JPH06136412A - Production of magnetic metal powder - Google Patents

Production of magnetic metal powder

Info

Publication number
JPH06136412A
JPH06136412A JP4312752A JP31275292A JPH06136412A JP H06136412 A JPH06136412 A JP H06136412A JP 4312752 A JP4312752 A JP 4312752A JP 31275292 A JP31275292 A JP 31275292A JP H06136412 A JPH06136412 A JP H06136412A
Authority
JP
Japan
Prior art keywords
atmosphere
magnetic powder
iron oxyhydroxide
metal magnetic
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4312752A
Other languages
Japanese (ja)
Other versions
JP3405748B2 (en
Inventor
Hisafumi Sukai
尚史 須貝
Nobuo Obayashi
信夫 大林
Isao Yoshida
功 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP31275292A priority Critical patent/JP3405748B2/en
Publication of JPH06136412A publication Critical patent/JPH06136412A/en
Application granted granted Critical
Publication of JP3405748B2 publication Critical patent/JP3405748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a magnetic metal powder enhanced in coercive force and sharpened in coercive force distribution by thermally dehydrating alpha-iron oxyhydoxide at a specified temp. in a specified nonreducing steam atmosphere and then thermally reducing the dehydrated material in a reducing atmosphere. CONSTITUTION:alpha-iron oxyhydroxide is thermally dehydrated in a nonreducing atmosphere to form hematite. In this case, an atmosphere contg. 80-100% steam is used as the atmosphere, and the heating temp. is controlled to 350-700 deg.C. Acicular, spindle-shaped or rod-shaped alpha-iron oxyhydroxide having 0.05-1.0mum average major axis is preferably used, and the surface of the grain may be doped with the compd. of >=1 kind of element among Al, Si, B, Co, Ni, Mn, rare-earth elements, Ca, Ba, Sr and Mn. The hematite is thermally reduced in a reducing atmosphere and oxidized and stabilized, as required. Consequently, a magnetic metal powder appropriate for the high-density magnetic recording medium and having a small X-ray particle diameter and with the dispersibility and orientation property improved is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度磁気記録媒体用
の磁性粉末として用いられる、保磁力が高く、保磁力分
布がシャープであり、X線粒径が小さく、分散性に優れ
る金属磁性粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal magnetic material used as a magnetic powder for a high density magnetic recording medium, which has a high coercive force, a sharp coercive force distribution, a small X-ray grain size and excellent dispersibility. The present invention relates to a method for producing powder.

【0002】[0002]

【従来の技術】近年、金属磁性粉末は、高密度磁気記録
媒体用の磁性材料としてオーディオ用メタルテープ、8
ミリVTR用メタルテープ、DAT用テープ、業務用メ
タルテープ等に広く使用されている。また、最近では、
磁気記録装置の小型軽量化、長時間記録、高画質化、高
密度化を目指した開発が盛んに行われており、それに伴
って使用する磁気記録媒体である磁気テープにおいて
も、より高性能化、高密度記録化が要求されている。こ
のような要求に応え得る金属磁性粉末は、微細であり、
保磁力・飽和磁化量が共に高く、分散性に優れるもので
なくてはならない。現在使用されている金属磁性粉末
は、針状のα−オキシ水酸化鉄あるいは酸化鉄を還元性
雰囲気中で加熱還元し、次いで粒子の表面に酸化皮膜を
生成させて製造されている。金属磁性粉末の磁気特性は
粉末粒子の形状及び合金の組成を変化させることにより
コントロールすることが可能であるが、保磁力及び保磁
力分布については、粒子の形状が支配的である。粒子形
状については、第一鉄塩水溶液に水酸化アルカリあるい
は炭酸アルカリを加えて中和し、生成した沈澱物を含む
懸濁液に空気を吹き込んで針状のα−オキシ水酸化鉄を
生成させる工程で、懸濁液中に形状コントロール剤を添
加して針状比(長軸長÷短軸径)をコントロールした
り、吹き込みガス量あるいは反応温度を変化させて粒子
の大きさをコントロールしている。ここで金属磁性粉末
の保磁力は、粒子の太さが一定の場合は、針状比によっ
て決まり、針状比が大きい程保磁力は大きくなる。従っ
て、保磁力の大きい金属磁性粉末を得たい場合には、長
針状のα−オキシ水酸化鉄を出発物質とすれば良いこと
になる。しかしながら、最近は磁気記録媒体の高密度化
が強く要望されており、この観点から、従来より短い粒
子で、かつ保磁力の高い金属磁性粉末が求められてい
る。ところで、一般に、α−オキシ水酸化鉄の表面に
は、加熱還元時における粒子の焼結を防止するため、A
l、Si、B、P、Ca、Mg、Ba、Ti、Zr、稀
土類元素等を焼結防止剤として被着してから加熱還元を
行っている。これにより、出発原料の粒子形状をほぼ保
った金属磁性粉末が得られているが、加熱還元時に発生
する水の抜けた空孔や、あるいは焼結防止剤皮膜中での
体積の収縮による空孔等が存在することがあり、これら
空孔が磁気特性を低下させていた。そこで、このような
現象を改善するため、焼結防止剤を被着した針状のα−
オキシ水酸化鉄を、還元前に非還元性雰囲気下で加熱脱
水し焼き締めたヘマタイトとし、ついで加熱還元する方
法が提案され、一般に採用されている。この方法を採用
することにより、粒子中に空孔の少ない粒子が得られる
ようになり、短針状粒子でも比較的保磁力の高いものが
得られるようになってきているが、かかる方法により製
造された金属性磁性粉末にあっても現在要求されている
条件を全て満たしたものとはいえず、さらなる改良が望
まれているのが現状である。
2. Description of the Related Art In recent years, metal magnetic powder has been used as a magnetic material for high density magnetic recording media, and has been used as a metal tape for audio.
It is widely used as a metal tape for millimeter VTR, a tape for DAT, and a metal tape for business use. Also, recently
Development is actively carried out aiming at downsizing and weight reduction of magnetic recording devices, long-time recording, high image quality, and high density, and along with this, higher performance is achieved for magnetic tapes, which are magnetic recording media used. High density recording is required. The magnetic metal powder that can meet such requirements is fine,
It must have high coercive force and high saturation magnetization and excellent dispersibility. The metal magnetic powder currently used is produced by heating and reducing acicular α-iron oxyhydroxide or iron oxide in a reducing atmosphere, and then forming an oxide film on the surface of the particles. The magnetic characteristics of the metallic magnetic powder can be controlled by changing the shape of the powder particles and the composition of the alloy, but the coercive force and coercive force distribution are dominated by the particle shape. Regarding the particle shape, alkali hydroxide or alkali carbonate is added to an aqueous solution of ferrous salt for neutralization, and air is blown into the suspension containing the formed precipitate to form needle-shaped α-iron oxyhydroxide. In the process, a shape control agent is added to the suspension to control the acicular ratio (major axis length ÷ minor axis diameter), and the amount of gas blown or the reaction temperature is changed to control the particle size. There is. Here, the coercive force of the metal magnetic powder is determined by the acicular ratio when the particle size is constant, and the coercive force increases as the acicular ratio increases. Therefore, in order to obtain a metal magnetic powder having a large coercive force, long needle-shaped α-iron oxyhydroxide should be used as the starting material. However, recently, there has been a strong demand for higher density magnetic recording media, and from this point of view, there is a demand for metal magnetic powders having shorter particles and higher coercive force than ever before. By the way, in general, on the surface of α-iron oxyhydroxide, in order to prevent sintering of particles during heat reduction, A
1, 1, Si, B, P, Ca, Mg, Ba, Ti, Zr, rare earth elements and the like are deposited as sintering inhibitors, and then heat reduction is performed. As a result, a magnetic metal powder in which the particle shape of the starting material was almost maintained was obtained, but voids caused by water generated during heat reduction or voids due to volume contraction in the sintering inhibitor film were obtained. Etc. may exist, and these vacancies deteriorated the magnetic characteristics. Therefore, in order to improve such a phenomenon, a needle-shaped α-coated with a sintering inhibitor is used.
A method has been proposed and generally adopted in which iron oxyhydroxide is heated and dehydrated in a non-reducing atmosphere to reduce it to hematite before being reduced and then heat-reduced. By adopting this method, it becomes possible to obtain particles with few voids in the particles, and it is becoming possible to obtain short needle-shaped particles having a relatively high coercive force. Even metallic magnetic powders do not meet all the requirements currently required, and there is a current need for further improvement.

【0003】[0003]

【発明が解決しようとする課題】以上述べたように、近
年の磁気記録再生装置の高性能化に伴い、併せて使用さ
れる磁気記録媒体においても高出力化、低ノイズ化が強
く要望されている。従って、磁気記録媒体に使用される
金属磁性粉末も微細で、保磁力が高く、保磁力分布がシ
ャープであり、X線粒径が小さく、分散性に優れるもの
が求められている。しかしながら、上述した従来の技術
では、上記項目全てを満足する金属粉末は得られていな
い。本発明は上記事情に鑑みなされたもので、上述した
従来法では得ることのできない、優れた特性を有する金
属磁性粉末を提供することを目的とする。
As described above, as the performance of the magnetic recording / reproducing apparatus has increased in recent years, there has been a strong demand for higher output and lower noise in the magnetic recording medium used together. There is. Therefore, metal magnetic powders used for magnetic recording media are also required to be fine, have high coercive force, have a sharp coercive force distribution, have a small X-ray particle size, and have excellent dispersibility. However, with the above-mentioned conventional techniques, metal powders satisfying all the above items have not been obtained. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a metal magnetic powder having excellent characteristics that cannot be obtained by the above-mentioned conventional method.

【0004】[0004]

【問題を解決するための手段】上記目的を達成する本発
明は、α−オキシ水酸化鉄を非還元性雰囲気下で加熱脱
水処理してヘマタイトとし、次いで還元性雰囲気下で加
熱還元して金属磁性粉末を得る方法において、加熱脱水
処理する際の雰囲気が80〜100 %の水蒸気雰囲気であ
り、かつ加熱温度が350 〜700 ℃であることを特徴とす
る金属磁性粉末の製造方法である。
Means for Solving the Problems The present invention which achieves the above-mentioned object is to heat-dehydrate α-iron oxyhydroxide in a non-reducing atmosphere to hematite, and then heat-reduce it in a reducing atmosphere to reduce metal. In the method for obtaining magnetic powder, the atmosphere during the heat dehydration treatment is a steam atmosphere of 80 to 100%, and the heating temperature is 350 to 700 ° C.

【0005】本発明において使用されるα−オキシ水酸
化鉄は、一般的な製法、即ち第一鉄塩を水酸化アルカリ
水溶液で中和し、生成したグリーンラストを含む懸濁液
に空気を吹き込んで生成させた針状のα−オキシ水酸化
鉄、あるいは第一鉄塩を炭酸アルカリ水溶液で中和し、
生成した炭酸鉄を含む懸濁液に空気を吹き込んで生成さ
せた紡錘状のα−オキシ水酸化鉄、第二鉄塩を水酸化ア
ルカリ水溶液で中和し、高アルカリ条件で加熱して生成
させた針状または棒状のα−オキシ水酸化鉄が好まし
い。また、上記α−オキシ水酸化鉄粒子中には、Co、
Ni、Cr、Mn、Zn、Cu、Ca、Mg、Ba、S
r、稀土類元素(La、Ce、Pr、Nd、Sm、G
d、Dy、Y)等の金属化合物が、粒子の形状コントロ
ール剤、あるいは磁気特性コントロール剤、焼結防止剤
としてドープされていても良い。本発明で用いられる高
密度磁気記録媒体用の短針状の磁性粉の原料としては、
平均長軸長が0.05〜1.0 μm の範囲内のα−オキシ水酸
化鉄が好ましい。0.05μm 以下の粒子では、実用的磁気
特性を有する金属磁性粉末が得られず、また、1.0 μm
以上では、大きすぎて高密度磁気記録媒体用の磁性粉末
には適さないものとなってしまう。
The α-iron oxyhydroxide used in the present invention is produced by a general method, that is, a ferrous salt is neutralized with an aqueous alkali hydroxide solution, and air is blown into a suspension containing the produced green last. The needle-shaped α-iron oxyhydroxide or ferrous salt produced in step 1 is neutralized with an aqueous solution of alkali carbonate,
The spindle-shaped α-iron oxyhydroxide and ferric salt produced by blowing air into the suspension containing the produced iron carbonate are neutralized with an aqueous alkali hydroxide solution, and heated under high alkaline conditions to produce the product. Needle-like or rod-like α-iron oxyhydroxide is preferred. In the α-iron oxyhydroxide particles, Co,
Ni, Cr, Mn, Zn, Cu, Ca, Mg, Ba, S
r, rare earth element (La, Ce, Pr, Nd, Sm, G
A metal compound such as d, Dy or Y) may be doped as a particle shape control agent, a magnetic property control agent, or a sintering inhibitor. As a raw material of the short needle-shaped magnetic powder for the high-density magnetic recording medium used in the present invention,
Α-Iron oxyhydroxide having an average major axis length in the range of 0.05 to 1.0 μm is preferred. If the particle size is less than 0.05 μm, a metallic magnetic powder with practical magnetic properties cannot be obtained.
The above is too large to be suitable for magnetic powder for high density magnetic recording media.

【0006】次いで、α−オキシ水酸化鉄の表面近傍に
Al、Si、B、Co、Ni、Mn、稀土類元素、C
a、Ba、Sr及びMgの中から選ばれた1種以上の元
素の化合物を含有させるのであるが、含有させる方法と
しては、含有させる元素の水溶性塩をα−オキシ水酸化
鉄を分散させた水懸濁液中に添加し、撹拌しながら酸あ
るいはアルカリで中和して生成する水酸化物の微結晶を
粒子表面に被着させる方法、あるいは、α−オキシ水酸
化鉄を生成させる反応の後期に、含有させようとする元
素の水溶液塩の単独、または第一鉄塩との混合物を添加
し、酸化反応でドープさせる方法等がある。これらの元
素を含有させる目的は、先に述べたように、磁気特性の
コントロール、粒子の焼結防止であり、これらの元素の
添加量、組み合わせ等は経験的に決められる。例えば焼
結防止剤として添加される難還元性元素の添加量は、酸
化物換算(例えばAl2O3 、SiO2)で表した場合、鉄を10
0 とした時の重量比で2.0 〜20.0が好ましい範囲であ
る。2.0 未満では焼結防止効果が不十分であり、本発明
の方法を採用しても優れた特性の金属磁性粉末は得られ
ない。一方、20.0を越えると、磁気特性を有しない酸化
物の含量が増加するため、飽和磁化量が小さいものにな
ってしまい、好ましくない。また、磁気特性のコントロ
ール剤として添加されるCo、Niの添加量は、同じく
鉄を100 とした時の重量比でCo=0.5 〜40、Ni=0.
5 〜20が好ましい範囲である。
Next, Al, Si, B, Co, Ni, Mn, a rare earth element, and C are formed near the surface of α-iron oxyhydroxide.
The compound of one or more elements selected from a, Ba, Sr, and Mg is contained. As a method of containing, a water-soluble salt of the element to be contained is dispersed in α-iron oxyhydroxide. A method of adding fine crystals of hydroxide formed by neutralizing with an acid or an alkali to a particle surface while stirring, or a reaction for producing α-iron oxyhydroxide In the latter stage, there is a method in which an aqueous solution salt of an element to be contained is added alone or a mixture with a ferrous salt is added, and doping is performed by an oxidation reaction. As described above, the purpose of containing these elements is to control the magnetic characteristics and prevent sintering of particles, and the addition amount and combination of these elements can be empirically determined. For example, when the amount of the non-reducing element added as a sintering inhibitor is expressed as oxide (eg Al 2 O 3 , SiO 2 ), 10
When it is set to 0, the weight ratio is preferably 2.0 to 20.0. If it is less than 2.0, the effect of preventing sintering is insufficient, and even if the method of the present invention is adopted, a metal magnetic powder having excellent characteristics cannot be obtained. On the other hand, if it exceeds 20.0, the content of the oxide having no magnetic property increases, and the saturation magnetization becomes small, which is not preferable. Further, the amounts of Co and Ni added as magnetic property control agents are Co = 0.5 to 40 and Ni = 0.
5 to 20 is a preferable range.

【0007】次に上述した表面処理を施したα−オキシ
水酸化鉄は、十分に洗浄し、乾燥し、次いで80〜100 %
の水蒸気雰囲気下で350 〜700 ℃の温度で熱処理する。
尚、この熱処理を行う際、水蒸気分圧が低ければ低いほ
ど本発明の効果が小さくなり、金属磁性粉末の特性は低
下するので、できるだけ100 %に近い水蒸気雰囲気下で
行うのが望ましい。また水蒸気雰囲気のコントロールに
際しては、α−オキシ水酸化鉄の加熱により発生する水
蒸気を有効利用する方法も考えられるが、この方法で
は、水蒸気分圧を一定にコントロールすることが困難で
あるため、外部より加熱蒸気及び非還元性ガスを加熱処
理室内に送入する方法が確実である。また、100 %水蒸
気雰囲気で加熱処理を行う場合は、加熱水蒸気の送入の
みでよいので、コントロールは容易である。上記加熱脱
水処理する装置としては、固定床、ロータリーキルン等
が使用できる。また、脱水処理温度は350 〜700 ℃が好
ましく、さらに好ましくは400 〜650 ℃の範囲である。
脱水処理温度が350 ℃未満では粒子を焼き締める効果が
なく、700 ℃を越えると加熱脱水により生成したヘマタ
イトが既に焼結にまで進んでしまい、金属磁性粉末にし
たとしてもその保磁力は低く、媒体とした場合にノイズ
に関係する金属磁性粉末のX線粒径増大を引き起こし好
ましくない。なお、上記処理温度は、一応の目安であ
り、最適の処理温度は、粒子の大きさ、焼結防止剤の種
類及び添加量により変化するので適宜決められる。
Next, the above-mentioned surface-treated α-iron oxyhydroxide is thoroughly washed, dried, and then 80 to 100%.
Heat treatment is performed at a temperature of 350 to 700 ° C in a steam atmosphere.
In this heat treatment, the lower the partial pressure of water vapor, the smaller the effect of the present invention, and the lower the characteristics of the magnetic metal powder. Therefore, it is desirable to perform the heat treatment in a water vapor atmosphere as close to 100% as possible. Further, in controlling the steam atmosphere, a method of effectively utilizing steam generated by heating of α-iron oxyhydroxide can be considered, but with this method, it is difficult to control the steam partial pressure to a constant value. A more reliable method is to introduce heated steam and non-reducing gas into the heat treatment chamber. Further, when the heat treatment is carried out in a 100% steam atmosphere, it is only necessary to feed heated steam, so that the control is easy. A fixed bed, a rotary kiln, or the like can be used as the device for the heat dehydration treatment. The dehydration temperature is preferably 350 to 700 ° C, more preferably 400 to 650 ° C.
If the dehydration treatment temperature is less than 350 ° C, there is no effect of baking up the particles, and if it exceeds 700 ° C, the hematite produced by heating dehydration has already progressed to sintering, and the coercive force of metal magnetic powder is low. When it is used as a medium, it causes an increase in the X-ray particle size of the metal magnetic powder, which is not preferable because of its noise. The above treatment temperature is a tentative guide, and the optimum treatment temperature is appropriately determined because it varies depending on the size of particles, the type and amount of the sintering inhibitor.

【0008】次に、上記加熱脱水処理を終えたα−オキ
シ水酸化鉄は、常法にしたがい、還元性雰囲気下で加熱
還元し、冷却後、粒子の表面を常法に従って酸化安定化
して目的の金属磁性粉を得る。
[0008] Next, the α-iron oxyhydroxide that has been subjected to the above heat dehydration treatment is heated and reduced in a reducing atmosphere according to a conventional method, and after cooling, the surface of the particles is stabilized by oxidation according to a conventional method. To obtain metallic magnetic powder of.

【0009】[0009]

【作用及び効果】本発明の金属磁性粉末の製造方法は、
α−オキシ水酸化鉄の加熱脱水処理を80〜100 %の水蒸
気雰囲気中で、かつ加熱を350 〜700 ℃の温度範囲で行
うので、還元で得られる金属磁性粉末の特性が従来の方
法で得たものに比べて保磁力が高く、保磁力分布がシャ
ープであり、媒体にしたときのノイズに関係するX線粒
径が小さく、分散性に優れている。尚、本発明の金属磁
性粉末の製造方法は、高濃度の水蒸気雰囲気中で熱処理
するので、ヘマタイトとしたときの粒子の形状が、従来
の非還元性雰囲気中で熱処理したものに比べて、空孔が
少なく、粒子表面も滑らかである。従って、このことが
金属磁性粉末にした際、針状性がよく、粒子内部の欠陥
も少なく、表面は滑らかとなり、ひいては磁気特性を良
好なものとしているものと推察される。
[Operation and effect] The method for producing the metallic magnetic powder of the present invention is
Since the heat dehydration treatment of α-iron oxyhydroxide is performed in the steam atmosphere of 80 to 100% and the heating is performed in the temperature range of 350 to 700 ° C, the characteristics of the metal magnetic powder obtained by the reduction can be obtained by the conventional method. It has a higher coercive force, a sharper coercive force distribution, a smaller X-ray grain size related to noise when used as a medium, and an excellent dispersibility. Since the method for producing the metallic magnetic powder of the present invention heat-treats in a high-concentration water vapor atmosphere, the shape of the particles when made into hematite has an empty space as compared with that in a conventional non-reducing atmosphere. There are few pores and the particle surface is smooth. Therefore, it is presumed that when this is used as the metal magnetic powder, the acicularity is good, there are few defects inside the particles, the surface is smooth, and the magnetic properties are good.

【0010】[0010]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (1) α−オキシ水酸化鉄(サンプルA)の製造 撹拌機と、空気吹き込みノズルとを備えた反応容器に、
窒素ガスを流して酸化性ガスを追い出し、8.0molの塩化
第一鉄と、0.3molの塩化ニッケルを4リットルの蒸留水
に溶解した混合溶液と、1.5mol/リットルの水酸化ナト
リウム水溶液20リットルを混合した懸濁液を40℃に保持
し、10リットル/分の空気を2時間吹き込み、針状のα
−オキシ水酸化鉄を得た。このα−オキシ水酸化鉄粒子
の平均長軸長は0.4 μm 、比表面積は73m2/gであっ
た。次に得られたα−オキシ水酸化鉄を濾取し、それを
水洗した後40リットルの蒸留水中に分散させ、さらにこ
の分散液に0.38 molの塩化コバルトを2リットルの蒸留
水中に溶解させた水溶液を添加し、十分に撹拌した後、
水酸化ナトリウム水溶液を徐々に滴下して水溶液のpH
を8に調整し、30分間撹拌した。次いで、SiO2換算で、
100 g/リットルの水ガラス水溶液152 mlを懸濁液に添
加し、30分間撹拌した後、0.5mol/リットルの塩化アル
ミニウム水溶液2リットルを徐々に滴下し、併せて水酸
化ナトリウム水溶液を滴下して懸濁液のpHを8に調整
し30分間撹拌した。このようにして表面処理を施したα
−オキシ水酸化鉄を濾取し、水洗して120 ℃の乾燥機中
で乾燥し、これをサンプルAとした。なお、上記表面処
理により添加した元素の量は、鉄を100とした場合の重
量比で以下の通りである。
EXAMPLES The present invention will be specifically described below with reference to examples. (1) Production of α-iron oxyhydroxide (Sample A) In a reaction vessel equipped with a stirrer and an air blowing nozzle,
Nitrogen gas is flowed out to drive out the oxidizing gas, and 8.0 mol of ferrous chloride, 0.3 mol of nickel chloride dissolved in 4 liters of distilled water, and 20 liters of a 1.5 mol / liter sodium hydroxide aqueous solution are mixed. The mixed suspension was kept at 40 ° C., air of 10 liter / min was blown for 2 hours, and the needle-shaped α
-Iron ferric oxyhydroxide is obtained. The α-iron oxyhydroxide particles had an average major axis length of 0.4 μm and a specific surface area of 73 m 2 / g. Next, the obtained α-iron oxyhydroxide was collected by filtration, washed with water and dispersed in 40 liters of distilled water, and 0.38 mol of cobalt chloride was dissolved in 2 liters of distilled water. After adding the aqueous solution and stirring well,
Gradually add an aqueous solution of sodium hydroxide to the pH of the aqueous solution.
Was adjusted to 8 and stirred for 30 minutes. Then, in terms of SiO 2 ,
152 ml of 100 g / liter water glass aqueous solution was added to the suspension and stirred for 30 minutes, then 2 liters of 0.5 mol / liter aluminum chloride aqueous solution was gradually added dropwise, and also sodium hydroxide aqueous solution was added dropwise. The pH of the suspension was adjusted to 8 and stirred for 30 minutes. The surface treated α
-Iron oxyhydroxide was collected by filtration, washed with water and dried in a drier at 120 ° C to obtain sample A. The amounts of the elements added by the surface treatment are as follows in terms of weight ratio when iron is 100.

【0011】Ni=3.0 Co=5.0 SiO2=3.4 Al2O3 =6.0 実施例1 サンプルAをガスが流通する構造の固定式加熱炉にセッ
トし、500 ℃に加熱した100 %の水蒸気を流通させ、炉
内の温度が500 ℃になってから3時間保持した。次にこ
のものを冷却した後、水蒸気流下490 ℃で3時間還元
し、次いで室温まで冷却した後、窒素ガスを流し、この
窒素ガス流に空気を徐々に送入して安定化した金属磁性
粉末を得た。このようにして、この金属磁性粉末を加熱
脱水処理して得られたヘマタイト粒子を電子顕微鏡で観
察したところ、図1に示すように粒子内の空孔も少な
く、粒子表面の滑らかなものであった。また、得られた
金属磁性粉末の平均長軸長は0.18μm の微細な粒子であ
り、その磁気特性を測定したところ、Hc=1695 Oe、
σs=132emu/g、角型比(Rs)=0.505 、比表面積
(BET)=58.0m2/g、X線粒径(Lc)=149 オン
グストロームであった。また、電子顕微鏡での観察で、
粒子中の空孔が少なく粒子表面の滑らかな金属磁性粉末
であることが確認できた。なお、加熱脱水処理条件に対
する金属磁性粉末の磁気特性の関係を示す結果を表1
に、また得られた金属磁性粉末をテープにしたときの磁
気特性と、保磁力分布を示すテープのSFD値を表2に
示した。
Ni = 3.0 Co = 5.0 SiO 2 = 3.4 Al 2 O 3 = 6.0 Example 1 Sample A was set in a stationary heating furnace having a structure in which gas flows, and 100% steam heated to 500 ° C. was flowed. Then, after the temperature in the furnace reached 500 ° C., the temperature was maintained for 3 hours. Next, after cooling this product, it was reduced under a steam flow at 490 ° C. for 3 hours, then cooled to room temperature, and then nitrogen gas was caused to flow, and air was gradually fed into this nitrogen gas flow to stabilize the metal magnetic powder. Got When the hematite particles obtained by heating and dehydrating the metal magnetic powder in this manner are observed with an electron microscope, the particles have few pores and have a smooth particle surface as shown in FIG. It was The obtained metal magnetic powder was fine particles having an average major axis length of 0.18 μm, and its magnetic characteristics were measured. As a result, Hc = 1695 Oe,
σs = 132 emu / g, squareness ratio (Rs) = 0.505, specific surface area (BET) = 58.0 m 2 / g, X-ray particle size (Lc) = 149 Å. Also, by observation with an electron microscope,
It was confirmed that the particles were a metal magnetic powder with few pores and a smooth particle surface. The results showing the relationship between the magnetic properties of the metal magnetic powder and the heat dehydration treatment conditions are shown in Table 1.
Table 2 shows the magnetic properties of the obtained metal magnetic powder when used as a tape, and the SFD value of the tape showing the coercive force distribution.

【0012】実施例2 加熱脱水処理の雰囲気を15%の窒素ガスと、85%の水蒸
気にした以外は、実施例1と全て同じ条件で処理し、得
られた金属磁性粉末について同様の評価を行った。結果
を表1、表2に示した。
Example 2 The same evaluation was carried out on the metal magnetic powder obtained by treating under the same conditions as in Example 1, except that the atmosphere of the heat dehydration treatment was 15% nitrogen gas and 85% steam. went. The results are shown in Tables 1 and 2.

【0013】比較例1 サンプルAを実施例1と同じ装置を用いて、反応炉中に
600 ℃の窒素ガスを流して3時間目的温度で処理し、そ
の後実施例1と同様に還元・安定化処理して金属磁性粉
末を得た。なお、処理温度は、窒素雰囲気中で処理を行
う際、最も磁気特性の優れた金属磁性粉が得られる温度
条件を選択した。また、上記金属磁性粉末を加熱脱水処
理して得られたヘマタイト粒子を電子顕微鏡で観察した
ところ、実施例1のヘマタイト粒子に比べて粒子中の空
孔が多く確認された。電子顕微鏡写真を図2に示す。得
られた金属磁性粉末については、実施例1と同様の評価
を行い、結果を表1、表2に示した。
Comparative Example 1 Sample A was placed in a reaction furnace using the same apparatus as in Example 1.
Nitrogen gas at 600 ° C. was flowed to treat at a target temperature for 3 hours, and then reduction / stabilization treatment was carried out in the same manner as in Example 1 to obtain metal magnetic powder. The treatment temperature was selected such that the metal magnetic powder with the best magnetic properties was obtained when the treatment was carried out in a nitrogen atmosphere. Further, when the hematite particles obtained by subjecting the metal magnetic powder to a heat dehydration treatment were observed with an electron microscope, more voids were confirmed in the particles as compared with the hematite particles of Example 1. An electron micrograph is shown in FIG. The obtained metal magnetic powder was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0014】比較例2 サンプルAを実施例1と同じ装置を用いて、反応炉中に
650 ℃の空気を流して3時間目的温度で処理し、その後
実施例1と同様に還元・安定化処理して金属磁性粉末を
得た。なお、処理温度は、空気雰囲気中で処理を行う
際、最も磁気特性の優れた金属磁性粉が得られる温度条
件を選択した。また、上記金属磁性粉末を加熱脱水処理
して得られたヘマタイト粒子を電子顕微鏡で観察したと
ころ、図2(比較例1)のヘマタイトと同様に、実施例
1のヘマタイト粒子に比べて粒子中の空孔が多く確認さ
れた。電子顕微鏡写真を図3に示す。得られた金属磁性
粉末については、実施例1と同様の評価を行い、結果を
表1、表2に示した。
Comparative Example 2 Sample A was placed in a reactor using the same apparatus as in Example 1.
Air was passed at 650 ° C. to treat at a target temperature for 3 hours, and then reduction / stabilization treatment was carried out in the same manner as in Example 1 to obtain a magnetic metal powder. The treatment temperature was selected such that the metal magnetic powder having the best magnetic properties can be obtained when the treatment is performed in an air atmosphere. Further, when the hematite particles obtained by subjecting the metal magnetic powder to a heat dehydration treatment were observed with an electron microscope, as with the hematite particles of FIG. 2 (Comparative Example 1), the hematite particles contained in the particles were larger than those of the hematite particles of Example 1. Many holes were confirmed. An electron micrograph is shown in FIG. The obtained metal magnetic powder was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【0015】比較例3 窒素ガスの濃度を50%、水蒸気濃度を50%とした以外
は、全て実施例1と同様に処理した。得られた金属磁性
粉末については、実施例1と同様の評価を行い、結果を
表1に示した。水蒸気濃度の低下に起因すると思われる
保磁力の低下がみられた。
Comparative Example 3 The same treatment as in Example 1 was carried out except that the nitrogen gas concentration was 50% and the water vapor concentration was 50%. The obtained metal magnetic powder was evaluated in the same manner as in Example 1, and the results are shown in Table 1. A decrease in coercive force, which is thought to be due to a decrease in water vapor concentration, was observed.

【0016】(X線粒径の測定法)上述した実施例・比
較例におけるX線粒径は、X線回折装置で得られたFe
(110) の回折ピークの半価幅、2θ値から次式により求
めた。 D(110)=Kλ/βcosθ K:シェラー定数(0.9) λ:照射X線の波長 β:回折ピークの半価幅(真値に補正して用いる) θ:回折角 (テープ化の方法)上述した実施例・比較例において
は、金属磁性粉末を以下のようにしてテープ化した。金
属磁性粉末100 gとポリウレタン樹脂11g、塩化ビニル
−酢酸ビニル共重合体7.75g、トルエン/メチルエチル
ケトン/シクロヘキサノン=1/1/1の混合溶液345
gとを混合し、サンドグラインダーで5時間分散を行っ
て磁性塗料を作成した。次にこの塗料に架橋剤としてコ
ロネートL2.5 g添加した後、ポリエステルフィルムに
塗布し、3000ガウスの磁界を印加して100 ℃で乾燥し
た。次いで、80℃、線圧200 kg/cmでカレンダー処理を
行い、60℃で24時間熟成を行った後、カットしてVSM
磁力計を用いて最大印加磁場5kOeで磁気特性を測定し
た。
(Measurement Method of X-ray Particle Size) The X-ray particle size in the above-mentioned Examples and Comparative Examples is Fe obtained by an X-ray diffractometer.
The full width at half maximum of the diffraction peak of (110) was calculated from the 2θ value by the following formula. D (110) = Kλ / β cos θ K: Scherrer constant (0.9) λ: wavelength of irradiated X-ray β: half width of diffraction peak (corrected to true value) θ: diffraction angle (tape forming method) In Examples and Comparative Examples, the magnetic metal powder was formed into a tape as follows. Mixed solution of metal magnetic powder 100 g, polyurethane resin 11 g, vinyl chloride-vinyl acetate copolymer 7.75 g, toluene / methyl ethyl ketone / cyclohexanone = 1/1/1
g was mixed and dispersed with a sand grinder for 5 hours to prepare a magnetic paint. Next, 2.5 g of Coronate L as a cross-linking agent was added to this paint, which was then coated on a polyester film and dried at 100 ° C. by applying a magnetic field of 3000 gauss. Then, calendering is performed at 80 ° C and linear pressure of 200 kg / cm, and after aging at 60 ° C for 24 hours, cut and cut into VSM.
The magnetic characteristics were measured with a maximum applied magnetic field of 5 kOe using a magnetometer.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明の方法により得た金属磁性粉末
は、上述した本発明にかかる実施例と比較例との対比か
らも明らかなように、従来法による金属磁性粉末より保
磁力が高く、テープ化した際のSFD値で示される保磁
力分布もシャープである。また、テープ化した際、その
テープのノイズに関係する金属磁性粉末のX線粒径も小
さく、分散、配向性を示すテープの角型比も良好で、高
密度磁気記録媒体作製用として極めて適した金属磁性粉
末が得られる。
The metal magnetic powder obtained by the method of the present invention has a higher coercive force than the metal magnetic powder by the conventional method, as is clear from the comparison between the above-mentioned Examples of the present invention and Comparative Examples. The coercive force distribution indicated by the SFD value when formed into a tape is also sharp. Further, when formed into a tape, the X-ray particle size of the metal magnetic powder, which is related to the noise of the tape, is small, and the squareness ratio of the tape exhibiting dispersion and orientation is good, which makes it extremely suitable for making high-density magnetic recording media. A metallic magnetic powder is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の方法により得たヘマタイトの粒子構
造を示す電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the particle structure of hematite obtained by the method of Example 1.

【図2】比較例1の方法により得たヘマタイトの粒子構
造を示す電子顕微鏡写真である。
2 is an electron micrograph showing the particle structure of hematite obtained by the method of Comparative Example 1. FIG.

【図3】比較例2の方法により得たヘマタイトの粒子構
造を示す電子顕微鏡写真である。
FIG. 3 is an electron micrograph showing the particle structure of hematite obtained by the method of Comparative Example 2.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月15日[Submission date] December 15, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】Ni=3.0 Co=5.0 SiO2=3.4 Al2O3 =6.0 実施例1 サンプルAをガスが流通する構造の固定式加熱炉にセッ
トし、500 ℃に加熱した100 %の水蒸気を流通させ、炉
内の温度が500 ℃になってから3時間保持した。次にこ
のものを冷却した後、水素気流下490 ℃で3時間還元
し、次いで室温まで冷却した後、窒素ガスを流し、この
窒素ガス流に空気を徐々に送入して安定化した金属磁性
粉末を得た。サンプルAのオキシ水酸化鉄を加熱脱水処
理して得られたヘマタイト粒子を電子顕微鏡で観察した
ところ、図1に示すように粒子内の空孔も少なく、粒子
表面の滑らかなものであった。また、得られた金属磁性
粉末の平均長軸長は0.18μm の微細な粒子であり、その
磁気特性を測定したところ、Hc=1695 Oe、σs=13
2emu/g、角型比(Rs)=0.505 、比表面積(BE
T)=58.0m2/g、X線粒径(Lc)=149 オングスト
ロームであった。また、電子顕微鏡での観察で、粒子中
の空孔が少なく粒子表面の滑らかな金属磁性粉末である
ことが確認できた。なお、加熱脱水処理条件に対する金
属磁性粉末の磁気特性の関係を示す結果を表1に、また
得られた金属磁性粉末をテープにしたときの磁気特性
と、保磁力分布を示すテープのSFD値を表2に示し
た。
Ni = 3.0 Co = 5.0 SiO 2 = 3.4 Al 2 O 3 = 6.0 Example 1 Sample A was set in a stationary heating furnace having a structure in which gas flows, and 100% steam heated to 500 ° C. was flowed. Then, after the temperature in the furnace reached 500 ° C., the temperature was maintained for 3 hours. Next, after cooling this product, it was reduced under a hydrogen stream at 490 ° C. for 3 hours, then cooled to room temperature, and then nitrogen gas was made to flow, and air was gradually introduced into this nitrogen gas flow to stabilize the metal magnetic properties. A powder was obtained. When hematite particles obtained by subjecting sample A of iron oxyhydroxide to heat dehydration treatment were observed with an electron microscope, as shown in FIG. 1, there were few voids in the particles and the particle surface was smooth. The obtained metal magnetic powder was fine particles having an average major axis length of 0.18 μm, and its magnetic characteristics were measured. As a result, Hc = 1695 Oe, σs = 13
2emu / g, squareness ratio (Rs) = 0.505, specific surface area (BE
T) = 58.0 m 2 / g, X-ray particle size (Lc) = 149 Å. Further, it was confirmed by observation with an electron microscope that the particles were a metal magnetic powder having few pores and a smooth particle surface. The results showing the relationship between the magnetic properties of the metal magnetic powder with respect to the heat dehydration treatment condition are shown in Table 1, and the magnetic properties when the obtained metal magnetic powder is used as a tape and the SFD value of the tape showing the coercive force distribution are shown. The results are shown in Table 2.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】比較例1 サンプルAを実施例1と同じ装置を用いて、反応炉中に
600 ℃の窒素ガスを流して3時間目的温度で処理し、そ
の後実施例1と同様に還元・安定化処理して金属磁性粉
末を得た。なお、処理温度は、窒素雰囲気中で処理を行
う際、最も磁気特性の優れた金属磁性粉が得られる温度
条件を選択した。サンプルAのオキシ水酸化鉄を加熱脱
水処理して得られたヘマタイト粒子を電子顕微鏡で観察
したところ、実施例1のヘマタイト粒子に比べて粒子中
の空孔が多く確認された。電子顕微鏡写真を図2に示
す。得られた金属磁性粉末については、実施例1と同様
の評価を行い、結果を表1、表2に示した。
Comparative Example 1 Sample A was placed in a reaction furnace using the same apparatus as in Example 1.
Nitrogen gas at 600 ° C. was flowed to treat at a target temperature for 3 hours, and then reduction / stabilization treatment was carried out in the same manner as in Example 1 to obtain metal magnetic powder. The treatment temperature was selected such that the metal magnetic powder with the best magnetic properties was obtained when the treatment was carried out in a nitrogen atmosphere. When the hematite particles obtained by subjecting the iron oxyhydroxide of Sample A to heat dehydration were observed with an electron microscope, a large number of voids were confirmed in the particles as compared with the hematite particles of Example 1. An electron micrograph is shown in FIG. The obtained metal magnetic powder was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】比較例2 サンプルAを実施例1と同じ装置を用いて、反応炉中に
650 ℃の空気を流して3時間目的温度で処理し、その後
実施例1と同様に還元・安定化処理して金属磁性粉末を
得た。なお、処理温度は、空気雰囲気中で処理を行う
際、最も磁気特性の優れた金属磁性粉が得られる温度条
件を選択した。サンプルAのオキシ水酸化鉄を加熱脱水
処理して得られたヘマタイト粒子を電子顕微鏡で観察し
たところ、図2(比較例1)のヘマタイトと同様に、実
施例1のヘマタイト粒子に比べて粒子中の空孔が多く確
認された。電子顕微鏡写真を図3に示す。得られた金属
磁性粉末については、実施例1と同様の評価を行い、結
果を表1、表2に示した。
Comparative Example 2 Sample A was placed in a reactor using the same apparatus as in Example 1.
Air was passed at 650 ° C. to treat at a target temperature for 3 hours, and then reduction / stabilization treatment was carried out in the same manner as in Example 1 to obtain a magnetic metal powder. The treatment temperature was selected such that the metal magnetic powder having the best magnetic properties can be obtained when the treatment is performed in an air atmosphere. Observation of the hematite particles obtained by subjecting the iron oxyhydroxide of Sample A to a heat dehydration treatment under an electron microscope revealed that, as with the hematite of FIG. 2 (Comparative Example 1), the hematite particles contained in the particles were larger than those of Example 1. Many vacancies were confirmed. An electron micrograph is shown in FIG. The obtained metal magnetic powder was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】[0017]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 α−オキシ水酸化鉄を非還元性雰囲気下
で加熱脱水処理してヘマタイトとし、次いで還元性雰囲
気下で加熱還元して金属磁性粉末を得る方法において、
加熱脱水処理する際の雰囲気が80〜100 %の水蒸気雰囲
気であり、かつ加熱温度が350 〜700 ℃であることを特
徴とする金属磁性粉末の製造方法。
1. A method for obtaining a metal magnetic powder by heat dehydration treatment of α-iron oxyhydroxide in a non-reducing atmosphere to hematite, and then heat reduction in a reducing atmosphere.
A method for producing a metal magnetic powder, characterized in that an atmosphere during the heat dehydration treatment is a steam atmosphere of 80 to 100% and a heating temperature is 350 to 700 ° C.
【請求項2】 α−オキシ水酸化鉄が、平均長軸長が0.
05〜0.1 μm であり、粒子表面近傍にAl、Si、B、
Co、Ni、Mn、稀土類元素、Ca、Ba、Sr及び
Mgの中から選ばれた1種以上の元素の化合物を含有す
るものである請求項1記載の金属磁性粉末の製造方法。
2. The average major axis length of α-iron oxyhydroxide is 0.
05-0.1 μm, Al, Si, B,
2. The method for producing a metal magnetic powder according to claim 1, which contains a compound of one or more elements selected from Co, Ni, Mn, rare earth elements, Ca, Ba, Sr, and Mg.
JP31275292A 1992-10-27 1992-10-27 Method for producing metal magnetic powder Expired - Fee Related JP3405748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31275292A JP3405748B2 (en) 1992-10-27 1992-10-27 Method for producing metal magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31275292A JP3405748B2 (en) 1992-10-27 1992-10-27 Method for producing metal magnetic powder

Publications (2)

Publication Number Publication Date
JPH06136412A true JPH06136412A (en) 1994-05-17
JP3405748B2 JP3405748B2 (en) 2003-05-12

Family

ID=18032996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31275292A Expired - Fee Related JP3405748B2 (en) 1992-10-27 1992-10-27 Method for producing metal magnetic powder

Country Status (1)

Country Link
JP (1) JP3405748B2 (en)

Also Published As

Publication number Publication date
JP3405748B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
US5599378A (en) Spindle-shaped magnetic iron based alloy particles and process for producing the same
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JP3412676B2 (en) Spindle-shaped goethite particle powder and method for producing the same
JP2004035939A (en) Spindle-shaped alloy magnetic particle powder for magnetic recording, and its manufacturing process
JPH10245233A (en) Spindle-like hematite particle and its production and spindle-like metal magnetic particle containing iron as main component and obtained from the hematite particle as starting ram material and its production
JP2003059707A (en) Iron-based spindle metal magnetic particle powder and its manufacturing method
JP4182310B2 (en) Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP3405748B2 (en) Method for producing metal magnetic powder
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JP3264374B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
US5989516A (en) Spindle-shaped geothite particles
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JP4378763B2 (en) Method for producing compound particle powder containing iron as its main component
JPS6411577B2 (en)
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JP2965606B2 (en) Method for producing metal magnetic powder
JPH06140222A (en) Magnetic metal powder and manufacture thereof
JP3095041B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH0598321A (en) Production of magnetic metal powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH07126704A (en) Metal magnetic particle powder essentially consisting of iron and having spindle shape and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees