JPH06144272A - Rear wheel steering control device for four-wheel steering vehicle - Google Patents
Rear wheel steering control device for four-wheel steering vehicleInfo
- Publication number
- JPH06144272A JPH06144272A JP29436892A JP29436892A JPH06144272A JP H06144272 A JPH06144272 A JP H06144272A JP 29436892 A JP29436892 A JP 29436892A JP 29436892 A JP29436892 A JP 29436892A JP H06144272 A JPH06144272 A JP H06144272A
- Authority
- JP
- Japan
- Prior art keywords
- wheel steering
- steering angle
- vehicle speed
- vehicle
- steering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電動モータの回転によ
り後輪を操舵する後輪操舵機構を有する四輪操舵車に適
用され、目標舵角と後輪の実舵角との差に応じた駆動電
流を電動モータに流して後輪を目標舵角に操舵制御する
四輪操舵車の後輪操舵制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a four-wheel steering vehicle having a rear wheel steering mechanism that steers the rear wheels by the rotation of an electric motor. The present invention relates to a rear wheel steering control device for a four-wheel steering vehicle, which controls the rear wheels to a target steering angle by passing a driving current to the electric motor.
【0002】[0002]
【従来の技術】従来、この種の装置としては、例えば特
開昭62−227869号公報に示されているように、
車速が大きくなるにしたがって電動モータの回転速度を
遅く制御して高速走行時ほど後輪がゆっくり操舵される
ようにしたものがある。2. Description of the Related Art Conventionally, as a device of this type, as disclosed in, for example, Japanese Unexamined Patent Publication No. 62-227869.
There is a system in which the rotation speed of an electric motor is controlled to be slower as the vehicle speed increases so that the rear wheels are steered more slowly when traveling at higher speeds.
【0003】[0003]
【発明が解決しようとする課題】しかし、走行時の車両
の挙動変化は車速が大きいほど速いにもかかわらず、上
記従来の装置にあっては、高速走行時ほど後輪がゆっく
り操舵されるので、高速走行時における車両の挙動に後
輪の操舵を追従させることができない。本発明は上記問
題に対処するためになされたもので、その目的は、高速
走行時の車両の挙動変化に追従させて後輪を操舵できる
ようにした四輪操舵車の後輪操舵制御装置を提供するこ
とにある。However, although the behavior of the vehicle during running changes faster as the vehicle speed increases, in the above-described conventional device, the rear wheels are steered slowly as the vehicle travels at higher speeds. The rear wheel steering cannot be made to follow the behavior of the vehicle when traveling at high speed. The present invention has been made to solve the above problems, and an object of the present invention is to provide a rear wheel steering control device for a four-wheel steering vehicle that can steer the rear wheels by following changes in the behavior of the vehicle during high-speed traveling. To provide.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に、本発明の構成上の特徴は、目標舵角を決定する目標
舵角決定手段と、後輪の実舵角を検出する後輪舵角検出
手段と、目標舵角と実舵角との差に応じた駆動電流を電
動モータに流して後輪を目標舵角に操舵制御する駆動手
段とを備えた四輪操舵車の後輪操舵制御装置において、
車速を検出する車速検出手段と、前記検出された車速が
大きいとき同車速が小さいときに比べて駆動電流値を大
きく制御する電流制御手段とを設けたことにある。In order to achieve the above object, the structural features of the present invention include a target rudder angle determining means for deciding a target rudder angle and a rear wheel for detecting an actual rudder angle of a rear wheel. Rear wheel of a four-wheel steering vehicle including steering angle detection means and drive means for causing a drive current according to the difference between the target steering angle and the actual steering angle to flow through an electric motor to steer the rear wheels to the target steering angle In the steering control device,
The vehicle speed detecting means for detecting the vehicle speed and the current control means for controlling the drive current value to be larger when the detected vehicle speed is higher than when the detected vehicle speed is low are provided.
【0005】[0005]
【発明の作用・効果】上記のように構成した本発明にお
いては、車速検出手段により検出された車速が大きいと
き、電流制御手段は電動モータに供給される駆動電流値
を車速が小さいときに比べて大きく制御するので、車両
の高速走行時には電動モータの回転速度が速くなって後
輪の操舵も速くなり、高速走行時における車両の速い挙
動変化にも後輪の操舵を追従させることができて車両の
操安性が良好となる。一方、車両の挙動変化が遅い低速
走行時には、後輪の操舵は車速が大きい場合に比べて遅
くすなわち電動モータの駆動電流値は小さく制御される
ので、電動モータに常に大きな電流を流す必要がなくな
り、後輪操舵のための電力消費を少なく済ますことがで
きる。According to the present invention constructed as described above, when the vehicle speed detected by the vehicle speed detecting means is high, the current control means compares the drive current value supplied to the electric motor with the low vehicle speed. Since the electric motor is driven at high speed, the rotation speed of the electric motor becomes faster and the steering of the rear wheels becomes faster when the vehicle is running at high speed. The maneuverability of the vehicle is improved. On the other hand, during low-speed traveling where the behavior of the vehicle is slow, steering of the rear wheels is slower than when the vehicle speed is high, that is, the drive current value of the electric motor is controlled to be small, so that it is not necessary to always supply a large current to the electric motor. The power consumption for steering the rear wheels can be reduced.
【0006】[0006]
【実施例】以下、本発明の一実施例を図面を用いて説明
すると、図1は左右前輪FW1,FW2を操舵する前輪
操舵機構10と、左右後輪RW1,RW2を操舵する後
輪操舵機構20と、後輪操舵機構20を電気的に制御す
る電気制御装置30とを備えた車両の全体を概略的に示
している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a front wheel steering mechanism 10 for steering left and right front wheels FW1 and FW2 and a rear wheel steering mechanism for steering left and right rear wheels RW1 and RW2. 1 schematically shows the entire vehicle including a vehicle 20 and an electric control device 30 that electrically controls the rear wheel steering mechanism 20.
【0007】前輪操舵機構10は回動操作により左右前
輪FW1,FW2を操舵する操舵ハンドル11を備え、
同ハンドル11は操舵軸12の上端に固定されている。
操舵軸12の下端部はステアリングギヤボックス13内
にてラックバー14に噛合している。ラックバー14は
ステアリングギヤボックス13内に軸方向に変位可能に
支持されるとともに、両端にてタイロッド15a,15
b及びナックルアーム16a,16bを介して左右前輪
FW1,FW2を操舵可能に連結している。The front wheel steering mechanism 10 is provided with a steering handle 11 for steering the left and right front wheels FW1 and FW2 by turning operation.
The handle 11 is fixed to the upper end of the steering shaft 12.
The lower end of the steering shaft 12 meshes with the rack bar 14 in the steering gear box 13. The rack bar 14 is supported in the steering gear box 13 so as to be displaceable in the axial direction, and has tie rods 15a, 15 at both ends.
The left and right front wheels FW1, FW2 are steerably connected via b and knuckle arms 16a, 16b.
【0008】後輪操舵機構20は後輪を操舵するために
ブラシレスモータなどの電動モータ21を備えている。
電動モータ21の回転軸はステアリングギヤボックス2
2内にて減速機構を介して軸方向に変位可能に支持され
たリレーロッド23に接続されており、同ロッド23は
同モータの回転に応じて軸方向に変位する。リレーロッ
ド23の両端にはタイロッド24a,24b及びナック
ルアーム25a,25bを介して左右後輪RW1,RW
2が接続されていて、左右後輪RW1,RW2はリレー
ロッド23の軸方向の変位に応じて操舵される。The rear wheel steering mechanism 20 includes an electric motor 21 such as a brushless motor for steering the rear wheels.
The rotating shaft of the electric motor 21 is the steering gear box 2
The relay rod 23 is supported in the shaft 2 via a speed reduction mechanism so as to be displaceable in the axial direction, and the rod 23 is displaced in the axial direction according to the rotation of the motor. The left and right rear wheels RW1 and RW are provided at both ends of the relay rod 23 via tie rods 24a and 24b and knuckle arms 25a and 25b.
2 are connected, and the left and right rear wheels RW1 and RW2 are steered according to the axial displacement of the relay rod 23.
【0009】電気制御装置30は車速センサ31、ヨー
レートセンサ32、前輪舵角センサ33及び後輪舵角セ
ンサ34を備えている。車速センサ31は変速機(図示
しない)の出力軸の回転を測定することにより車速Vを
検出して同車速Vを表す検出信号を出力する。ヨーレー
トセンサ32は車体の重心垂直軸回りのヨーレートγを
検出して同ヨーレートγを表す検出信号を出力する。前
輪舵角センサ33は操舵軸12の回転角を測定すること
より左右前輪FW1,FW2の舵角θf を検出して同舵
角θf を表す検出信号を出力する。後輪舵角センサ34
は電動モータ21の回転軸の回転角を測定することによ
り左右後輪RW1,RW2の舵角θr を検出して同舵角
θr を表す検出信号を出力する。なお、これらのヨーレ
ートγ、前輪舵角θf 及び後輪舵角θr は左回転方向を
正とし、右回転方向を負とする。The electric control unit 30 comprises a vehicle speed sensor 31, a yaw rate sensor 32, a front wheel steering angle sensor 33 and a rear wheel steering angle sensor 34. The vehicle speed sensor 31 detects the vehicle speed V by measuring the rotation of an output shaft of a transmission (not shown) and outputs a detection signal indicating the vehicle speed V. The yaw rate sensor 32 detects the yaw rate γ around the center of gravity of the vehicle body and outputs a detection signal indicating the yaw rate γ. The front wheel steering angle sensor 33 detects the steering angle θf of the left and right front wheels FW1 and FW2 by measuring the rotation angle of the steering shaft 12, and outputs a detection signal representing the steering angle θf. Rear wheel steering angle sensor 34
Detects the steering angle θr of the left and right rear wheels RW1 and RW2 by measuring the rotation angle of the rotary shaft of the electric motor 21, and outputs a detection signal representing the steering angle θr. The yaw rate γ, the front wheel steering angle θf, and the rear wheel steering angle θr are positive in the left rotation direction and negative in the right rotation direction.
【0010】これらのセンサ31〜34はマイクロコン
ピュータ35に接続されている。マイクロコンピュータ
35はCPU、ROM、RAM、I/O、タイマなどか
らなり、同ROM内に記憶した図2のフローチャートに
対応したプログラムを実行する。マイクロコンピュータ
35には駆動回路36が接続されていて、駆動回路36
はマイクロコンピュータ35により制御されてバッテリ
40からの駆動電流を電動モータ21に流して同モータ
21の回転を制御する。なお、このバッテリ40からの
電圧は各センサ31〜34及びマイクロコンピュータ3
5にも供給されている。These sensors 31 to 34 are connected to the microcomputer 35. The microcomputer 35 includes a CPU, a ROM, a RAM, an I / O, a timer and the like, and executes a program stored in the ROM and corresponding to the flowchart of FIG. A drive circuit 36 is connected to the microcomputer 35.
Is controlled by the microcomputer 35 to flow the drive current from the battery 40 to the electric motor 21 to control the rotation of the electric motor 21. It should be noted that the voltage from the battery 40 is applied to each of the sensors 31 to 34 and the microcomputer 3
5 is also supplied.
【0011】次に、上記のように構成した実施例の動作
を図2に示すフローチャートに沿って説明する。イグニ
ッションスイッチ(図示しない)が投入されると、マイ
クロコンピュータ35は図2のステップ100にてプロ
グラムの実行を開始し、ステップ102にて各センサ3
1〜34から車速V、ヨーレートγ、前輪舵角θf及び
後輪舵角θrを表す各検出信号をそれぞれ入力する。次
に、ステップ102にてROM内に設けたテーブルから
車速Vに応じて変化するヨーレート比例係数K1(図3
(A)参照)及び舵角比例係数K2(図3(B)参照)を読
み出し、ステップ106にて下記数1の演算の実行によ
って左右後輪RW1,RW2の目標舵角θr*を計算す
る。Next, the operation of the embodiment configured as described above will be described with reference to the flow chart shown in FIG. When an ignition switch (not shown) is turned on, the microcomputer 35 starts executing the program in step 100 of FIG. 2 and each sensor 3 in step 102.
The detection signals representing the vehicle speed V, the yaw rate γ, the front wheel steering angle θf and the rear wheel steering angle θr are input from 1 to 34, respectively. Next, at step 102, the yaw rate proportional coefficient K1 (see FIG. 3) that changes according to the vehicle speed V is read from the table provided in the ROM.
(See (A)) and the steering angle proportional coefficient K2 (see FIG. 3B) are read out, and in step 106, the target steering angles θr * of the left and right rear wheels RW1 and RW2 are calculated by executing the calculation of the following equation 1.
【0012】[0012]
【数1】θr*=K1・γ+K2・θf この目標舵角θr*の計算後、ステップ108にて同目標
舵角θr*と前記入力した後輪舵角θr の偏差Δθ(=θ
r*−θr )を計算し、ステップ110にてこの偏差Δθ
を用いて電動モータ21に供給される駆動電流値を決定
するためのデューティ比DTを決定する。このデューテ
ィ比DTの決定においては、前記偏差Δθの絶対値|Δ
θ|に基づきマイクロコンピュータ35のROM内に設
けられて図4の特性を示すデータを記憶したテーブルが
参照され、同絶対値|Δθ|に対応したデューティ比D
T が導出される。[Equation 1] θr * = K1 · γ + K2 · θf After the calculation of the target steering angle θr *, the deviation Δθ (= θ between the target steering angle θr * and the input rear wheel steering angle θr is calculated in step 108.
r * −θr) is calculated, and this deviation Δθ is calculated in step 110.
Is used to determine the duty ratio D T for determining the drive current value supplied to the electric motor 21. In determining the duty ratio D T , the absolute value of the deviation Δθ | Δ
Based on θ |, the table provided in the ROM of the microcomputer 35 and storing the data showing the characteristics of FIG. 4 is referred to, and the duty ratio D corresponding to the same absolute value | Δθ |
T is derived.
【0013】次に、ステップ112にて車速Vに基づい
てマイクロコンピュータ35のROM内に設けられて図
5の特性を示すデータを記憶したテーブルを参照して、
同車速Vに対応した係数K3を読み出す。この係数K3の
読み出し後、ステップ114にて前記決定したデューテ
ィ比DTに係数K3を乗算して同デューティ比DT を乗算
値K3・DT に補正する。そして、ステップ116にて前
記計算した偏差Δθの正負の符号sign(Δθ)を表す信号
と前記補正したデューティ比DT を表す信号とからなる
制御信号を駆動回路36に出力する。駆動回路36は、
バッテリ40から供給されデューティ比DT で決まる大
きさの駆動電流を電動モータ21に対して正負の符号si
gn(Δθ)で決まる方向に流す。これにより、電動モータ
21は目標舵角θr*に対応した方向に回転し、同回転を
リレーロッド23に伝達して同ロッド23を前記回転に
応じて軸方向に変位させる。このリレーロッド23の軸
方向の変位はタイロッド24a,24b及びナックルア
ーム25a,25bを介して左右後輪RW1,RW2に
伝達されて、同後輪RW1,RW2は目標舵角θr*の方
向に操舵される。Next, at step 112, referring to the table provided in the ROM of the microcomputer 35 based on the vehicle speed V and storing the data showing the characteristics of FIG. 5,
The coefficient K3 corresponding to the same vehicle speed V is read. After reading the coefficient K3, the duty ratio D T determined in step 114 is multiplied by the coefficient K3 to correct the duty ratio D T to the multiplication value K3 · D T. Then, in step 116, a control signal composed of a signal representing the positive / negative sign sign (Δθ) of the calculated deviation Δθ and a signal representing the corrected duty ratio D T is output to the drive circuit 36. The drive circuit 36 is
A drive current supplied from the battery 40 and having a magnitude determined by the duty ratio D T is applied to the electric motor 21 with a positive or negative sign si.
Flow in the direction determined by gn (Δθ). As a result, the electric motor 21 rotates in a direction corresponding to the target steering angle θr *, the rotation is transmitted to the relay rod 23, and the rod 23 is displaced in the axial direction according to the rotation. The axial displacement of the relay rod 23 is transmitted to the left and right rear wheels RW1 and RW2 via the tie rods 24a and 24b and the knuckle arms 25a and 25b, and the rear wheels RW1 and RW2 are steered in the direction of the target steering angle θr *. To be done.
【0014】前記ステップ116の処理後、プログラム
をステップ102に戻し、ステップ102〜116から
なる循環処理を繰り返し実行して左右後輪RW1,RW
2を目標舵角θr*に操舵する。この場合、車速Vが小さ
ければ、係数K3 は小さな値に設定されるので(図5参
照)、電動モータ21の駆動電流の大きさを制御するデ
ューティ比DT も小さい。したがって、左右後輪RW
1,RW2の速い操舵を必要としない低速走行時には、
電動モータ21に小さな駆動電流しか流れずに左右後輪
RW1,RW2はゆっくりと目標舵角θr*に操舵される
ので、無駄な電力消費を避けることができる。一方、車
速Vが大きくなると、係数K3 は大きな値に設定される
ようになるので(図5参照)、電動モータ21の駆動電
流の大きさを制御するデューティ比DT も大きくなる。
したがって、高速走行時には、電動モータ21に大きな
駆動電流が流れて左右後輪RW1,RW2は速く操舵さ
れるので、高速走行時における速い車両挙動に同後輪R
W1,RW2の操舵を追従させることができる。After the processing of step 116, the program is returned to step 102, and the circulation processing of steps 102 to 116 is repeatedly executed to left and right rear wheels RW1, RW.
Steer 2 to the target steering angle θr *. In this case, if the vehicle speed V is low, the coefficient K3 is set to a small value (see FIG. 5), so the duty ratio DT for controlling the magnitude of the drive current of the electric motor 21 is also small. Therefore, the left and right rear wheels RW
1, When driving at low speed that does not require fast steering of RW2,
Since a small drive current flows through the electric motor 21 and the left and right rear wheels RW1 and RW2 are slowly steered to the target steering angle θr *, it is possible to avoid unnecessary power consumption. On the other hand, when the vehicle speed V increases, the coefficient K3 is set to a large value (see FIG. 5), so the duty ratio D T that controls the magnitude of the drive current of the electric motor 21 also increases.
Therefore, when driving at high speed, a large drive current flows through the electric motor 21 and the left and right rear wheels RW1 and RW2 are steered quickly.
The steering of W1 and RW2 can be followed.
【図1】 本発明の一実施例に係る車両の全体概略図で
ある。FIG. 1 is an overall schematic diagram of a vehicle according to an embodiment of the present invention.
【図2】 図1のマイクロコンピュータにて実行される
プログラムを示すフローチャートである。FIG. 2 is a flowchart showing a program executed by the microcomputer of FIG.
【図3】 (A)は車速に対するヨーレート比例係数の変
化特性図、(B)は車速に対する舵角比例係数の変化特性
図である。3A is a change characteristic diagram of a yaw rate proportional coefficient with respect to a vehicle speed, and FIG. 3B is a change characteristic diagram of a steering angle proportional coefficient with respect to a vehicle speed.
【図4】 目標舵角と実後輪舵角の偏差の絶対値に対す
るデューティ比の変化特性図である。FIG. 4 is a change characteristic diagram of a duty ratio with respect to an absolute value of a deviation between a target steering angle and an actual rear wheel steering angle.
【図5】 デューティ比を補正するための車速に対する
補正係数の変化特性図である。FIG. 5 is a change characteristic diagram of a correction coefficient with respect to a vehicle speed for correcting the duty ratio.
FW1,FW2…前輪、RW1,RW2…後輪、10…
前輪操舵機構、20…後輪操舵機構、21…電動モー
タ、30…電気制御装置、31…車速センサ、32…ヨ
ーレートセンサ、33…前輪舵角センサ、34…後輪舵
角センサ、35…マイクロコンピュータ、36…駆動回
路、40…バッテリ。FW1, FW2 ... front wheels, RW1, RW2 ... rear wheels, 10 ...
Front wheel steering mechanism, 20 ... Rear wheel steering mechanism, 21 ... Electric motor, 30 ... Electric control device, 31 ... Vehicle speed sensor, 32 ... Yaw rate sensor, 33 ... Front wheel steering angle sensor, 34 ... Rear wheel steering angle sensor, 35 ... Micro Computer, 36 ... Driving circuit, 40 ... Battery.
フロントページの続き (72)発明者 葛谷 秀樹 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内Front Page Continuation (72) Inventor Hideki Katsuraya 2-1-1 Asahi-cho, Kariya City, Aichi Aisin Seiki Co., Ltd.
Claims (1)
後輪操舵機構を有する四輪操舵車に適用され、目標舵角
を決定する目標舵角決定手段と、後輪の実舵角を検出す
る後輪舵角検出手段と、前記目標舵角と実舵角との差に
応じた駆動電流を電動モータに流して後輪を目標舵角に
操舵制御する駆動手段とを備えた四輪操舵車の後輪操舵
制御装置において、車速を検出する車速検出手段と、前
記検出された車速が大きいとき同車速が小さいときに比
べて前記駆動電流値を大きく制御する電流制御手段とを
設けたことを特徴とする四輪操舵車の後輪操舵制御装
置。1. A target steering angle determining means for determining a target steering angle, which is applied to a four-wheel steering vehicle having a rear wheel steering mechanism for steering a rear wheel by rotation of an electric motor, and an actual steering angle of a rear wheel is detected. Four-wheel steering including a rear-wheel steering angle detecting unit for controlling the rear-wheel steering angle and a driving unit for controlling the rear wheels to the target steering angle by passing a drive current corresponding to the difference between the target steering angle and the actual steering angle to an electric motor. In the rear wheel steering control device for a vehicle, vehicle speed detection means for detecting a vehicle speed and current control means for controlling the drive current value to be larger when the detected vehicle speed is higher than when the detected vehicle speed is low are provided. A rear-wheel steering control device for a four-wheel steering vehicle characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29436892A JPH06144272A (en) | 1992-11-02 | 1992-11-02 | Rear wheel steering control device for four-wheel steering vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29436892A JPH06144272A (en) | 1992-11-02 | 1992-11-02 | Rear wheel steering control device for four-wheel steering vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06144272A true JPH06144272A (en) | 1994-05-24 |
Family
ID=17806811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29436892A Pending JPH06144272A (en) | 1992-11-02 | 1992-11-02 | Rear wheel steering control device for four-wheel steering vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06144272A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101954859A (en) * | 2010-03-26 | 2011-01-26 | 刘宗锋 | Electronic differential system based on relative slip ratio control |
-
1992
- 1992-11-02 JP JP29436892A patent/JPH06144272A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101954859A (en) * | 2010-03-26 | 2011-01-26 | 刘宗锋 | Electronic differential system based on relative slip ratio control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05131946A (en) | Rear wheel steering control device for vehicle | |
JPH04201784A (en) | Four-wheel steering device | |
JP2680451B2 (en) | 4-wheel steering system | |
JPH0352385B2 (en) | ||
JP2661342B2 (en) | Rear-wheel steering control device for four-wheel steering vehicles | |
JPH06144272A (en) | Rear wheel steering control device for four-wheel steering vehicle | |
JPH0657536B2 (en) | Front and rear wheel steering vehicle rear wheel steering control device | |
JP3564612B2 (en) | Control method of rear wheel steering device | |
JP3182972B2 (en) | Rear wheel steering control device for vehicle | |
JP3164698B2 (en) | Rear wheel steering system for four-wheel steering vehicles | |
JP3166388B2 (en) | Steering force control device | |
JP3013586B2 (en) | Rear wheel steering system for four-wheel steering vehicles | |
JP2564932B2 (en) | Front and rear wheel steering vehicle rear wheel steering control device | |
JP2894006B2 (en) | Vehicle steering reaction control system | |
JP2811714B2 (en) | Rear wheel steering control device for front and rear wheel steering vehicles | |
JPH0781601A (en) | Rear wheel steering controller for four-wheeled steering vehicle | |
JPH06156298A (en) | Electric control device for four-wheel steering car | |
JPH06171530A (en) | Electric control device for rear wheel steering device | |
JP3055330B2 (en) | Road surface condition detection device | |
JP2564929B2 (en) | Front and rear wheel steering vehicle rear wheel steering control device | |
JPH058744A (en) | Steering reaction force control device of vehicle | |
JP3017629B2 (en) | Rear wheel steering system for four-wheel steering vehicles | |
JPH0361176A (en) | Rear wheel steering method | |
JP2817143B2 (en) | 4-wheel steering system | |
JPH06156293A (en) | Electric control device for rear wheel steering device |