JPH06135351A - Ground condition detection device - Google Patents

Ground condition detection device

Info

Publication number
JPH06135351A
JPH06135351A JP28630292A JP28630292A JPH06135351A JP H06135351 A JPH06135351 A JP H06135351A JP 28630292 A JP28630292 A JP 28630292A JP 28630292 A JP28630292 A JP 28630292A JP H06135351 A JPH06135351 A JP H06135351A
Authority
JP
Japan
Prior art keywords
steering
rear wheel
rear wheels
road surface
steering angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28630292A
Other languages
Japanese (ja)
Other versions
JP3055330B2 (en
Inventor
Hiroshi Inagaki
浩 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP28630292A priority Critical patent/JP3055330B2/en
Publication of JPH06135351A publication Critical patent/JPH06135351A/en
Application granted granted Critical
Publication of JP3055330B2 publication Critical patent/JP3055330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

PURPOSE:To detect ground condition at the time of straight travelling concerning a detection device to detect ground condition of the ground on which a vehicle having a four-wheel steering device capable of independently controlling steering ratios of front wheels and rear wheels travels. CONSTITUTION:At the time when a front wheel steering angle thetaf is lower than specified threshold value thetat, a computer judges it as straight traveling (step 102) and rear wheels are steered at specified angles in opposite phases to the left and the right (step 103). Continuously, by retrieving a map from selfaligning torque (SAT) of the rear wheels and a steering angle of the rear wheels, the computer computes a ground mu (step 106).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は路面状態検出装置に係
り、特に前輪と後輪の転舵比を独立に制御可能な4輪操
舵装置を有する車両が走行する路面状態を検出する検出
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a road surface condition detecting device, and more particularly to a road surface condition detecting device for detecting a road surface condition of a vehicle having a four-wheel steering device capable of independently controlling the steering ratios of front wheels and rear wheels. .

【0002】[0002]

【従来の技術】車両の低速旋回時には前輪に対して後輪
を逆相転舵することにより小回り性を向上し、また中高
速旋回時には前輪に対して後輪を同相転舵することによ
り過渡的な走行状態の安定性を得ることができる4輪操
舵装置を有する車両において、路面の摩擦係数(μ)に
応じて上記の後輪の操舵角を補正することにより、更に
走行安定性等を向上することができることが知られてい
る。そこで、従来よりハンドル操舵時のタイヤ復元トル
ク(セルフアライニングトルク:SAT)を検出するこ
とにより路面μを推定するようにした路面状態検出装置
が知られている(特開昭63−64879号公報)。
2. Description of the Related Art When a vehicle is turning at a low speed, the rear wheels are steered in anti-phase with respect to the front wheels to improve the small turning performance. In a vehicle having a four-wheel steering system capable of achieving stable running conditions, the running angle is further improved by correcting the steering angle of the rear wheels according to the friction coefficient (μ) of the road surface. It is known that you can. Therefore, conventionally, there is known a road surface condition detecting device which estimates a road surface μ by detecting a tire restoring torque (self-aligning torque: SAT) during steering of a steering wheel (Japanese Patent Laid-Open No. 63-64879). ).

【0003】[0003]

【発明が解決しようとする課題】しかるに、上記の従来
の路面状態検出装置では、タイヤスリップ角が発生しな
いとSATが生じないため、ハンドル転舵時にしか路面
μが推定できず、ハンドル操舵前の直進時にドライバに
予め路面μを報知できないため、ハンドル操舵時に車両
を不安定な状態に至らしめることがある。
However, in the above-mentioned conventional road surface condition detecting device, since the SAT does not occur unless the tire slip angle occurs, the road surface μ can be estimated only when the steering wheel is steered. Since it is not possible to inform the driver of the road surface μ in advance when driving straight ahead, the vehicle may become unstable during steering of the steering wheel.

【0004】本発明は上記の点に鑑みてなされたもの
で、車両の後輪をハンドル非操舵時に操舵できるように
することにより、上記の課題を解決した路面状態検出装
置を提供することを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a road surface condition detecting device that solves the above problems by enabling the rear wheels of a vehicle to be steered when the steering wheel is not steered. And

【0005】[0005]

【課題を解決するための手段】図1は上記目的を達成す
る本発明の原理構成図を示す。本発明は同図に示すよう
に、所定運転時に車両の後輪14a,14bを左右逆相
に所定角度操舵する後輪操舵手段11と、この後輪操舵
により後輪に発生する復元トルクを検出する第1の検出
手段12と、検出された上記復元トルクと後輪14a,
14bの舵角とより路面状態を検出する第2の検出手段
13とを有する。
FIG. 1 is a block diagram showing the principle of the present invention for achieving the above object. As shown in the figure, the present invention detects a rear wheel steering means 11 for steering the rear wheels 14a, 14b of a vehicle in a left-right reverse phase at a predetermined angle during a predetermined operation, and a restoring torque generated in the rear wheel by the rear wheel steering. First detecting means 12, which detects the restoring torque and the rear wheel 14a,
It has the second detection means 13 for detecting the road surface condition from the steering angle of 14b.

【0006】[0006]

【作用】所定の運転状態により車両の前輪15a,15
bが所定の舵角範囲にあるときにおいて、後輪操舵手段
11は左後輪14aと右後輪14bとを互いに逆相に所
定角度操舵する。このとき各後輪14a,14bに発生
する復元力、すなわちセルフアライニングトルク(SA
T)が第1の検出手段12により検出され、第2の検出
手段13により各後輪14a,14bの舵角と共に路面
状態を検出させる。従って、本発明では前輪15a,1
5bを操舵しない直進時にも路面状態を検出することが
できる。
Operation: The front wheels 15a, 15 of the vehicle are driven according to a predetermined driving condition.
When b is in a predetermined steering angle range, the rear wheel steering means 11 steers the left rear wheel 14a and the right rear wheel 14b in opposite phases by a predetermined angle. At this time, the restoring force generated in each of the rear wheels 14a and 14b, that is, the self-aligning torque (SA
T) is detected by the first detecting means 12, and the second detecting means 13 detects the steering angle of each of the rear wheels 14a, 14b and the road surface condition. Therefore, in the present invention, the front wheels 15a, 1
It is possible to detect the road surface condition even when the vehicle is not moving to steer 5b and goes straight.

【0007】[0007]

【実施例】図2は本発明の一実施例の構成図を示す。同
図中、左前輪21a(前記15aに相当)と右前輪21
b(前記15bに相当)とは、各々ナックルアーム22
a,22bとタイロッド23a,23bとを介してリレ
ーロッド24に連結されている。また、ハンドル25は
シャフト26を介して所定の機構によりリレーロッド2
4に連結され、ハンドル25を操作すると図中、左又は
右方向へハンドルの操作量に応じた変位量リレーロッド
24を変位させることにより左前輪21aと右前輪21
bとを操舵する。また、シャフト26の途中には前輪舵
角センサ27が設けられており、ハンドル25の操作
量、すなわち前輪舵角を検出する構成とされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 2 is a block diagram of an embodiment of the present invention. In the figure, the left front wheel 21a (corresponding to 15a) and the right front wheel 21
b (corresponding to 15b) means the knuckle arm 22.
It is connected to the relay rod 24 via a and 22b and tie rods 23a and 23b. In addition, the handle 25 is connected to the relay rod 2 via a shaft 26 by a predetermined mechanism.
4 and the handle 25 is operated to displace the displacement relay rod 24 in the left or right direction in the figure according to the amount of operation of the handle, whereby the left front wheel 21a and the right front wheel 21 are moved.
Steer b and. A front wheel steering angle sensor 27 is provided in the middle of the shaft 26, and is configured to detect the operation amount of the handle 25, that is, the front wheel steering angle.

【0008】演算装置28はマイクロコンピュータより
なる電子制御装置で、前記第1及び第2の検出手段12
及び13をソフトウェア処理にて実現し、かつ、モータ
29等の後輪駆動機構と共に前記後輪操舵手段11を構
成している。モータ29は演算装置28よりの駆動信号
により、指示された方向及び回転角回転する後輪駆動用
モータで、そのモータシャフト30が舵角センサ31及
び歪センサ32を介してピニオン33に実質的に連結さ
れている。
The arithmetic unit 28 is an electronic control unit composed of a microcomputer, and has the first and second detecting means 12 described above.
And 13 are realized by software processing, and the rear wheel steering means 11 is configured with the rear wheel drive mechanism such as the motor 29. The motor 29 is a rear-wheel drive motor that rotates in a direction and a rotation angle instructed by a drive signal from the arithmetic unit 28, and its motor shaft 30 is substantially connected to the pinion 33 via the steering angle sensor 31 and the strain sensor 32. It is connected.

【0009】上記の舵角センサ31は例えば図2の要部
拡大図の図3に示す如く、モータシャフト30に中心部
が貫通固定され、かつ、円周方向に等角度間隔で一定長
のスリット41aが多数穿設された円盤41と、この円
盤41のスリット41aの有無を光学的に検出するフォ
トインターラプタ42とよりなるロータリエンコーダ
で、フォトインターラプタ42よりのスリット検出パル
スの個数が演算装置28で計測されることにより、後輪
の舵角が検出される。なお、歪センサ32はモータシャ
フト30に取り付けたストレインゲージによっても構成
できる。
For example, as shown in FIG. 3 which is an enlarged view of an essential part of FIG. 2, the steering angle sensor 31 has a central portion penetratingly fixed to the motor shaft 30, and a slit having a constant length in the circumferential direction at equal angular intervals. A rotary encoder including a disk 41 having a large number of holes 41a formed therein and a photo interrupter 42 for optically detecting the presence or absence of the slit 41a of the disk 41. The number of slit detection pulses from the photo interrupter 42 is calculated by an arithmetic unit. The steering angle of the rear wheels is detected by measuring at 28. The strain sensor 32 can also be configured by a strain gauge attached to the motor shaft 30.

【0010】再び図2に戻って説明するに、左後輪34
a(前記14aに相当)と右後輪34b(前記14bに
相当)は各々ナックルアーム35a,35bとタイロッ
ド36a,36bとを介してリレーロッド37a,37
bに夫々連結されている。リレーロッド37a,37b
にはラック38a,38bが形成されている。ラック3
8aと38bとはピニオン33の中心部を介して互いに
相対向する位置でピニオン33と噛合している。
Returning to FIG. 2 again, the left rear wheel 34 will be described.
a (corresponding to 14a above) and the right rear wheel 34b (corresponding to 14b above) are relay rods 37a and 37 via knuckle arms 35a and 35b and tie rods 36a and 36b, respectively.
They are respectively linked to b. Relay rods 37a, 37b
Racks 38a, 38b are formed in the. Rack 3
8a and 38b mesh with the pinion 33 at positions facing each other through the center of the pinion 33.

【0011】これにより、モータ29が正方向へ所定角
度回転すると、ピニオン33が例えば図中、時計方向に
所定角度回動し、この結果ラック38aが形成されてい
るリレーロッド37aが図中左方向へ所定量変位し、か
つ、ラック38bが形成されているリレーロッド37b
が図中右方向へ上記と同じ所定量変位する。
As a result, when the motor 29 rotates in the forward direction by a predetermined angle, the pinion 33 rotates, for example, in the clockwise direction by a predetermined angle in the figure, and as a result, the relay rod 37a on which the rack 38a is formed moves leftward in the figure. To the relay rod 37b which is displaced by a predetermined amount to and on which the rack 38b is formed.
Is displaced to the right in the figure by the same predetermined amount as above.

【0012】従って、リレーロッド37aの左方向への
変位により左後輪34aはその前部が左方向に所定舵角
回動変位され、またリレーロッド37bの右方向への変
位により右後輪34bはその前部が右方向に所定舵角回
動変位される。すなわち、左後輪34aと右後輪34b
とは夫々互いに絶対値が同じ舵角の逆相に操舵される。
Accordingly, the front part of the left rear wheel 34a is pivotally displaced leftward by a predetermined steering angle by the leftward displacement of the relay rod 37a, and the right rear wheel 34b is also displaced by the rightward displacement of the relay rod 37b. The front portion of the is pivotally displaced to the right by a predetermined steering angle. That is, the left rear wheel 34a and the right rear wheel 34b
Are steered in opposite phases with the same steering angle in absolute value.

【0013】また、この左右の後輪34a及び34bの
逆相操舵により、左右の後輪34a及び34bには復元
トルク(SAT)が発生してモータシヤフト30に捩れ
力として作用するが、これは歪センサ32により検出さ
れる。なお、モータ29が逆方向に回転してピニオン3
3が反時計方向に所定角度回動されたときは、上記とは
逆方向に左右の後輪34a,34bが逆相に操舵される
こととなる。
Further, due to the reverse-phase steering of the left and right rear wheels 34a and 34b, a restoring torque (SAT) is generated in the left and right rear wheels 34a and 34b and acts on the motor shaft 30 as a twisting force. It is detected by the strain sensor 32. The motor 29 rotates in the opposite direction to rotate the pinion 3
When 3 is rotated counterclockwise by a predetermined angle, the left and right rear wheels 34a, 34b are steered in opposite phases to the opposite direction.

【0014】なお、図2には図示を省略したが、左右の
後輪34a及び34bを演算装置28の出力制御信号に
基づいて同相に駆動する駆動機構をもう一系統別途設
け、路面状態非判断時は逆相駆動機構の代わりに用いる
ことで、従来と同じ4輪操舵装置を実現してもよい。
Although not shown in FIG. 2, another drive system is separately provided for driving the left and right rear wheels 34a and 34b in the same phase based on the output control signal of the arithmetic unit 28 to determine whether or not the road surface state is determined. At times, the same four-wheel steering device as the conventional one may be realized by using it instead of the reverse phase drive mechanism.

【0015】次に演算装置28により実行される路面状
態検出ルーチンについて説明する。演算装置28は舵角
センサ27,31及び歪センサ32の各出力検出信号が
入力され、所定周期毎に図4の路面状態検出ルーチンを
実行する。図4に示す路面状態検出ルーチンが駆動され
ると、まず前輪舵角センサ27の出力検出信号に基づい
て、前輪舵角θf が読み込まれ(ステップ101)、続
いてこの前輪舵角θfの絶対値が所定のしきい値θt
満であるか否か判定される(ステップ102)。
Next, a road surface state detection routine executed by the arithmetic unit 28 will be described. The arithmetic unit 28 receives the output detection signals of the steering angle sensors 27, 31 and the strain sensor 32, and executes the road surface state detection routine of FIG. 4 every predetermined period. When the road surface state detection routine shown in FIG. 4 is driven, first, the front wheel steering angle θ f is read based on the output detection signal of the front wheel steering angle sensor 27 (step 101), and then the front wheel steering angle θ f It is determined whether the absolute value is less than a predetermined threshold value θ t (step 102).

【0016】|θf |がしきい値θt 以上と判定された
ときは、運転状態が直進走行状態ではないと判断して後
輪操舵を解除して(ステップ107)、このルーチンを
終了する。一方、ステップ102で|θf |がしきい値
θt 未満と判定されたときは、運転状態が直進走行時で
あると判断して路面μを検出するべく、モータ29を所
定の方向に一定角度回動することにより、前述した如く
左後輪34aと右後輪34bとを逆相に一定角度操舵す
る(ステップ103)。
When | θ f | is determined to be equal to or greater than the threshold value θ t, it is determined that the driving state is not the straight traveling state, the rear wheel steering is released (step 107), and this routine is ended. . On the other hand, when it is determined in step 102 that | θ f | is less than the threshold value θ t , the motor 29 is fixed in a predetermined direction in order to detect the road surface μ by determining that the operating state is straight traveling. By rotating the wheel by an angle, the left rear wheel 34a and the right rear wheel 34b are steered by a fixed angle in opposite phases as described above (step 103).

【0017】続いて、演算装置28は歪センサ32の出
力検出信号に基づきSATを読み込み(ステップ10
4)、また舵角センサ31の出力検出信号に基づき後輪
舵角θ R を読み込んだ後(ステップ105)、予め演算
装置28内のメモリに記憶されている、図5に示す如き
マップを上記のSATと後輪舵角θR とで検索して路面
μを算出する(ステップ106)。
Subsequently, the arithmetic unit 28 outputs the strain sensor 32.
SAT is read based on the force detection signal (step 10
4), and the rear wheels based on the output detection signal of the steering angle sensor 31.
Rudder angle θ RAfter reading (step 105), calculate in advance
As shown in FIG. 5, stored in memory within device 28.
Map the above SAT and rear wheel steering angle θRSearch with and the road
Calculate μ (step 106).

【0018】ここで、図5に示すマップは横軸に後輪舵
角、縦軸にセルフアライニングトルク(SAT)をとっ
たときに、路面μが上に凸の特性であることを示してい
る。すなわち、所定の後輪舵角のときに路面μは最大
で、その所定の後輪舵角より大きくなるほど、及び小さ
くなるほど路面μは夫々小さくなり、また同じ後輪舵角
ではSATが大なるほど路面μは大となる。
Here, the map shown in FIG. 5 shows that the road surface μ has a convex characteristic when the rear wheel steering angle is plotted on the horizontal axis and the self-aligning torque (SAT) is plotted on the vertical axis. There is. That is, the road surface μ is maximum at a predetermined rear wheel steering angle, and the road surface μ becomes smaller as it becomes larger and smaller than the predetermined rear wheel steering angle, and the road surface μ becomes larger as the SAT increases at the same rear wheel steering angle. μ becomes large.

【0019】前記した後輪34a及び34bの左右逆相
の操舵角は絶対値が図5中、例えばθR 付近になるよう
にモータ29の回転角が制御される。図5において、θ
R 付近は特性曲線が急峻部分で、SATの僅かな変化に
対して路面μが変化する感度の良い部分であるからであ
る。
The rotation angle of the motor 29 is controlled so that the absolute values of the left and right steering angles of the rear wheels 34a and 34b are in the vicinity of, for example, θ R in FIG. In FIG.
This is because the characteristic curve near R is a steep portion, which is a sensitive portion where the road surface μ changes with a slight change in SAT.

【0020】図4のステップ106でマップ検索による
路面μの算出が終わると、ステップ107へ進んでモー
タ29を前記ステップ103とは逆方向に、かつ、等角
度回転することにより後輪34a,34bを左右逆相操
舵前の状態に戻してこのルーチンを終了する。これによ
り、以後のハンドル操舵時には、ハンドル操舵に応じて
前輪21a及び21bのみが操舵され、後輪34a,3
4bは操舵されない。
When the calculation of the road surface μ by the map search is completed in step 106 of FIG. 4, the routine proceeds to step 107, where the motor 29 is rotated in the opposite direction to the above step 103 and at the same angle, so that the rear wheels 34a and 34b are rotated. Is returned to the state before the left-right reverse-phase steering, and this routine ends. As a result, when steering the steering wheel thereafter, only the front wheels 21a and 21b are steered in response to the steering wheel, and the rear wheels 34a, 3b
4b is not steered.

【0021】このように、本実施例によれば、モータ2
9,ピニオン33,ラック38a及び38b等の後輪操
舵機構と舵角センサ27と図4のステップ102及び1
03により前記後輪操舵手段11を実現し、歪センサ3
2とステップ104により前記第1の検出手段12を実
現し、更に舵角センサ31とステップ105及び106
により前記第2の検出手段13を実現することにより、
直進時に路面μを算出することができ、よって、ハンド
ル操舵前にドライバに予め路面μを報知することができ
る。
As described above, according to this embodiment, the motor 2
9, pinion 33, rear wheel steering mechanism such as racks 38a and 38b, steering angle sensor 27, and steps 102 and 1 in FIG.
The rear wheel steering means 11 is realized by 03, and the strain sensor 3
2 and step 104 realizes the first detecting means 12, and further the steering angle sensor 31 and steps 105 and 106.
By realizing the second detecting means 13 by
The road surface μ can be calculated when going straight, and therefore, the driver can be notified of the road surface μ in advance before steering the steering wheel.

【0022】なお、左後輪34a及び右後輪34bを演
算装置28の出力制御信号に基づいて同相に駆動する駆
動機構を、図2に示した後輪左右逆相駆動機構と切換え
使用できる構成としてある場合は、前記ステップ107
の後輪操舵解除に際して、後輪左右同相駆動機構に切換
え、従来と同様に例えば前後輪の転舵比(=前輪舵角/
後輪舵角)kを図6に示す如く、低車速時は前輪21
a,21bに対して後輪34a,34bを逆相に操舵
し、中高車速時は前輪21a,21bに対して後輪34
a,34bを同相に操舵するようにしてもよい。
The drive mechanism for driving the left rear wheel 34a and the right rear wheel 34b in phase based on the output control signal of the arithmetic unit 28 can be used by switching to the rear wheel left / right reverse phase drive mechanism shown in FIG. If yes, then step 107
When the rear-wheel steering is released, the rear-wheel left-right in-phase drive mechanism is switched and, for example, the steering ratio of the front and rear wheels (= front-wheel steering angle /
As shown in FIG. 6, the rear wheel steering angle k is as shown in FIG.
The rear wheels 34a and 34b are steered in reverse phase with respect to a and 21b, and the rear wheels 34a and 34b are steered with respect to the front wheels 21a and 21b at medium and high vehicle speeds.
You may make it steer a and 34b in-phase.

【0023】[0023]

【発明の効果】上述の如く、本発明によれば、後輪を左
右逆相に操舵してSATを読み込むようにしたため、直
進時にも路面状態を検出することができる等の特長を有
するものである。
As described above, according to the present invention, since the rear wheels are steered in the opposite phase to the left and right to read the SAT, the road surface condition can be detected even when going straight. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理構成図である。FIG. 1 is a principle configuration diagram of the present invention.

【図2】本発明の一実施例の構成図である。FIG. 2 is a configuration diagram of an embodiment of the present invention.

【図3】図2中の要部拡大図である。FIG. 3 is an enlarged view of a main part in FIG.

【図4】本発明の要部の路面状態検出ルーチンの一実施
例を示すフローチャートである。
FIG. 4 is a flow chart showing an embodiment of a road surface state detection routine of a main part of the present invention.

【図5】図4の路面状態検出ルーチン中で用いる路面μ
の算出用マップである。
5 is a road surface μ used in the road surface state detection routine of FIG.
It is a map for calculation of.

【図6】従来の車速対応操舵特性を示す図である。FIG. 6 is a diagram showing conventional steering characteristics corresponding to vehicle speed.

【符号の説明】[Explanation of symbols]

11 後輪操舵手段 12 第1の検出手段 13 第2の検出手段 14a,34a 左後輪 14b,34b 右後輪 15a,21a 左前輪 15b,21b 右前輪 25 ハンドル 27 前輪舵角センサ 28 演算装置 29 モータ 31 舵角センサ 32 歪センサ 33 ピニオン 38a,38b ラック 11 Rear Wheel Steering Means 12 First Detecting Means 13 Second Detecting Means 14a, 34a Left Rear Wheels 14b, 34b Right Rear Wheels 15a, 21a Left Front Wheels 15b, 21b Right Front Wheels 25 Handle 27 Front Wheel Steering Angle Sensor 28 Computing Device 29 Motor 31 Steering angle sensor 32 Strain sensor 33 Pinion 38a, 38b Rack

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定運転状態時に車両の後輪を左右逆相
に所定角度操舵する後輪操舵手段と、 該後輪操舵手段による後輪操舵により該後輪に発生する
復元トルクを検出する第1の検出手段と、 該第1の検出手段により検出された該復元トルクと、前
記後輪の舵角とより路面状態を検出する第2の検出手段
とを有することを特徴とする路面状態検出装置。
1. A rear wheel steering means for steering a rear wheel of a vehicle in a left-right opposite phase at a predetermined angle in a predetermined driving state, and a restoring torque generated in the rear wheel by steering the rear wheel by the rear wheel steering means. Road surface state detection, comprising: a first detection unit; and a second detection unit that detects the road surface state from the restoration torque detected by the first detection unit and the steering angle of the rear wheel. apparatus.
JP28630292A 1992-10-23 1992-10-23 Road surface condition detection device Expired - Lifetime JP3055330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28630292A JP3055330B2 (en) 1992-10-23 1992-10-23 Road surface condition detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28630292A JP3055330B2 (en) 1992-10-23 1992-10-23 Road surface condition detection device

Publications (2)

Publication Number Publication Date
JPH06135351A true JPH06135351A (en) 1994-05-17
JP3055330B2 JP3055330B2 (en) 2000-06-26

Family

ID=17702625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28630292A Expired - Lifetime JP3055330B2 (en) 1992-10-23 1992-10-23 Road surface condition detection device

Country Status (1)

Country Link
JP (1) JP3055330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341283A (en) * 2009-03-19 2012-02-01 米其林技术公司 Method for determining wheel grip coefficient by simultaneous clamping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341283A (en) * 2009-03-19 2012-02-01 米其林技术公司 Method for determining wheel grip coefficient by simultaneous clamping
JP2012520792A (en) * 2009-03-19 2012-09-10 ソシエテ ド テクノロジー ミシュラン Method of obtaining wheel grip coefficient by simultaneous clamping

Also Published As

Publication number Publication date
JP3055330B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
JPH05131946A (en) Rear wheel steering control device for vehicle
JPH0581472B2 (en)
JP2694554B2 (en) Rear wheel steering control method for automobiles
JPS61196873A (en) Front/rear wheel steering device for vehicle
JP2003002222A (en) Electric power steering device and control method therefor
JP2680451B2 (en) 4-wheel steering system
JPH0352385B2 (en)
JPH0460872B2 (en)
JPH06135351A (en) Ground condition detection device
JP2717100B2 (en) Rear wheel steering device
JPH0657536B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
JP3564612B2 (en) Control method of rear wheel steering device
JPS60148770A (en) Steering device for vehicles
JPS61196872A (en) Front/rear wheel steering device for vehicle
JPS62187656A (en) Front and rear wheel steering device for vehicle
JP3013586B2 (en) Rear wheel steering system for four-wheel steering vehicles
JP2564932B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
JP2744279B2 (en) Vehicle rear wheel steering system
JP3156570B2 (en) Vehicle rear wheel steering system
JPH0781601A (en) Rear wheel steering controller for four-wheeled steering vehicle
JPH06144272A (en) Rear wheel steering control device for four-wheel steering vehicle
JPH0853007A (en) Apparatus for controlling roll rigidity of vehicle and absolute steering angle detecting device suitably used therefor
JP2817143B2 (en) 4-wheel steering system
JP2811714B2 (en) Rear wheel steering control device for front and rear wheel steering vehicles
JPH0811544B2 (en) Vehicle steering system controller