increasing the adhesion of a coating film or coating material. Is to provide.

【0009】[0009]

【課題を解決するための手段】本発明者らは、アンカ−
効果が期待できるような「ひっかかり」の多い粗面を大
面積で、均一に作る方法を研究した結果、硝酸中で陽極
電解する方法が良いことを見い出した。ここに、本発明
の要旨とするところは、硝酸または硝酸を主成分とする
水溶液中でステンレス鋼の陽極電解を行うことを特徴と
するステンレス鋼の粗面化方法である。
The present inventors have found that the anchor
As a result of research on a method for uniformly forming a rough surface with a large number of "scratches" that can be expected to be effective, it was found that the method of anodic electrolysis in nitric acid is preferable. Here, the gist of the present invention is a method for roughening stainless steel, which comprises subjecting stainless steel to anodic electrolysis in nitric acid or an aqueous solution containing nitric acid as a main component.

【0010】また別の面からは、本発明は硝酸または硝
酸を主成分とする水溶液中でステンレス鋼の陽極電解お
よび陰極電解を行うことを特徴とするステンレス鋼の粗
面化方法である。かくして、本発明によればステンレス
鋼表面に、全面的に多数の孔食状侵食または粒界侵食を
生じさせることができる。
From another aspect, the present invention is a method for roughening stainless steel, characterized in that anodic electrolysis and cathodic electrolysis of stainless steel are carried out in nitric acid or an aqueous solution containing nitric acid as a main component. Thus, according to the present invention, a large number of pitting corrosion or grain boundary erosion can be generated on the entire surface of the stainless steel.

【0011】[0011]

【作用】本発明にかかる方法によって得られるピット、
つまり孔食状侵食の生成密度は104 個/cm2 以上とな
り、これらは被処理表面の全体に均一に分布している。
また、本発明法による粒界侵食は粒界近傍のごく狭い範
囲のみが溶解する形ではなく、「粒界に近いほど深く侵
食される傾向をもった形」であり、おそらく、個々の結
晶の方位によっても侵食深さが異なるため全体として
は、不規則な表面プロフィルとなっている。従って、一
般によく知られている焼鈍後のオーステナイト系ステン
レス鋼を硝ふっ酸で酸洗することによって生じる溝状の
粒界侵食とは表面の形状が全く異なり、侵食深さも深
い。ちなみに、硝ふっ酸酸洗による粒界溝の深さは1〜
数μm であるのに対して、本発明法による侵食深さは結
晶粒が大きいほど深くなる傾向があり、数μm 〜数+μ
m に達する。
The pit obtained by the method according to the present invention,
That is, the generation density of pitting corrosion is 10 4 pieces / cm 2 or more, and these are evenly distributed over the entire surface to be treated.
In addition, the grain boundary erosion by the method of the present invention is not a form in which only a very narrow range near the grain boundary is dissolved, but a “form that tends to be deeply eroded as it is closer to the grain boundary”, and probably the Since the erosion depth differs depending on the orientation, the surface profile is irregular as a whole. Therefore, the surface shape is completely different from the groove-shaped intergranular erosion, which is caused by pickling the austenitic stainless steel after annealing, which is generally well known, with a deep erosion depth. By the way, the depth of the grain boundary groove by nitric hydrofluoric acid pickling is 1 to
On the other hand, the erosion depth by the method of the present invention tends to become deeper as the crystal grains become larger, while it is several μm.
reach m

【0012】本発明法による粗面の表面プロフィルを触
針式粗さ計(触針先端半径1.5 μm)により調べた結果の
一例を図1に示す。ここで、重要なのは、プロフィルの
山と谷が密に連なっており、かつ、それらの傾斜が急で
あるほど好ましい粗面であるということである。そし
て、本発明法によれば、下記の式で計算されるプロフィ
ルの平均傾斜角 (θ) が少なくとも10°以上、場合によ
っては30°以上にすることができる。
FIG. 1 shows an example of the result of examining the surface profile of the rough surface by the method of the present invention with a stylus type roughness meter (stylus tip radius: 1.5 μm). Here, what is important is that the peaks and valleys of the profile are closely connected and the steeper the slope, the more preferable the rough surface. Further, according to the method of the present invention, the average inclination angle (θ) of the profile calculated by the following formula can be at least 10 ° or more, and in some cases, 30 ° or more.

【0013】[0013]

【数1】 [Equation 1]

【0014】ここに、x: 粗面の表面プロフィルの水平
方向距離 (μm) y: 粗面の表面プロフィルの垂直方向距離 (μm) x0 : 表面粗さ計の触針の走査距離 (mm) なお、上記のθの測定においては、測定誤差を少なくす
るために、x0 は少なくとも2.5 mm以上、望ましくは10
mm以上とするのが良い。
Where x: horizontal distance of the surface profile of the rough surface (μm) y: vertical distance of the surface profile of the rough surface (μm) x 0 : scanning distance of the stylus of the surface roughness meter (mm) In the above measurement of θ, x 0 is at least 2.5 mm or more, preferably 10 mm or less in order to reduce the measurement error.
It is better to set it to mm or more.

【0015】また、粗さ計の触針の先端半径が小さいほ
ど細かい凹凸がトレースできるため平均傾斜角が大きく
なる傾向があるが、実用上の問題もあるので、ここでは
先端半径1.5 μm の触針で測定したプロフィルを基準と
する。このように本発明によれば硝酸中で陽極電解 (ま
たは陽極電解+陰極電解) することによって効果的な粗
面化が達成されるのである。
Further, the smaller the tip radius of the stylus of the roughness gauge, the finer the irregularities can be traced and the larger the average inclination angle tends to be. However, there is a problem in practical use. Therefore, the tip radius of 1.5 μm is used here. Based on the profile measured with the needle. Thus, according to the present invention, effective roughening is achieved by anodic electrolysis (or anodic electrolysis + cathodic electrolysis) in nitric acid.

【0016】すなわち、数%〜数+%濃度の硝酸中で被
処理材であるステンレス鋼を陽極 (あるいは陰極) とし
て電解することにより容易に所望の粗面が得られる。こ
のときの電解の適正条件はステンレス鋼の種類や表面状
態によっても異なるが、およそ下記の通りである。
That is, a desired roughened surface can be easily obtained by electrolyzing stainless steel as a material to be treated as an anode (or a cathode) in nitric acid having a concentration of several% to several +%. Appropriate conditions for electrolysis at this time vary depending on the type and surface condition of stainless steel, but are approximately as follows.

【0017】(1)硝酸濃度: 1%未満では酸化力が不十
分なため均一な粗面を得難い。50%以上では酸化力が強
すぎて不均一な孔食を生じ易いうえに、ヒュ−ムの発生
が著しく、作業上支障がある。望ましくは、10〜30%HN
O3溶液を用いれば安定して所望の粗面が得られる。
(1) Nitric acid concentration: If it is less than 1%, it is difficult to obtain a uniform rough surface because the oxidizing power is insufficient. If it is 50% or more, the oxidizing power is too strong and uneven pitting corrosion is likely to occur, and furthermore, fume is remarkably generated, which causes a trouble in work. Desirably 10-30% HN
If the O 3 solution is used, a desired rough surface can be stably obtained.

【0018】(2)電解電流: 1.0 mA/cm2以下ではステン
レス鋼の酸化が十分に行なわれないために、いわゆる過
不動態溶解が起きず、粗面化ができない。一方、電解電
流の上限は理論上はないが、あまりに電流が大きいとス
テンレス鋼の溶解のみならずO2 ガスの発生のために多
大の電流が消費される。また、対極( 陰極) の表面では
2 ガスの発生や硝酸の分解、あるいはNOxガスの発
生が激しくなるなど、経済的、衛生上の不利益が生じる
ので、上限を1000mA/ cm2 とする。
(2) Electrolytic current: When the current is 1.0 mA / cm 2 or less, so-called hyperpassive dissolution does not occur and the surface cannot be roughened because the stainless steel is not sufficiently oxidized. On the other hand, although the upper limit of the electrolysis current is theoretically not large, if the current is too large, a large amount of current is consumed not only for melting the stainless steel but also for generating O 2 gas. Further, on the surface of the counter electrode (cathode), H 2 gas is generated, nitric acid is decomposed, or NOx gas is generated, which causes economic and hygiene disadvantages. Therefore, the upper limit is set to 1000 mA / cm 2 .

【0019】なお、被処理材の陽極電解は、粗面化のた
めに必要であるが、補助的に陰極電解を併用してもよ
い。この場合の陰極電解の電流密度は10mA/ cm2 未満で
は効果がなく、10000mA/cm2 超ではH2 ガス発生が多
く、経済上、安全上の問題が生じる。望ましくは、50〜
1000mA/ cm2 とすれば,最も効果が得やすい。
Although anodic electrolysis of the material to be treated is necessary for roughening the surface, cathode electrolysis may be supplementarily used. In this case, if the current density of the cathodic electrolysis is less than 10 mA / cm 2 , there is no effect, and if it exceeds 10,000 mA / cm 2 , H 2 gas is often generated, which causes economic and safety problems. Desirably 50 ~
The best effect is obtained with 1000mA / cm 2 .

【0020】(3)電解時のステンレス鋼の表面電位: 陽
極電解時には1.0 V(vs.SCE) より貴な電位でなけれ
ば、過不動態溶解が起きず、粗面化ができない。また、
2.2 V(vs.SCE)より貴では02 の発生が著しくなる。一
方、陰極電解時には−0.2 V(vs.SCE)より卑な電位でな
いと効果がないが、−2.0V (vs.SCE) より卑ではH2
スの発生が著しくなる。
(3) Surface potential of stainless steel at the time of electrolysis: If the potential is nobler than 1.0 V (vs.SCE) during anodic electrolysis, no passive passivation occurs and roughening cannot be achieved. Also,
At 2.2 V (vs. SCE), 0 2 is more noticeable in nobles. On the other hand, at the time of cathodic electrolysis, there is no effect unless the potential is lower than -0.2 V (vs.SCE), but H 2 gas is remarkably generated when the potential is lower than -2.0 V (vs.SCE).

【0021】陰極電解を併用するかどうかはステンレス
鋼の種類や表面状態によって決めればよく、たとえば後
述の実施例でも示す如く、SUS430鋼やSUS410鋼を 600番
研摩紙で湿式研摩した表面は陽極電解のみの処理によっ
て、孔食が全面に群集したような粗面が得られるのに対
して、SUS304鋼の焼鈍材を硫酸ナトリウム溶液などでの
中性塩電解法によって酸化スケ−ルのみを除去した表面
の場合には硝酸中での陽極電解と陰極電解を併用するこ
とにより、全面に均一な孔食が発生した粗面が得られや
すい。
Whether or not to use the cathodic electrolysis may be determined depending on the type and surface condition of the stainless steel. For example, as shown in the examples below, the surface wet-polished with SUS430 steel or SUS410 steel with No. 600 abrasive paper is used for anodic electrolysis. While only roughening surface is obtained by pitting corrosion on the whole surface, only the oxide scale is removed by neutral salt electrolysis of the annealed material of SUS304 steel with sodium sulfate solution etc. In the case of the surface, by using anodic electrolysis in nitric acid and cathodic electrolysis together, it is easy to obtain a rough surface with uniform pitting corrosion on the entire surface.

【0022】以上のように本発明方法によれば孔食が群
集したような粗面が得られる理由については現在のとこ
ろ、明確にはなっていないが、次のように推測される。
一般に、孔食はステンレス鋼の不動態皮膜の一部が破壊
されて局部的に腐食が進行する現象の一種であり、不働
態化と活性溶解が混在する状態にあると推測される。
As described above, the reason why a rough surface such as pitting corrosion can be obtained by the method of the present invention is not clear at present, but it is presumed as follows.
Generally, pitting corrosion is a kind of phenomenon in which a part of the passive film of stainless steel is destroyed and corrosion locally progresses, and it is presumed that passivation and active dissolution are mixed.

【0023】本発明方法の処理条件の場合にも硝酸によ
る不働態化と陽極電解による過不動態溶解、さらには陰
極電解による活性溶解が混在することにより、比較的大
きさや深さがそろった孔食状の局部的な溶解が発生する
ものと推測される。本発明方法の長所は、孔食状の腐食
を全面的に均一に発生させることができることであり、
電解条件のコントロ−ルにより種々の鋼種や表面状態の
ステンレス鋼に適用できる。
Even in the case of the treatment conditions of the method of the present invention, a mixture of passivation with nitric acid, hyperpassive dissolution by anodic electrolysis, and active dissolution by cathodic electrolysis coexist, resulting in pores of relatively uniform size and depth. It is speculated that localized dissolution of the edible food occurs. An advantage of the method of the present invention is that pitting corrosion can be uniformly generated over the entire surface,
It can be applied to various steel types and stainless steels with different surface conditions depending on the control of electrolysis conditions.

【0024】例えば、SUS304鋼焼鈍材を中性塩電解法に
よって脱スケ−ルした表面は最表面にSiの濃化した層が
存在し硝酸中での陽極電解のみでは全面的に均一な孔食
が発生しにくいが、陰極電解によりSi層を一部溶解する
ことにより,均一な孔食が発生しやすくなる。
For example, the surface of a SUS304 steel annealed material that has been descaled by a neutral salt electrolysis method has a Si-enriched layer on the outermost surface, and anodic electrolysis alone in nitric acid results in uniform pitting corrosion. Is less likely to occur, but uniform pitting is likely to occur due to partial dissolution of the Si layer by cathodic electrolysis.

【0025】ここで、本明細書で用いる「粗面」という
言葉の意味についてさらに説明する。表面の粗さは通常
表面粗さ計を用いて測定し、最大粗さ(Rmax)などにより
表示される。これは凹凸の谷と山の垂直方向の距離によ
って粗さを評価する考え方である。しかし、この方法で
は谷と山の水平方向の距離はわからないので、険しい山
と谷が続いているのか、なだらかに続いているのかは分
からない。したがって、本発明で云う「粗面」とは、前
者の険しい凹凸、言い換えると谷と山の間隔、あるいは
山と隣の山の間隔( ピッチ)が短く、山と谷の垂直方向
の距離もある程度は大きいような、いわゆるアンカー効
果を発揮する表面状態をいうのである。
Here, the meaning of the term "rough surface" used in the present specification will be further described. The surface roughness is usually measured using a surface roughness meter and is displayed by the maximum roughness (Rmax) or the like. This is a way of thinking that roughness is evaluated by the vertical distance between the uneven valley and the mountain. However, this method does not know the horizontal distance between the valley and the mountain, so it is not known whether the steep mountain and the valley are continuous or gentle. Therefore, the term "rough surface" in the present invention means the steep unevenness of the former, in other words, the distance between the valley and the mountain or the distance between the mountain and the adjacent mountain (pitch) is short, and the distance between the mountain and the valley in the vertical direction is also to some extent. Is a surface state that exhibits a large, so-called anchor effect.

【0026】このような粗面の効用は前述の如く種々考
えられるが、まず塗膜やコ−ティング膜あるいは、めっ
き膜や接着剤の付着力向上が期待される。ただし、前述
のように、アンカ−効果が効果的に得られるような「ひ
っかかり」の多い断面形状の粗面になるかどうかはかな
り偶然性に支配されやすいので、ここでは単純な鋸形の
断面形状の場合について考える。
Various effects of such a rough surface can be considered as described above. First, it is expected that the adhesion of the coating film, the coating film, the plating film or the adhesive will be improved. However, as mentioned above, it is quite contingent to determine whether or not the rough surface of the cross-sectional shape with many "traps" that effectively obtains the anchor effect is apt to be controlled by chance. Think about the case.

【0027】図2(a) と(b) に表面の断面形状を模式的
に示す。これらの断面形状を比較すると図2(b) の山の
高さは図2(a) の半分で、ピッチは1/4であるため、
同じ水平方向の距離であっても、図2(b) の方が鋸形の
線の全体の長さは長い。従って図2(b) の断面形状をも
つ粗面は図2(a) の粗面より最大粗さは小さいが、実質
的な表面積は大きいので、塗膜等の付着力に大きく寄与
していると言われる「ファン・デア・ワ−ルス力」も大
きくなることが期待される。実質的な表面積が大きいこ
とは電極や触媒として用いる場合に有利である。すなわ
ち見掛け上同じ大きさの電極や触媒(あるいはその担
体) であっても表面積が大きいので、電解速度や反応速
度がそれだけ高まることが期待される。
2 (a) and 2 (b) schematically show the cross-sectional shape of the surface. Comparing these cross-sectional shapes, the height of the peaks in Fig. 2 (b) is half that in Fig. 2 (a), and the pitch is 1/4.
Even at the same horizontal distance, the total length of the sawtooth line is longer in Fig. 2 (b). Therefore, the rough surface having the cross-sectional shape shown in Fig. 2 (b) has a smaller maximum roughness than the rough surface shown in Fig. 2 (a), but since it has a substantial surface area, it contributes greatly to the adhesion of the coating film. It is expected that the "fan der walth power" that is said to be large. A large substantial surface area is advantageous when used as an electrode or a catalyst. In other words, even if electrodes and catalysts (or their supports) that are apparently the same size have a large surface area, it is expected that the electrolysis rate and reaction rate will increase accordingly.

【0028】また、本発明方法により実現される粗面は
光の反射、吸収に対しても、特有の作用が有るものであ
って、外観上灰色で全く光沢が無い。したがって、これ
はこのままでも、落ちつきのあるステンレス鋼表面とし
て利用する価値はあるが、さらに酸化発色や化学発色な
どの処理をつけ加えることにより独特の外観を得る可能
性がある。
Further, the rough surface realized by the method of the present invention has a peculiar effect on reflection and absorption of light, and is gray in appearance and has no gloss at all. Therefore, although it is still usable as a calm stainless steel surface, it may be possible to obtain a unique appearance by further adding treatments such as oxidative coloring and chemical coloring.

【0029】以上に述べた効用は単に粗面の断面形状の
みによって効果の大小がきまるものではなく、例えば付
着力は仕上がり面の化学組成などの影響を受けやすい
が、後処理として化成処理を施すと強い付着力が安定し
て得られる。しかし、このような効果は本発明方法によ
る粗面をベ−スにして得られるものであるから、そのよ
うな各種改良技術も本発明の範囲内のものであることは
容易に理解されよう。
The effect described above does not depend on the cross-sectional shape of the rough surface alone. For example, the adhesive force is easily affected by the chemical composition of the finished surface, but chemical conversion treatment is performed as a post-treatment. And a strong adhesive force can be obtained stably. However, since such an effect is obtained based on the rough surface by the method of the present invention, it will be easily understood that such various improved techniques are also within the scope of the present invention.

【0030】次に、実施例により本発明の作用効果をさ
らに詳しく説明する。
Next, the function and effect of the present invention will be described in more detail with reference to examples.

【0031】[0031]

【実施例】【Example】

(実施例1)SUS430鋼、SUS410S 鋼および SUS304 鋼の2
B仕上げ材( 板厚0.5 mm) を600番研摩紙を用いて湿式
研摩したものを供試材とし、表1に示す電解条件で50
℃、12%HNO3水溶液中で白金を対極として陽極電解し
た。
(Example 1) 2 of SUS430 steel, SUS410S steel and SUS304 steel
The B finishing material (sheet thickness 0.5 mm) was wet-polished using No. 600 abrasive paper as the test material, and the electrolytic conditions shown in Table 1 were used.
Anodic electrolysis was performed in a 12% HNO 3 aqueous solution at ℃ with platinum as the counter electrode.

【0032】本発明の効果を評価する方法としては断面
の形状、あるいは表面の凹凸の状態によって表すのがよ
り客観的で厳密と考えられる。そこで、表面粗さ計や光
学顕微鏡を用いて粗さを測定すると同時にSEM( 走査
型電子顕微鏡)により表面を観察し水平方向の凹凸の細
かさを調べた。
As a method for evaluating the effect of the present invention, it is considered more objective and strict to express it by the shape of the cross section or the state of surface irregularities. Therefore, the roughness was measured using a surface roughness meter or an optical microscope, and at the same time, the surface was observed by an SEM (scanning electron microscope) to examine the fineness of the horizontal unevenness.

【0033】電解後の表面をSEMで観察したところ図
3の電子顕微鏡写真に示すように、本発明方法によるSU
S430鋼およびSUS410鋼処理材は直径0.5 〜6 μm のピッ
トで全面が覆われたような状態になっておりピットとピ
ットの間隔は1 〜5 μm で、平坦な部分は全く無いこと
がわかった。また、SUS304鋼処理材は図4の電子顕微鏡
写真に示すように、「粒界侵食型」の粗面であり、表面
プロフィルの平均傾斜角は18〜27°、最大粗さ(Rmax)は
25〜37μm であった。
When the surface after electrolysis was observed by SEM, as shown in the electron micrograph of FIG.
It was found that the treated S430 steel and SUS410 steel were all covered with pits with a diameter of 0.5 to 6 μm, the pit-to-pit spacing was 1 to 5 μm, and there was no flat part. . As shown in the electron micrograph of FIG. 4, the SUS304 steel treated material is a “grain boundary erosion type” rough surface, the average inclination angle of the surface profile is 18 to 27 °, and the maximum roughness (Rmax) is
It was 25 to 37 μm.

【0034】一方、比較のために同じ硝酸水溶液を用い
て陰極電解のみを行ったもの、および1%HF-10 %HNO3
溶液 (50℃) に3 分間浸漬したSUS304鋼は全くピットの
発生が無かった。表面粗さ計で測定した表面プロフィル
の平均傾斜角と最大粗さは小さかった。以上より本発明
法で処理したSUS430鋼とSUS410S 鋼の表面はピットの生
成による凹凸が著しく実質的な表面積が非常に大きいこ
とがわかった。
On the other hand, for comparison, only cathodic electrolysis was carried out using the same aqueous nitric acid solution, and 1% HF-10% HNO 3
The SUS304 steel immersed in the solution (50 ° C) for 3 minutes had no pits. The average tilt angle and maximum roughness of the surface profile measured by the surface roughness meter were small. From the above, it was found that the surface of SUS430 steel and SUS410S steel treated by the method of the present invention has a significantly large unevenness due to the formation of pits and a substantially large surface area.

【0035】[0035]

【表1】 [Table 1]

【0036】(実施例2)SUS304 鋼の冷延鋼板( 板厚0.4
mm) を炭化水素ガス燃焼雰囲気中で1100℃で60秒間
燃鈍したのち70℃、20%Na2 SO4水溶液中で電流密度
80mA/ cm2 で交番電解( 陽極電解 2sec →陰極電解1se
c のくり返しで合計60秒間デスケール処理) したものを
供試材とし、表2に示す電解条件で50℃、20%HNO3溶液
中でSUS304の板を対極として交番電解した。電解後の表
面をSEM で観察したところ、図5の電子顕微鏡写真に示
すように本発明方法による処理材は直径15〜30μm のピ
ットが全面に発生していることが分かった。
(Example 2) Cold rolled steel sheet of SUS304 steel (sheet thickness 0.4
mm) was annealed at 1100 ° C for 60 seconds in a hydrocarbon gas combustion atmosphere, and then the current density was changed to 70 ° C in a 20% Na 2 SO 4 aqueous solution.
Alternating electrolysis at 80mA / cm 2 (Anode electrolysis 2sec → Cathode electrolysis 1se
The sample that had been subjected to descaling for a total of 60 seconds by repeating c) was used as a test material, and alternating electrolysis was performed under the electrolytic conditions shown in Table 2 in a 20% HNO 3 solution at 50 ° C. using a SUS304 plate as a counter electrode. When the surface after electrolysis was observed by SEM, it was found that pits having a diameter of 15 to 30 μm were formed on the entire surface of the treated material by the method of the present invention as shown in the electron micrograph of FIG.

【0037】一方、比較のため、上記の供試材を通常行
なわれているごとく、0.7 %HF-8%HNO3溶液(50 ℃) に
60秒間または300 秒間浸漬して酸洗したものは粒界が溝
状に浸食されているが粒内はほとんど平滑であった。ま
た本発明方法によって発生したピットと比較法によって
発生した溝状浸食の深さを光学顕微鏡を用いて測定した
ところ、前者の方がはるかに深いことがわかった。以上
より、本発明方法で処理したSUS304鋼は全面にわたる比
較的均一なピットで表面が覆われているため、実質的な
表面積が大きく塗膜や接着剤に対するアンカー効果も大
いに期待できる。
On the other hand, for the purpose of comparison, the above-mentioned test materials were subjected to 0.7% HF-8% HNO 3 solution (50 ° C.) as usual.
The grain boundaries of the specimens pickled by immersion for 60 seconds or 300 seconds were eroded, but the inside of the grains was almost smooth. Further, when the depth of the pits generated by the method of the present invention and the depth of groove-like erosion generated by the comparison method were measured using an optical microscope, it was found that the former was much deeper. As described above, since the surface of the SUS304 steel treated by the method of the present invention is covered with relatively uniform pits over the entire surface, the substantial surface area is large and the anchor effect for the coating film or the adhesive can be expected greatly.

【0038】[0038]

【表2】 [Table 2]

【0039】(実施例3)SUS304鋼の2B仕上げ材( 板厚
0.4 mm) を600 番研摩紙を用いて湿式研摩したものを50
℃、20%HNO3溶液中でSUS304の板を対極として電流密度
24mA/cm2 (電位+1.2 V vs.SCE) で30分間陽極電解した
ものおよびSUS304の冷延鋼板 (板厚0.4mm) を炭化水素
ガス燃焼雰囲気中で1100℃×60sec 焼鈍した後、80℃、
20%Na2SO4水溶液中で電流密度80mA/cm2で交番電解して
表面の酸化スケ−ルを除去したものを、さらに50℃、20
%HNO3中で交番電解 (+200 mA/cm2×2sec →−200 mA
/cm2×1sec の繰り返しで合計180 秒間) したものを本
発明法による供試材とし、別途比較法による供試材とし
て前述のSUS304鋼の2B材を、60℃、10%F2Cl3水溶
液中で100 mA/cm2の電流密度で5分間陽極電解した後、
20℃、15%FeCl3 水溶液中で3時間浸漬したもの、60
℃、3%HF−15%HNO3水溶液中に3分間浸漬したものを
準備し、これらに対してポリテトラフルオロエチレン(P
TFE)系の皮膜をコーティングした後、その皮膜の付着力
を剥離試験法によって調べた。
(Example 3) 2B finish material of SUS304 steel (sheet thickness
0.4 mm) was wet-polished with No. 600 abrasive paper to 50
Current density using a SUS304 plate as a counter electrode in a 20% HNO 3 solution at ℃
After anodic electrolysis for 30 minutes at 24mA / cm 2 (potential +1.2 V vs. SCE) and cold rolled steel sheet of SUS304 (sheet thickness 0.4 mm) were annealed in a hydrocarbon gas combustion atmosphere at 1100 ° C for 60 seconds, then 80 ℃,
After removing the oxide scale from the surface by alternating electrolysis in a 20% Na 2 SO 4 aqueous solution at a current density of 80 mA / cm 2 ,
Alternating electrolysis in% HNO 3 (+200 mA / cm 2 × 2 sec → −200 mA
/ cm 2 × 1 sec for a total of 180 seconds) as a test material according to the method of the present invention. Separately, as a test material according to the comparative method, 2B material of the above SUS304 steel was used at 60 ° C, 10% F 2 Cl 3 After anodic electrolysis for 5 minutes at a current density of 100 mA / cm 2 in an aqueous solution,
Soaked in a 15% FeCl 3 aqueous solution at 20 ° C for 3 hours, 60
What was immersed in a 3% HF-15% HNO 3 aqueous solution for 3 minutes at ℃ was prepared, and polytetrafluoroethylene (P
After coating a TFE) -based coating, the adhesion of the coating was examined by the peel test method.

【0040】結果を処理条件とともに表3にまとめて示
す。それによれば、本発明例による処理材は皮膜の付着
力が5〜7kg/25 mm幅と大きいのに対して、比較例は
4.3kgf/25mm幅、比較例は1kg以下/25 mm幅と小さか
った。本発明例では粗面化のための処理時間は3〜30分
間と比較的短いにもかかわらず、粗面化の効果が大き
く、PTFE膜の十分な付着力が得られた。
The results are shown in Table 3 together with the processing conditions. According to it, the treated material according to the present invention has a large film adhesion of 5 to 7 kg / 25 mm width, whereas the comparative example
The width was 4.3 kgf / 25 mm, and the comparative example was as small as 1 kg or less / 25 mm width. In the example of the present invention, although the treatment time for surface roughening was relatively short as 3 to 30 minutes, the effect of surface roughening was great and sufficient adhesion of the PTFE film was obtained.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【発明の効果】以上説明してきたように、本発明によれ
ばアンカー効果の大きな粗面化が可能となり、したがっ
て、塗膜形成、接着剤塗布などの面としての作用効果は
大きい。
As described above, according to the present invention, it is possible to roughen the surface having a great anchoring effect, and therefore, the action and effect as a surface for forming a coating film, applying an adhesive agent, etc. are great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる方法で粗面化したステンレス鋼
表面のプロフィルである。
1 is a profile of a stainless steel surface roughened by a method according to the present invention.

【図2】図2(a) 、(b) はそれぞれ粗面化した被処理材
の表面の断面形状の模式的説明図である。
2 (a) and 2 (b) are schematic explanatory views of the cross-sectional shape of the roughened surface of the material to be treated.

【図3】本発明にかかる方法で粗面化したステンレス鋼
表面の電子顕微鏡写真である。
FIG. 3 is an electron micrograph of a stainless steel surface roughened by the method according to the present invention.

【図4】本発明にかかる方法で粗面化したステンレス鋼
表面の電子顕微鏡写真である。
FIG. 4 is an electron micrograph of a stainless steel surface roughened by the method according to the present invention.

【図5】本発明にかかる方法で粗面化したステンレス鋼
表面の電子顕微鏡写真である。
FIG. 5 is an electron micrograph of a stainless steel surface roughened by the method according to the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月10日[Submission date] November 10, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硝酸または硝酸を主成分とする水溶液中
でステンレス鋼の陽極電解を行うことを特徴とするステ
ンレス鋼の粗面化方法。
1. A method of roughening stainless steel, which comprises subjecting stainless steel to anodic electrolysis in nitric acid or an aqueous solution containing nitric acid as a main component.
【請求項2】 硝酸または硝酸を主成分とする水溶液中
でステンレス鋼の陽極電解および陰極電解を行うことを
特徴とするステンレス鋼の粗面化方法。
2. A method for roughening stainless steel, which comprises subjecting stainless steel to anodic electrolysis and cathodic electrolysis in nitric acid or an aqueous solution containing nitric acid as a main component.
JP26513792A 1992-10-02 1992-10-02 Method for roughening stainless steel surface Withdrawn JPH06136600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26513792A JPH06136600A (en) 1992-10-02 1992-10-02 Method for roughening stainless steel surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26513792A JPH06136600A (en) 1992-10-02 1992-10-02 Method for roughening stainless steel surface

Publications (1)

Publication Number Publication Date
JPH06136600A true JPH06136600A (en) 1994-05-17

Family

ID=17413142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26513792A Withdrawn JPH06136600A (en) 1992-10-02 1992-10-02 Method for roughening stainless steel surface

Country Status (1)

Country Link
JP (1) JPH06136600A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392123B1 (en) * 1997-10-28 2003-12-01 가와사끼 세이데쓰 가부시키가이샤 Manufacturing method of austenitic stainless steel with excellent surface properties
JP2009062586A (en) * 2007-09-06 2009-03-26 Denso Corp Dark metallic member, and darkening treatment method for metallic member
KR20180013180A (en) * 2016-07-28 2018-02-07 단국대학교 천안캠퍼스 산학협력단 Method of treating surface of metal support surface for catalyst and method of manufacturing catalyst support structure
US10675797B2 (en) 2017-02-07 2020-06-09 Dong Guan Qinde Metal Products Co., Ltd. Stainless steel and synthetic resin composite molded body, and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100392123B1 (en) * 1997-10-28 2003-12-01 가와사끼 세이데쓰 가부시키가이샤 Manufacturing method of austenitic stainless steel with excellent surface properties
JP2009062586A (en) * 2007-09-06 2009-03-26 Denso Corp Dark metallic member, and darkening treatment method for metallic member
KR20180013180A (en) * 2016-07-28 2018-02-07 단국대학교 천안캠퍼스 산학협력단 Method of treating surface of metal support surface for catalyst and method of manufacturing catalyst support structure
US10675797B2 (en) 2017-02-07 2020-06-09 Dong Guan Qinde Metal Products Co., Ltd. Stainless steel and synthetic resin composite molded body, and preparation method thereof

Similar Documents

Publication Publication Date Title
US8056228B2 (en) Electrodes with mechanically roughened surface for electrochemical applications
JP2819378B2 (en) Pickling method for stainless steel
US5366598A (en) Method of using a metal substrate of improved surface morphology
CN1240239A (en) Metal surface treatment method and metal structure unit with surface formed by using said method
Favero et al. Effect of the applied potential of the near surface microstructure of a 316L steel submitted to tribocorrosion in sulfuric acid
EP0407349B1 (en) Electrode for use in electrolytic processes and process for manufacturing it
GB2078783A (en) Method of descaling metal sheets
US5167788A (en) Metal substrate of improved surface morphology
JPH06136600A (en) Method for roughening stainless steel surface
JP4060627B2 (en) Roughened steel sheet and roughening method
KR100876218B1 (en) Surface finish method after descaling stainless steel
JP3818723B2 (en) Roughening method for stainless steel plate surface
US5262040A (en) Method of using a metal substrate of improved surface morphology
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
JP3687314B2 (en) Pickling solution for stainless steel
JPH10324986A (en) Alkaline molten salt bath for descaling high-chromium stainless steel
EP2366809B1 (en) Titanium material and method for producing titanium material
TW382640B (en) Process for the surface treatment of treated article made of stainless steel
JP2001335997A (en) Stainless steel sheet having designing property and its producing method
JP3664537B2 (en) Austenitic stainless steel sheet with excellent adhesion to inorganic coating film and method for producing the same
JP2000045086A (en) Pickling method of stainless steel and pickling liquor
Haferkamp et al. Oberflaechenbearbeitung mit CO sub 2-Hochleistungslasern. Beeinflussung der Randzoneneigenschaften mittels Laseroberflaechenbearbeitung zur Verbesserung der tribologischen Eigenschaften von Eisenbasislegierungen. Schlussbericht.(Surface treatments with CO sub 2 high performance lasers. Surface integrity and tribology of CrNi-steels after laser surface treatment. Final report)
Hyie et al. Comparison of Different Surface Pre-Treatment on Mild Steel for Cobalt-Nickel-Iron Electroplating.
JPH09165700A (en) Treatment of surface of stainless steel and surface treated steel sheet
JPH0510435B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104