JPH06134886A - Branch tube and production thereof - Google Patents

Branch tube and production thereof

Info

Publication number
JPH06134886A
JPH06134886A JP30948392A JP30948392A JPH06134886A JP H06134886 A JPH06134886 A JP H06134886A JP 30948392 A JP30948392 A JP 30948392A JP 30948392 A JP30948392 A JP 30948392A JP H06134886 A JPH06134886 A JP H06134886A
Authority
JP
Japan
Prior art keywords
tube
holes
hole
wall
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30948392A
Other languages
Japanese (ja)
Inventor
Shinichi Kanazawa
進一 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30948392A priority Critical patent/JPH06134886A/en
Publication of JPH06134886A publication Critical patent/JPH06134886A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a branch tube having a smooth surface free from a joint or a connection part by forming a long member having a shape wherein a plurality of tubes are preliminarily integrated and cutting the tube walls of both ends of the long member to form a branch structure. CONSTITUTION:A tetrafluoroethylene resin porous tube having an 8-shaped cross section is formed. This long object has two tube holes 4 around its center line. Next, when the wall between the tube holes 4 is cut along the line connecting the centers of the tube holes 4 of the tube having the 8-shaped cross section, a tube 13 having one large tube hole wherein two tube holes 4 are connected. In this case, when a part not cutting the tube wall is left at the central part of the long object, a tube wherein two small caliber tubes 2 are branched from a large caliber tube 1 can be obtained. By this constitution, the branch tube having smooth surface free from a joint or connection part can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分岐構造を有するチュ
ーブとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tube having a branched structure and a method for manufacturing the tube.

【0002】[0002]

【従来の技術】チューブは、主として液体・気体などの
流体の輸送経路、分離膜、線状構造体の被覆などに利用
されている。チューブを形成する材質としては、金属、
セラミック、合成高分子などがある。例えば、延伸法に
より得られる四弗化エチレン樹脂多孔質体チューブは、
糸状分離膜や人工血管などとして広範な分野で使用され
ている。
2. Description of the Related Art Tubes are mainly used for transporting fluids such as liquids and gases, separation membranes, and coatings for linear structures. As the material for forming the tube, metal,
There are ceramics and synthetic polymers. For example, a tetrafluoroethylene resin porous body tube obtained by the stretching method is
It is used in a wide range of fields such as filamentous separation membranes and artificial blood vessels.

【0003】ところで、送液用チューブでは、液の分配
が多数になることがある。人工血管においても、一本の
血管と複数の血管を結合することが要求される場合があ
る。チューブで被覆すべき線状構造体が、複数の分岐を
有している場合もある。このような用途に対しては、分
岐構造を有するチューブ(分岐チューブ)が必要となる
が、従来、分岐チューブを製造する有効な手段がなかっ
たのが現状である。
By the way, in the liquid sending tube, the liquid may be distributed in a large number. Even in the artificial blood vessel, it may be required to connect one blood vessel to a plurality of blood vessels. The linear structure to be covered with the tube may have a plurality of branches. A tube having a branched structure (branch tube) is required for such an application, but there has been no effective means for manufacturing the branched tube in the past.

【0004】一般に、チューブの製造方法としては、チ
ューブを形成する材料を、(1)熱溶融させるかあるい
は固体として硬化させる前に、中空の型に流し込む方
法、及び(2)コアピンとダイスを配してチューブ状に
押出成形する方法が代表的である。中空型を用いる方法
は、煩雑であり、チューブを低コストで製造するには、
押出成形法が有利である。しかしながら、押出成形法で
は、分岐構造を有するチューブを成形することは不可能
である。
Generally, as a method for manufacturing a tube, the material forming the tube is (1) poured into a hollow mold before being melted by heat or cured as a solid, and (2) a core pin and a die are arranged. A typical method is extrusion molding into a tube. The method using the hollow mold is complicated, and in order to manufacture the tube at low cost,
The extrusion method is advantageous. However, it is impossible to form a tube having a branched structure by the extrusion molding method.

【0005】分岐チューブを作成するには、押出成形し
た複数本のチューブを接続する方法が考えられる。即
ち、押出成形により得られた1本のチューブに、押出成
形により得られた複数本の他のチューブを接続して分岐
を形成させる方法である。しかしながら、この方法は、
工程が煩雑であると共に、通常、接続部の強度を確保す
るために特別の手段を必要とする。また、無孔質のチュ
ーブを対象とする場合には、この接続法により分岐チュ
ーブを成形することは可能であるが、分離膜チューブの
ように多孔質体チューブ、特に延伸多孔質体チューブを
対象とする場合には、実際的ではない。単一管孔のチュ
ーブを接続する方法では、多孔質体チューブの場合、接
続部が無孔質化してしまうため、多孔質体本来の特性を
損なう。さらに、分離膜のような内圧がかかる場合、接
続部の破壊強度を確保するために、例えば、補強用テー
プで巻くなどの厳重な補強が必要となり、この補強によ
って多孔質体チューブ内外面の交通性が損なわれること
になる。
A method of connecting a plurality of extruded tubes is conceivable for producing a branched tube. That is, it is a method of forming a branch by connecting a plurality of other tubes obtained by extrusion molding to one tube obtained by extrusion molding. However, this method
The process is complicated and usually requires special means to secure the strength of the connection portion. Further, when a non-porous tube is targeted, it is possible to form a branched tube by this connection method, but a porous tube such as a separation membrane tube, particularly a stretched porous tube is targeted. And if that is not practical. In the method of connecting a tube having a single tube hole, in the case of a porous body tube, the connection part becomes non-porous, and the original characteristics of the porous body are impaired. Furthermore, when internal pressure is applied, such as in a separation membrane, in order to secure the breaking strength of the connection part, for example, strict reinforcement such as wrapping with a reinforcing tape is required, and this reinforcement causes traffic on the inner and outer surfaces of the porous tube. Sex will be impaired.

【0006】具体的には、例えば、分離膜チューブの場
合は、接続により濾過液の流量が低下することになる。
また、接続部が管孔内面に段差をつくり易く、濾過物の
蓄積・堆積などの原因となる危険性がある。カテーテル
や人工血管の場合では、この段差により血液の堆積が生
じるおそれがあり、また、接続部の無孔質化により、多
孔質体内への組織の侵入性も妨げられて治癒が遅延する
ことになる。
[0006] Specifically, for example, in the case of a separation membrane tube, the flow rate of the filtrate decreases due to the connection.
Further, the connecting portion is likely to form a step on the inner surface of the tube hole, which may cause accumulation or accumulation of the filtered material. In the case of catheters and artificial blood vessels, this step may cause blood accumulation, and the non-porous nature of the connection also impedes the invasion of tissue into the porous body and delays healing. Become.

【0007】分岐チューブを作成する他の方法として、
分岐構造を有する中空型に成形材料を流し込む方法が考
えられるが、やはり工程が煩雑である。しかも、延伸多
孔質体チューブの場合には、得られた分岐チューブを延
伸する必要があるが、分岐して長軸方向に異形性のある
チューブを均質に延伸することは極めて困難であり、均
質な構造を有する延伸分岐チューブを得ることが難し
い。
As another method of making a branch tube,
A method of pouring the molding material into a hollow mold having a branched structure is conceivable, but the process is still complicated. Moreover, in the case of a stretched porous body tube, it is necessary to stretch the obtained branch tube, but it is extremely difficult to branch and uniformly stretch a tube having a deformed shape in the longitudinal direction, It is difficult to obtain a stretched and branched tube having a simple structure.

【0008】以上のように、従来技術によれば、分岐チ
ューブの製造は、非常に煩雑なものとなり、特に延伸多
孔質体チューブでは、実用に耐える分岐チューブを製造
すること自体事実上不可能であった。
As described above, according to the prior art, the manufacture of the branch tube becomes very complicated, and in particular, it is practically impossible to manufacture a branch tube that can be practically used with the expanded porous tube. there were.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、比較
的簡便な方法により分岐チューブを製造する方法を提供
することにある。また、本発明の目的は、従来の単一管
孔を有する直管状チューブと同様に滑らかで継目や接続
部のない内面をもつ分岐チューブを提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a branch tube by a relatively simple method. Another object of the present invention is to provide a branch tube having an inner surface that is smooth and has no joints or joints like the conventional straight tube having a single tube hole.

【0010】本発明者は、前記従来技術の問題点を克服
するために鋭意研究した結果、長軸方向の中心線の回り
に複数の管孔が配置された形状の長尺体を形成し、該長
尺体の一端において、各管孔を分割するように管孔間の
壁を切断して複数の分岐管を形成し、他端においては、
複数の管孔を1つにつなぐように管孔間の壁を切断して
大孔径の管孔を形成することにより、接続部のない分岐
チューブの得られることを見出した。この方法によれ
ば、成形材料をチューブ状に押出成形した後、延伸する
ことが可能である。即ち、複数の管孔を有する延伸多孔
質体チューブを作成した後、分岐構造を形成することが
できる。
As a result of intensive studies to overcome the above-mentioned problems of the prior art, the present inventor formed an elongated body having a shape in which a plurality of tube holes are arranged around a center line in the longitudinal direction, At one end of the elongated body, a wall between the tube holes is cut so as to divide each tube hole to form a plurality of branch pipes, and at the other end,
It has been found that a branch tube having no connection portion can be obtained by cutting the wall between the tube holes so as to connect the plurality of tube holes to form a tube hole having a large hole diameter. According to this method, the molding material can be extruded into a tubular shape and then stretched. That is, the branched structure can be formed after the stretched porous body tube having a plurality of tube holes is prepared.

【0011】また、単一管孔をもつ長尺体を複数本束ね
て、その一端において、各長尺体の管壁を接着により一
体化した後、複数の管孔を1つにつなぐように管孔間の
壁を切断して大孔径の管孔を形成すれば、さらに簡便な
方法により分岐チューブを得ることができる。本発明
は、これらの知見に基づいて完成するに至ったものであ
る。
Further, a plurality of elongated bodies having a single tube hole are bundled, and at one end, the tube walls of each elongated body are bonded and integrated, and then the plurality of tube holes are connected to one another. A branch tube can be obtained by a simpler method by cutting the wall between the tube holes to form a tube hole having a large hole diameter. The present invention has been completed based on these findings.

【0012】[0012]

【課題を解決するための手段】かくして、本発明によれ
ば、長軸方向の中心線の回りに複数の管孔が配置された
形状の長尺体であって、該長尺体の一端に、各管孔を分
割するように管孔間の壁を切断して形成された複数の分
岐管を有し、他端には、複数の管孔を1つにつなぐよう
に管孔間の壁を切断して形成された大孔径の管孔を有す
ることを特徴とする分岐チューブが提供される。
Thus, according to the present invention, there is provided an elongated body having a shape in which a plurality of tube holes are arranged around a center line in the longitudinal direction, and at one end of the elongated body. , A plurality of branch pipes formed by cutting the wall between the pipe holes so as to divide each pipe hole, and at the other end, a wall between the pipe holes so as to connect the plurality of pipe holes to one There is provided a branch tube having a large-diameter tube hole formed by cutting the.

【0013】また、本発明によれば、(1)長軸方向の
中心線の回りに複数の管孔が配置された形状の長尺体を
形成し、次いで、(2)該長尺体の一端において、各管
孔を分割するように管孔間の壁を切断して複数の分岐管
を形成し、(3)他端においては、複数の管孔を1つに
つなぐように管孔間の壁を切断して大孔径の管孔を形成
することを特徴とする分岐チューブの製造方法が提供さ
れる。
Further, according to the present invention, (1) an elongated body having a shape in which a plurality of tube holes are arranged around a center line in the longitudinal direction is formed, and then (2) the elongated body is formed. At one end, the wall between the tube holes is cut so as to divide each tube hole to form a plurality of branch pipes. (3) At the other end, the tube holes are connected so as to connect the plurality of tube holes into one. There is provided a method for manufacturing a branch tube, which comprises cutting a wall of a tube to form a tube hole having a large hole diameter.

【0014】さらに、本発明によれば、長軸方向に単一
の管孔をもつ長尺体を複数本束ねて、その一端におい
て、各長尺体の管壁を接着により一体化した後、複数の
管孔を1つにつなぐように管孔間の壁を切断して大孔径
の管孔を形成することを特徴とする分岐チューブの製造
方法が提供される。
Further, according to the present invention, a plurality of elongated bodies having a single tube hole in the longitudinal direction are bundled, and at one end thereof, the tube walls of the elongated bodies are integrated by adhesion, A method for manufacturing a branched tube is provided, in which a wall between the tube holes is cut so as to connect the plurality of tube holes to each other to form a tube hole having a large hole diameter.

【0015】以下、本発明について詳述する。本発明の
第一の方法では、1本のチューブに複数本のチューブを
接続して分岐構造を得るのではなく、予め複数本のチュ
ーブが一体化した形状の長尺体を成形し、両端の管壁を
切断して分岐構造を形成する。つまり、長軸方向に複数
の管孔をもつ長尺体を成形し、この長尺体の一端を管孔
をつなぐように管孔間の壁を切断して1つの大きな管孔
をもつ部分を成形し、他端は、管孔間の壁を分割する方
向に切断して、1つの管孔をもつ複数のチューブに分岐
させる。
The present invention will be described in detail below. In the first method of the present invention, rather than connecting a plurality of tubes to one tube to obtain a branched structure, a long body having a shape in which a plurality of tubes are integrated is formed in advance, and The tube wall is cut to form a branched structure. That is, a long body having a plurality of pipe holes in the long axis direction is formed, and the wall between the pipe holes is cut so that one end of this long body is connected to the pipe hole to form a portion having one large pipe hole. Molding is performed, and the other end is cut in a direction that divides the wall between the tube holes to branch into a plurality of tubes having one tube hole.

【0016】このようにして得たチューブは、1つの大
きな管孔から複数の管孔に分岐する構造となり、接続す
ることなく分岐チューブを得ることができる。本発明の
製造方法では、先に述べた接続法や中空型に流し込む方
法に比べ、容易であるだけでなく、接続部における補強
や交通性の阻害等の問題もない。
The tube thus obtained has a structure in which one large tube hole is branched into a plurality of tube holes, and a branched tube can be obtained without connection. The manufacturing method of the present invention is not only easier than the above-described connection method and the method of pouring into a hollow mold, but also has no problems such as reinforcement at the connection portion and obstruction of traffic.

【0017】本発明の第二の方法では、これらの長所の
うち、簡易性をさらに追及し、複数の管孔を持つ長尺体
の押出工程をも省いて、予め単一管孔を有する直管状チ
ューブを複数本束ねて、この束の一端において、溶融す
るなどして管壁を接着一体化し、次いで、複数の管孔を
1つにつなぐように管孔間の壁を切断して大孔径の管孔
を形成する。即ち、本発明の第一の方法のうち、大孔径
の管孔を形成する方法のみを採用する。
In the second method of the present invention, among these advantages, simplicity is further pursued, and the step of extruding a long body having a plurality of tube holes is omitted, and a straight tube having a single tube hole is provided in advance. A large hole diameter is obtained by bundling a plurality of tubular tubes and adhering and integrating the tube walls at one end of the bundle by melting, etc., and then cutting the wall between the tube holes so as to connect the plurality of tube holes into one. To form a tube hole. That is, among the first methods of the present invention, only the method of forming a large-diameter tube hole is adopted.

【0018】ポリプロピレン、ポリエチレン、四弗化エ
チレン樹脂(以下、PTFEと略記)などの合成樹脂を
用いて作成される延伸多孔質体チューブでは、本発明の
第一方法が、製造工程が簡単で、かつ、多孔質体として
の物性に優れた分岐チューブが得られるため、特に好ま
しい。
In the case of a stretched porous tube made of a synthetic resin such as polypropylene, polyethylene or tetrafluoroethylene resin (hereinafter abbreviated as PTFE), the first method of the present invention has a simple manufacturing process, In addition, a branched tube having excellent physical properties as a porous body can be obtained, which is particularly preferable.

【0019】以下に、分岐チューブの具体例として、延
伸法によるPTFE多孔質体チューブからなる人工血管
を取り上げて説明する。延伸法による四弗化エチレン樹
脂多孔質体チューブ(以下、EPTFEチューブと略
記)は、繊維と該繊維によって互いに連結された結節と
からなる微細繊維状構造を有する多孔質体である。この
多孔質構造は、ペースト押出により結着されたPTFE
粉末が、延伸により一部が解離して孔となり、一部が接
着を保ち繊維状になることと、同時または後で与えられ
る熱によりPTFE粉末同士が融解接着して結節となる
ことにより形成される。
As a specific example of the branch tube, an artificial blood vessel made of a PTFE porous tube produced by a stretching method will be described below. The tetrafluoroethylene resin porous body tube (hereinafter abbreviated as EPTFE tube) obtained by the stretching method is a porous body having a fine fibrous structure composed of fibers and knots connected to each other by the fibers. This porous structure is made up of PTFE bonded by paste extrusion.
Part of the powder is dissociated by stretching to form pores, part of which remains bonded and becomes fibrous, and the PTFE powder is melted and bonded to form a nodule by heat applied at the same time or later. It

【0020】このため、この微細繊維状構造は、延伸工
程と燒結工程における加熱量と延伸率に大きく依存す
る。工業的には、延伸工程は、2つの回転ドラム間に加
熱炉を配した装置によって行われる。一方の回転ドラム
(供給ドラム)に巻き付けられた押出チューブが一定速
度で加熱炉に供給され、次いで、他方の回転ドラム(巻
取りドラム)に一定速度で巻き取られる。この際、巻取
りドラムの回転速度を供給ドラムの回転速度より大きく
することでチューブの延伸がなされるが、この比率が延
伸率である。工業的には、この工程における2つのドラ
ムの回転速度、炉温等を制御・管理することにより、均
質な微細繊維状構造のEPTFEチューブを得ることが
できる。燒結は、延伸と同時に、あるいは延伸工程の後
に行う。
For this reason, the fine fibrous structure largely depends on the heating amount and the stretching rate in the stretching step and the sintering step. Industrially, the stretching process is performed by an apparatus in which a heating furnace is arranged between two rotating drums. The extruded tube wound around one rotating drum (supply drum) is supplied to the heating furnace at a constant speed, and then wound around the other rotating drum (winding drum) at a constant speed. At this time, the tube is stretched by making the rotation speed of the winding drum higher than the rotation speed of the supply drum, and this ratio is the stretching ratio. Industrially, an EPTFE tube having a uniform fine fibrous structure can be obtained by controlling and controlling the rotational speeds of the two drums, the furnace temperature and the like in this step. Sintering is performed at the same time as the stretching or after the stretching step.

【0021】このように、一般にEPTFEチューブ
は、長尺体(連続成形体)として製造されるものであ
り、これをバッチ処理的に製造することは、均質に延伸
し、加熱を与えることが困難である上、コストの点でも
問題がある。しかし、本発明の目的である分岐型のEP
TFEチューブは、分岐部があるために連続性がなく、
前記方法により長尺体として製造することはできない。
As described above, the EPTFE tube is generally manufactured as a long body (continuously molded body), and it is difficult to stretch it uniformly and apply heat to it by batch processing. In addition, there is a problem in cost. However, the branched EP which is the object of the present invention
Since the TFE tube has a branch, it has no continuity,
It cannot be manufactured as a long body by the above method.

【0022】本発明の第一の方法について、2つの分岐
を有するEPTFE分岐チューブを製造する場合を例に
とって説明する。先ず、前述したEPTFE製造工程に
したがって、図2に示すように2本のチューブがくっつ
いたような、断面が8の字形状のEPTFEチューブを
作成する。この長尺体は、その中心線の回りに2つの管
孔(4,4)を有している。なお、この場合、長尺体の
中心線とは、2つの管孔の中心を結ぶ線(6)と2つの
管孔間の中線(7)の交差する点を長軸方向に伸ばした
線である。
The first method of the present invention will be described by taking as an example the case of manufacturing an EPTFE branch tube having two branches. First, according to the EPTFE manufacturing process described above, as shown in FIG. 2, an EPTFE tube having an 8-shaped cross section, in which two tubes are stuck together, is prepared. This elongated body has two tube holes (4, 4) around its center line. In this case, the center line of the elongated body is a line obtained by extending the intersection point of the line (6) connecting the centers of the two tube holes and the midline (7) between the two tube holes in the long axis direction. Is.

【0023】このような形状の長尺体を作成するには、
ペースト押出工程において、図2に示すチューブ外壁と
同様の形状のダイスと、2つのチューブ管孔の位置に2
本のコアピン(8,8)を図3に示すように各々配し
て、チューブを押出成形することにより断面8の字形状
のチューブを作成し、次いで、延伸工程と燒結工程を同
時または順に行うことで、図2に示すようなEPTFE
焼成品を得ることができる。
To make a long body having such a shape,
In the paste extrusion process, a die having the same shape as the outer wall of the tube shown in FIG.
The core pins (8, 8) of the book are arranged as shown in FIG. 3, and the tube is extruded to form a tube having a cross-section 8 shape, and then the stretching step and the sintering step are performed simultaneously or sequentially. Therefore, the EPTFE as shown in FIG.
A baked product can be obtained.

【0024】次に、図4に示すように、この断面8の字
形状のチューブは、各管孔の中心を結ぶ線(14)で管
孔間の壁を切断すると、2つの管孔がつながって1つの
大きな管孔をもつチューブ(13)となる。一方、図5
に示すように、各管孔の中線(17)で各管孔を分割す
るように管孔間の壁を切断すると、チューブは1つの管
孔をもつ2つのチューブ(16,16)に分離する。長
尺体の中央部分に、管壁を切断しない部分を残しておく
と、図1に示すように、口径の大きなチューブから2つ
の小口径チューブに分岐するチューブを得ることができ
る。
Next, as shown in FIG. 4, in the tube having the V-shaped section, the wall between the tube holes is cut by a line (14) connecting the centers of the tube holes to connect the two tube holes. Resulting in a tube (13) with one large bore. On the other hand, FIG.
As shown in Fig. 2, cutting the wall between the tube holes so as to divide each tube hole at the median line (17) of each tube hole separates the tube into two tubes (16, 16) having one tube hole. To do. If a portion where the tube wall is not cut is left in the central portion of the elongated body, a tube that branches from a tube with a large diameter into two tubes with a small diameter can be obtained, as shown in FIG.

【0025】切断面及び口径を整えるために、所望の形
状と径に作成した分岐形状のY字型の金属棒をチューブ
管孔に挿入し、EPTFEの融点約327℃以上に加熱
することで、分岐チューブ内面を金属棒形状に沿わせて
整形することができる。このとき、管壁の切断だけでは
落花生の実のような形状であったチューブの口径の大き
くなった部分の内面は、きれいな円形の内面となる。以
上のようにして、接続部のない滑らかな内面をもつ分岐
型人工血管を得ることができる。
In order to adjust the cut surface and diameter, a Y-shaped metal rod having a branched shape formed into a desired shape and diameter is inserted into a tube tube hole and heated to a melting point of EPTFE of about 327 ° C. or more, The inner surface of the branch tube can be shaped along the metal rod shape. At this time, the inner surface of the portion of the tube having a large diameter, which was shaped like a peanut only by cutting the tube wall, becomes a clean circular inner surface. As described above, a branched artificial blood vessel having a smooth inner surface without a connecting portion can be obtained.

【0026】本発明品の基材となる8の字形状の断面を
もつEPTFEチューブは、その後の切断操作によっ
て、2つの管孔の内面間の壁と、2つの管孔の中線が通
る外壁間の壁は、共に2枚のチューブ壁に分離されるた
め、その壁厚は、共に周辺部のチューブ壁厚の2倍程度
とすることが望ましい。また、この2種類の切断操作後
の壁面形状が滑らかに連続するためには、図2に示すよ
うに外壁が滑らかな曲線で構成されていることが望まし
い。即ち、複数の管孔間の中線が通る長尺体の外面部分
が、長尺体の長軸方向の中心線に向けてくびれた形状で
あることが望ましい。
The EPTFE tube having an 8-shaped cross section, which is the base material of the present invention, has a wall between the inner surfaces of the two tube holes and an outer wall through which the midline of the two tube holes passes by the subsequent cutting operation. Since the wall in between is divided into two tube walls, it is desirable that both wall thicknesses are about twice the tube wall thickness in the peripheral portion. Further, in order for the wall shapes after the two types of cutting operations to be smoothly continuous, it is desirable that the outer wall be formed of a smooth curve as shown in FIG. That is, it is desirable that the outer surface portion of the elongated body through which the midline between the plurality of tube holes passes is constricted toward the center line of the elongated body in the long axis direction.

【0027】人工血管の場合、3つ以上の分岐が必要な
場合は、殆どないが、送液用チューブでは、液の分配が
多数になる場合も多い。このような用途に使用する多数
の分岐をもつチューブを作成する場合には、例えば、図
6に示す3つの管孔を有する長尺体や、図7に示すよう
に4つの管孔を有する長尺体など、3つ以上の管孔を有
する長尺体を作成することが必要である。このような長
尺体において、長軸方向の中心線の回りに複数の管孔が
配置された形状とすることが、大孔径の管孔を形成する
上で必要である。
In the case of an artificial blood vessel, there is almost no case where three or more branches are required, but in the liquid-feeding tube, the liquid is often distributed in many cases. When producing a tube having a large number of branches used for such an application, for example, a long body having three tube holes as shown in FIG. 6 or a long body having four tube holes as shown in FIG. It is necessary to create an elongated body having three or more tube holes, such as a scale. In such a long body, it is necessary to form a plurality of tube holes around the center line in the long axis direction in order to form a tube hole having a large hole diameter.

【0028】本発明では、3つ以上の管孔を有する長尺
体を用いる場合についても、管孔が2つの場合と同様
に、一端は、この長尺体の中心と管孔の中心を結ぶ線で
切断して複数の分岐管を形成し、他端では、各管孔を分
離するように管壁を切断することで多数に分岐するチュ
ーブを得ることが可能である。
In the present invention, also in the case of using an elongated body having three or more tube holes, one end connects the center of this elongated body and the center of the tube hole as in the case of two tube holes. It is possible to obtain a multi-branched tube by cutting with a line to form a plurality of branch pipes and cutting the pipe wall at the other end so as to separate each pipe hole.

【0029】この場合も、管孔が2つの場合と同様に、
使用される長尺体の外面は、図6及び図7に示すよう
に、長尺体の長軸方向の中心線に向けてくびれた形状に
することにより、分岐後のチューブ形状が滑らかなもの
となる。
Also in this case, as in the case of two tube holes,
As shown in FIGS. 6 and 7, the outer surface of the long body to be used has a constricted shape toward the center line in the long axis direction of the long body so that the tube shape after branching is smooth. Becomes

【0030】また、この長尺体の管孔の断面形状は、特
に円形である必要はなく、図7に示すように、楕円形な
どの形状でもよい。特に、4つ以上の多数の管孔を分岐
させる場合には、形状的に分岐状に分割したときの内面
及び外面が、きれいな同心円に形成しにくくなってく
る。このような場合、図7に示すように管孔を楕円とし
たり、長尺体の長軸方向の中心線に、分岐させるための
孔(20)を設けることで、分割後の内外面形状を同心
円に近いものとすることが可能である。
The cross-sectional shape of the elongated tube hole does not have to be circular, and may be elliptical or the like as shown in FIG. In particular, in the case of branching a large number of four or more tube holes, it becomes difficult to form a clean concentric circle on the inner surface and the outer surface when divided into a branched shape. In such a case, as shown in FIG. 7, the tube hole is formed into an ellipse, or a hole (20) for branching is provided at the center line of the long body in the long axis direction, so that the inner and outer surface shapes after the division are changed. It can be close to concentric circles.

【0031】本発明で使用する長尺体を形成するための
押出ダイスは、長軸方向の中心線に向けてくびれた形状
の長尺体の外壁と同様の形状、つまり、8の字の場合で
は、図3に示すように、ダイス内面に2つの接する円孔
(9)を開け、挿入するコアピン径(11)をその円孔
の直径より引いた長さの幅(10)で、この2つの円孔
をつなぎ、エッジを面取りした形状であることが必要と
なる。この曲面で構成された形状は、EPTFE製造工
程中、または、製品への力学的負荷によって発生するE
PTFEチューブ壁のクラック、破れ目の発生を防止す
るためにも重要である。
The extrusion die for forming the elongated body used in the present invention has a shape similar to that of the outer wall of the elongated body which is constricted toward the center line in the longitudinal direction, that is, in the case of a figure eight shape. Then, as shown in FIG. 3, two circular holes (9) contacting each other are formed on the inner surface of the die, and the core pin diameter (11) to be inserted is subtracted from the diameter of the circular hole to obtain a width (10). It is necessary to connect two circular holes and chamfer the edges. The shape formed by this curved surface is E generated during the EPTFE manufacturing process or due to mechanical load on the product.
It is also important to prevent the occurrence of cracks and tears in the PTFE tube wall.

【0032】なお、3つ以上の管孔を有する長尺体を使
用する場合、所望により、一方の端部において、2つ以
上の管孔を1つにつなぐように管孔間の壁を切断して大
孔径の管孔を形成し、1つ以上の管孔をそのまま残存さ
せてもよい。また、例えば、図7に示すような4つの管
孔を有する長尺体の場合、一方の端部において、2つず
つの管孔間の壁を切断して2つの大孔径の管孔を形成さ
せてもよい。即ち、本発明の分岐チューブには、付加的
な管孔が存在していてもよく、また、複数の分岐チュー
ブが一体化した構造のものであってもよい。同様に、3
つ以上の管孔を有する長尺体を使用する場合、他方の端
部において、分岐管を形成する箇所(分岐箇所)は、そ
れぞれ離れていてもよい。
When a long body having three or more tube holes is used, the wall between the tube holes is cut at one end so that two or more tube holes are connected to each other, if desired. Then, a large-diameter tube hole may be formed, and one or more tube holes may be left as they are. Further, for example, in the case of an elongated body having four tube holes as shown in FIG. 7, at one end, a wall between two tube holes is cut to form two large hole tube holes. You may let me. That is, the branch tube of the present invention may have an additional tube hole, or may have a structure in which a plurality of branch tubes are integrated. Similarly, 3
In the case of using a long body having three or more tube holes, the locations (branch locations) where the branch pipes are formed may be separated from each other at the other end.

【0033】本発明は、接続部のない平滑な内面をもつ
分岐チューブを提供するものであって、その他の付加価
値的措置を講ずることを規制するものではない。例え
ば、管孔構造の維持性や縫合時のスーチャー強度を上げ
るために、特公昭58−1656号や特公昭63−23
215号に記載の方法で、人工血管外壁に凹凸構造を付
与することや、EPTFEテープを人工血管外壁に巻き
付けるなどの補強措置をとることも可能である。本発明
品は、接続部がないために破壊の原因となる欠陥部はな
いが、管壁の切断によって発生した切断端は、その後の
加熱整形時に融着処理がなされるものの、本発明品では
唯一チューブ破壊の原因となりうる可能性がある部分で
ある。しかし、切断しない部分を多くとったり、切断部
分を別途加熱融着させたり、あるいは切断部分のみ外壁
に補強措置を取るなどの方法でこれらの問題は簡単に解
決可能である。
The present invention provides a branch tube having a smooth inner surface with no connections, and does not regulate the taking of other value-added measures. For example, in order to improve the maintainability of the tube hole structure and the suture strength during suturing, Japanese Patent Publication No. 58-1656 and Japanese Patent Publication No. 63-23.
According to the method described in No. 215, it is also possible to give a concavo-convex structure to the outer wall of the artificial blood vessel, and take reinforcing measures such as winding an EPTFE tape around the outer wall of the artificial blood vessel. The product of the present invention does not have a defective portion that causes destruction because there is no connecting portion, but the cut end generated by cutting the pipe wall is subjected to fusion treatment during subsequent heat shaping, but in the present invention product. It is the only part that can cause tube breakage. However, these problems can be easily solved by taking many uncut parts, separately heating and melting the cut parts, or by taking reinforcement measures only on the cut parts on the outer wall.

【0034】以上のような製法で得た本発明品には、次
のような特徴がある。 (1)接続部のない平滑な内面をもっているため、人工
血管に用いた場合、血栓の生成を最小限に抑えることが
できる。 (2)長尺体の製造段階で延伸できるため、延伸多孔質
体チューブは、均質な微細繊維状構造をもち、多孔質構
造に基づく良好な器質化、治癒を均質に起こすことが可
能である。
The product of the present invention obtained by the above manufacturing method has the following features. (1) Since it has a smooth inner surface with no connection part, it can minimize the generation of thrombus when used for an artificial blood vessel. (2) Since it can be stretched in the production stage of a long body, the stretched porous body tube has a uniform fine fibrous structure, and it is possible to uniformly cause good organizing and healing based on the porous structure. .

【0035】また、本発明の製造法は、次の点で優れて
いる。 (1)分岐構造を有する中空型を用いるバッチ処理に比
して、比較的簡単に均質な微細繊維状構造を得ることが
可能である。 (2)接続法に比して、強度保証が容易で、補強措置が
不用であるか、あるいは少なくてすむ。また、補強によ
って多孔質構造を損なうことがなく、人工血管の用途で
は、移植時の取扱いや移植される部位・形状に適応させ
るために必要なしなやかさを保つことが可能である。 (3)操作が簡易で、低コストである。
Further, the manufacturing method of the present invention is excellent in the following points. (1) It is possible to obtain a uniform fine fibrous structure relatively easily as compared with batch processing using a hollow mold having a branched structure. (2) Compared to the connection method, it is easier to guarantee the strength, and the reinforcing measures are unnecessary or required. Further, the reinforcement does not impair the porous structure, and in the use of an artificial blood vessel, it is possible to maintain the necessary flexibility for handling at the time of transplantation and adapting to the site / shape to be transplanted. (3) The operation is simple and the cost is low.

【0036】以上のような特徴をもつ本発明は、従来に
ない高い開存性、治癒性が実現可能な分岐型人工血管を
容易に提供することが可能である。もちろん、本発明の
分岐チューブは、人工血管以外の多くの用途に使用可能
であり、材質もPTFEに限定されない。
According to the present invention having the above-mentioned features, it is possible to easily provide a branched artificial blood vessel capable of achieving unprecedentedly high patency and curability. Of course, the branch tube of the present invention can be used in many applications other than artificial blood vessels, and the material is not limited to PTFE.

【0037】[0037]

【実施例】以下、本発明について、実施例を挙げて具体
的に説明するが、本発明は、これらの実施例のみに限定
されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0038】[実施例1]PTFEファインパウダー
(ダイキン工業社製PTFEファインパウダーF10
4)100重量部に対して、ドライゾール23重量部を
助剤として混合し、図3に示す形状のダイス面をもつダ
イス(コアピン径r=1.5、コアピンとダイス内面の
距離d=0.5)を用いてラム押出機によって断面8の
字のチューブ状に成形した後に、ドライゾールを50
℃、48時間で乾燥させた。この押出チューブを熱風循
環炉中、炉温350℃、炉内滞在時間120秒の条件で
加熱しながら500%延伸し、気孔率75%、平均繊維
長30μm、内径1.2mmφの管孔を2つもち、管孔
の壁厚0.5mmの断面8の字形状EPTFEチューブ
を得た。
[Example 1] PTFE fine powder (PTFE fine powder F10 manufactured by Daikin Industries, Ltd.)
4) Dies having 23 parts by weight of DRYZOL as an auxiliary agent with respect to 100 parts by weight, and having a die surface having a shape shown in FIG. 3 (core pin diameter r = 1.5, distance d between core pin and die inner surface d = 0) .5) was formed into a tube shape having a cross section of 8 using a ram extruder, and then 50 parts of dryzole was used.
It was dried at ℃ for 48 hours. This extruded tube was stretched by 500% while being heated in a hot air circulation furnace under the conditions of a furnace temperature of 350 ° C. and a residence time in the furnace of 120 seconds, and a porosity of 75%, an average fiber length of 30 μm, and an inner diameter of 1.2 mmφ were used to form 2 tube holes. In other words, a tube-shaped EPTFE tube having a section 8 with a wall thickness of the tube hole of 0.5 mm was obtained.

【0039】次いで、図4〜図5に示すように、この断
面8の字EPTFEチューブの一端において、管孔の中
心を結ぶ線で管壁を切断し、他端では、管孔の中線で管
壁を切断し、中央の1cmを切断しないで残した。この
管孔に、3mmφから1.5mmφの2本に滑らかな曲
線をもって分岐するステンレス棒を挿入し、チューブ各
端部をステンレス棒に固定した後に、330℃の恒温槽
内に10分間入れて整形した。ステンレス棒を除去し
て、分岐前内径3mmφ、分岐後内径1.5mmφの分
岐型人工血管を得た。
Next, as shown in FIGS. 4 to 5, at one end of the EPTFE tube having the cross section 8, the tube wall is cut by a line connecting the centers of the tube holes, and at the other end, by the center line of the tube hole. The tube wall was cut, leaving the central 1 cm uncut. Into this tube hole, insert a stainless rod that branches into two with a smooth curve from 3 mmφ to 1.5 mmφ, fix each end of the tube to the stainless rod, and then put it in a constant temperature bath at 330 ° C. for 10 minutes for shaping. did. The stainless rod was removed to obtain a branched artificial blood vessel having an inner diameter of 3 mmφ before branching and an inner diameter of 1.5 mmφ after branching.

【0040】[実施例2]330℃の恒温槽内に10分
間入れる代わりに、炉内面が内径35mmφ、長さ25
cmの石英ガラス管でできた電気炉に炉温800℃、炉
内滞在時間を分岐前部で20秒、分岐後部で7秒とし、
人工血管外面に深さ50%の凹凸構造を設けた以外は、
実施例1と同様にして、分岐前内径3mmφ、分岐後内
径1.5mmφの分岐型人工血管を得た。
[Example 2] Instead of being placed in a thermostat of 330 ° C for 10 minutes, the inner surface of the furnace had an inner diameter of 35 mmφ and a length of 25.
In the electric furnace made of quartz glass tube of cm, the furnace temperature was 800 ° C, and the staying time in the furnace was 20 seconds before the branch and 7 seconds after the branch.
Except for providing an uneven structure with a depth of 50% on the outer surface of the artificial blood vessel,
In the same manner as in Example 1, a branched artificial blood vessel having an inner diameter of 3 mmφ before branching and an inner diameter of 1.5 mmφ after branching was obtained.

【0041】[実施例3]PTFEファインパウダー
(ダイキン工業社製PTFEファインパウダーF10
4)100重量部に対して、ドライゾール23重量部を
助剤として混合し、図3に示す形状のダイス面を持つダ
イス(コアピン径r=6、コアピンとダイス内面の距離
d=1.5)を用いて、ラム押出機によって断面8の字
チューブ状に成形した後に、ドライゾールを50℃、4
8時間で乾燥させた。この押出チューブを熱風循環炉
中、炉温400℃、炉内滞在時間500秒の条件で加熱
しながら400%延伸し、気孔率75%、平均繊維長3
0μm、内径5mmφの管孔を2つもち、管孔の壁厚
1.4mmの断面8の字形状EPTFEチューブを得
た。
[Example 3] PTFE fine powder (PTFE fine powder F10 manufactured by Daikin Industries, Ltd.)
4) 23 parts by weight of DRYSOL was mixed with 100 parts by weight as an auxiliary agent, and a die having a die surface having a shape shown in FIG. 3 (core pin diameter r = 6, distance between core pin and die inner surface d = 1.5) was used. ) Using a ram extruder to form a tube with a cross section of 8 and then drysol at 50 ° C. for 4 hours.
It was dried for 8 hours. This extruded tube was stretched 400% while being heated in a hot air circulation furnace under the conditions of a furnace temperature of 400 ° C. and a residence time in the furnace of 500 seconds, a porosity of 75% and an average fiber length of 3
A tube-shaped EPTFE tube having a cross-section of 8 and having a wall thickness of 1.4 mm and having a tube hole of 0 μm and an inner diameter of 5 mmφ was obtained.

【0042】次いで、図4〜図5に示すように、この断
面8の字EPTFEチューブの一端において、管孔の中
心を結ぶ線で管壁を切断し、他端では、管孔の中線で管
壁を切断し、中央の1cmを切断せずに残した。この管
孔に、3mmφから1.5mmφの2本に滑らかな曲線
をもって分岐するステンレス棒を挿入し、チューブ各端
部をステンレス棒に固定した後に、炉内面が内径45m
mφ、長さ25cmの石英ガラス管でできた電気炉に炉
温800℃、炉内滞在時間を分岐前部で120秒、分岐
後部で30秒とし、人工血管外面に深さ50%の凹凸構
造を設けた。ステンレス棒を除去して、分岐前内径12
mmφ、分岐後内径6mmφ、壁厚1.3mmの分岐型
人工血管を得た。
Next, as shown in FIGS. 4 to 5, at one end of the EPTFE tube having the cross section 8, the tube wall is cut by a line connecting the centers of the tube holes, and at the other end, by the center line of the tube hole. The tube wall was cut, leaving the central 1 cm uncut. Into this tube hole, insert a stainless rod branching into two with a smooth curve from 3 mmφ to 1.5 mmφ, and fix each end of the tube to the stainless rod.
An electric furnace made of a quartz glass tube of mφ and a length of 25 cm has a furnace temperature of 800 ° C., a residence time in the furnace of 120 seconds at the front of the branch and 30 seconds at the rear of the branch, and an uneven structure with a depth of 50% on the outer surface of the artificial blood vessel. Was set up. Remove the stainless steel rod to get an inner diameter of 12 before branching.
A branched artificial blood vessel having a diameter of mmφ, an inner diameter of 6 mm after branching, and a wall thickness of 1.3 mm was obtained.

【0043】物性の測定 前記実施例1〜3で得られた人工血管について、以下の
方法により物性の測定を行った。なお、物性の測定方法
は以下の通りである。 〈平均繊維長〉走査型電子顕微鏡で、結節間距離を測定
した平均値。 〈バブルポイント〉人工血管をイソプロピルアルコール
に含浸し、管壁の孔内をイソプロピルアルコールで充満
した後、チューブの内側より徐々に空気圧を負荷したと
きに、初めて気泡が出てくるときの圧力。 〈漏水圧〉人工血管の内側から徐々に水圧を負荷したと
きに、初めて水が人工血管外壁から出てくる時の水圧。 〈破裂圧〉人工血管内腔に水圧をかけ、この圧を0.5
kg/cm2・分の速度で徐々に昇圧していったとき
に、人工血管壁より破水するときの水の圧力。 〈開存率〉人工血管を移植し、ある一定期間生かした後
の、その時点で血流が認められた人工血管の本数の、移
植した人工血管全数に対する比率。
Measurement of Physical Properties Physical properties of the artificial blood vessels obtained in Examples 1 to 3 were measured by the following methods. The methods for measuring the physical properties are as follows. <Average fiber length> Average value of internodal distance measured with a scanning electron microscope. <Bubble point> The pressure at which bubbles first appear when the artificial blood vessel is impregnated with isopropyl alcohol and the inside of the tube wall is filled with isopropyl alcohol, and then air pressure is gradually applied from the inside of the tube. <Leakage pressure> The water pressure when water comes out from the outer wall of the artificial blood vessel for the first time when the water pressure is gradually applied from the inside of the artificial blood vessel. <Rupture pressure> Water pressure is applied to the lumen of the artificial blood vessel, and this pressure is adjusted to 0.5.
The pressure of water when the water is broken from the artificial blood vessel wall when the pressure is gradually increased at a rate of kg / cm 2 · min. <Patency rate> The ratio of the number of artificial blood vessels in which blood flow was observed at the time after transplanting the artificial blood vessels and keeping them alive for a certain period to the total number of the transplanted artificial blood vessels.

【0044】測定結果は、次のとおりである。 (1)実施例1〜3で得られた人工血管について、走査
型電子顕微鏡による内面観察を行なった。その結果、い
ずれの人工血管も、全面にわたって平均繊維長30μm
の平滑な内面を呈しており、分岐部の股部に多孔質構造
の多少つぶれた部分があることを除いて多孔質構造は保
持されていた。また、分岐部前の管孔の切断した跡は、
10μm程度周囲より盛り上がっているものの、その変
化はスムーズであり、管孔面を斜視したときにやっとわ
かる程度であった。そのほか、分岐部の口径変化はスム
ーズであり、亀裂等の欠陥部分はなかった。
The measurement results are as follows. (1) The artificial blood vessels obtained in Examples 1 to 3 were observed on the inner surface with a scanning electron microscope. As a result, all artificial blood vessels had an average fiber length of 30 μm over the entire surface.
Had a smooth inner surface, and the porous structure was retained except that the crotch part of the branch part had a somewhat collapsed part of the porous structure. In addition, the trace of cutting the tube hole in front of the bifurcation
Although it was raised from the surroundings by about 10 μm, the change was smooth, and it was barely noticeable when the tube hole surface was squinted. In addition, the change in diameter of the bifurcation was smooth, and there were no defective parts such as cracks.

【0045】(2)実施例1〜3で得られた人工血管に
ついて、バブルポイント及び漏水圧の測定を行った結
果、バブルポイントは、実施例1で0.15kg/cm
2、実施例2で0.10kg/cm2、実施例3で0.2
0kg/cm2であり、いずれも細かい気泡が人工血管
全長にわたって均質に発生し、ピンホールなどは存在し
なかった。漏水圧は、実施例1、2、3の順に、0.3
1kg/cm2、0.25kg/cm2、0.39kg/
cm2と高く、移植時における漏血は発生しないと判断
された。漏血部の分布も均等に人工血管全面から発生し
ていた。
(2) With respect to the artificial blood vessels obtained in Examples 1 to 3, the bubble point and the leak pressure were measured. As a result, the bubble point was 0.15 kg / cm in Example 1.
2 , 0.10 kg / cm 2 in Example 2 , 0.2 in Example 3
It was 0 kg / cm 2 , and in each case, fine bubbles were uniformly generated over the entire length of the artificial blood vessel, and pinholes and the like did not exist. The leak pressure is 0.3 in the order of Examples 1, 2, and 3.
1 kg / cm 2 , 0.25 kg / cm 2 , 0.39 kg /
It was as high as cm 2, and it was determined that blood leakage did not occur during transplantation. The distribution of the blood-leakage part was also uniformly generated over the entire artificial blood vessel.

【0046】(3)実施例1〜3で得られた人工血管に
ついて、破裂圧を測定したところ、実施例1、2、3の
順に、4.2kg/cm2、3.5kg/cm2、2.9
kg/cm2と十分高く、いずれも分岐直前の部位で破
裂した。血圧に比して十分に高い耐圧性を有しているこ
とがわかったが、この破裂した分岐直前の部位へ、EP
TFEテープの巻き付け融着等による補強を行うこと
で、より耐圧性を上げることができる。
(3) The rupture pressure of the artificial blood vessels obtained in Examples 1 to 3 was measured. As a result, 4.2 kg / cm 2 , 3.5 kg / cm 2 , 2.9
It was as high as kg / cm 2, and both burst at the site immediately before branching. It was found that it has a pressure resistance sufficiently higher than blood pressure, but EP
The pressure resistance can be further increased by reinforcing the TFE tape by winding and fusing.

【0047】(4)分岐部長2cm、分岐前部2cm、
未切断部1cmの全長5cmの実施例1及び2で得られ
た人工血管を、それぞれ体重13〜15kgのウサギの
腹部大動脈から両側の腸骨動脈への分岐部に、完全置換
移植を行った。移植後1日、3日、4週間成育後、該人
工血管を取り出し、開存率を調査し、次いで、内面性状
を目視にて観察した。また、移植後4週のサンプルで
は、目視観察後、ホルマリン固定して、病理組織標本を
作成し、器質化の状態を観察した。
(4) Branch length 2 cm, branch front 2 cm,
The artificial blood vessels obtained in Examples 1 and 2 each having an uncut portion of 1 cm and a total length of 5 cm were subjected to complete replacement transplantation at the bifurcations from the abdominal aorta of rabbits weighing 13 to 15 kg to the iliac arteries on both sides. After growing for 1 day, 3 days, and 4 weeks after transplantation, the artificial blood vessel was taken out, the patency rate was investigated, and then the inner surface properties were visually observed. Further, in the sample 4 weeks after the transplantation, after visual observation, it was fixed with formalin to prepare a pathological tissue specimen, and the state of organizing was observed.

【0048】その結果、実施例1〜2の各人工血管は、
開存率が1〜3日では100%で、4週間経過後でも8
3%と良好であった。人工血管内面は、1〜3日では薄
く均一な厚みの白色の内膜で覆われ、血栓は認められな
かった。また、移植後4週間では、同じく薄く均一な厚
みの仮性内膜を保っており、血栓の付着は認められなか
った。移植4週間後、サンプルの病理組織検索では、外
側より人工血管壁内に細胞を含む生体組織が活発に侵入
し、特に実施例2の人工血管では、人工血管壁内は細胞
を含む生体組織で壁内に充満しており、良好な器質化が
なされていた。また、仮性内膜の最内面は、血管内皮細
胞による被覆が見られ、良好な治癒性を示していた。
As a result, the artificial blood vessels of Examples 1 and 2 were
The patency rate is 100% in 1 to 3 days and 8 even after 4 weeks have passed.
It was as good as 3%. The inner surface of the artificial blood vessel was covered with a thin white uniform inner membrane for 1 to 3 days, and no thrombus was observed. In addition, at 4 weeks after the transplantation, the pseudointimal membrane having the same thin thickness was maintained, and the adhesion of thrombus was not observed. Four weeks after the transplantation, in the pathological tissue search of the sample, the biological tissue containing cells actively invaded from the outside into the artificial blood vessel wall, and particularly in the artificial blood vessel of Example 2, the artificial blood vessel wall contained biological tissue containing cells. It was filled in the wall, and was well organized. In addition, the innermost surface of the pseudointimal membrane was covered with vascular endothelial cells, indicating good healing properties.

【0049】[0049]

【発明の効果】本発明によれば、比較的簡便な方法によ
り分岐チューブを製造する方法が提供される。また、本
発明によれば、単一管孔を有する直管状チューブと同様
に滑らかで継目や接続部のない内面をもつ分岐チューブ
が提供される。
According to the present invention, there is provided a method for manufacturing a branched tube by a relatively simple method. Also, according to the present invention, there is provided a branched tube having an inner surface that is smooth and has no joints or joints as in the case of a straight tube having a single tube hole.

【0050】本発明の製造方法により得られた分岐型人
工血管は、継目や接続部分のない極めて平滑な管孔面を
有しているため、本来であれば血流を分配するため乱流
が発生し易く、血栓形成による閉塞が起こり易い血流分
岐点に好適に使用することができる。また、器質化治癒
を促進する多孔質構造も均質であり、つぶれた部分のな
いものとなることから、移植後きわめて短期間のうちに
生体血管用の器質化を完了し、形成された安定な内皮細
胞層によって良好な開存率を長期にわたって実現するこ
とが可能である。
Since the branched artificial blood vessel obtained by the production method of the present invention has an extremely smooth tube surface without seams or connecting portions, turbulent flow is originally generated to distribute blood flow. It can be suitably used for a blood flow branch point that is likely to occur and is likely to be blocked by thrombus formation. In addition, since the porous structure that promotes organizing healing is also homogeneous and has no crushed parts, it is possible to complete organizing for living blood vessels within a very short period of time after transplantation, and to stabilize the formed tissue. A good patency rate can be achieved for a long time by the endothelial cell layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分岐チューブの例を示す模式図であ
る。
FIG. 1 is a schematic view showing an example of a branch tube of the present invention.

【図2】本発明の分岐チューブの基材となるEPTFE
チューブの一例を示す模式図である。
FIG. 2 EPTFE as a base material of the branch tube of the present invention
It is a schematic diagram which shows an example of a tube.

【図3】本発明の製造方法に使用する押出ダイスのダイ
ス面形状及びコアピンとの配置の一例を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing an example of a die surface shape of an extrusion die used in the manufacturing method of the present invention and an arrangement with a core pin.

【図4】本発明の製造方法のうち、2つの管孔が配置さ
れた形状の長尺体を使用して、一端において、この2つ
の管孔を1つにつなぐように管孔間の壁を切断して大孔
径の管孔を形成する方法の一例を示す断面図である。
FIG. 4 is a perspective view of the manufacturing method of the present invention, which uses a long body having a shape in which two tube holes are arranged, and at one end, a wall between the tube holes is formed so as to connect the two tube holes together. It is sectional drawing which shows an example of the method of forming a large diameter tube hole by cutting.

【図5】本発明の製造方法のうち、2つの管孔が配置さ
れた形状の長尺体を使用して、一端において、各管孔を
分割するように管孔間の壁を切断して複数の分岐管を形
成する方法の一例を示す断面図である。
FIG. 5 is a view showing a manufacturing method of the present invention, in which a long body having a shape in which two tube holes are arranged is used, and a wall between tube holes is cut at one end so as to divide each tube hole. It is sectional drawing which shows an example of the method of forming a some branch pipe.

【図6】長軸方向の中心線の回りに3つの管孔が配置さ
れた形状の長尺体を用いて、分岐形状を形成する方法の
例を示す断面図である。
FIG. 6 is a cross-sectional view showing an example of a method for forming a branched shape by using an elongated body having a shape in which three tube holes are arranged around a center line in the long axis direction.

【図7】長軸方向の中心線の回りに4つの管孔が配置さ
れた形状の長尺体を用いて、分岐形状を形成する方法の
例を示す断面図である。
FIG. 7 is a cross-sectional view showing an example of a method for forming a branched shape by using an elongated body having a shape in which four tube holes are arranged around a center line in the long axis direction.

【符号の説明】[Explanation of symbols]

1 分岐チューブの分岐前の大口径部分 2 分岐チューブの2つに分岐した部分 3 分岐チューブの基材の8の字形状の断面 4 分岐チューブの基材の2つの管孔 5 分岐チューブの基材の管孔の壁厚 6 分岐チューブの基材の2つの管孔の中線が通る外壁
間の距離 7 分岐チューブの基材の2つの管孔の内面間の壁厚 8 コアピン(断面) 9 ダイス内面 10 コアピンとダイス内面間の距離d 11 コアピン径r 12 2つの管孔をつないで1つの管孔とする切断操作
前のチューブ断面 13 2つの管孔をつないで1つの管孔とする切断操作
後のチューブ断面 14 2つの管孔をつないで1つの管孔とする場合の切
分する面 15 1つの管孔をもつ2つのチューブにする切断操作
前のチューブ断面 16 1つの管孔をもつ2つのチューブにする切断操作
後のチューブ断面 17 1つの管孔をもつ2つのチューブにする場合の切
断する面 18 複数の管孔をつないで1つの管孔とする場合の切
断する面 19 1つの管孔をもつ複数のチューブにする場合の切
断する面 20 1つの管孔をもつ複数のチューブに切断した後の
形状を整えるために長尺体中心にあけた分割用管孔
1 Large-diameter part before branch of branch tube 2 Part branched into two of branch tube 3 Cross-section of figure 8 of base material of branch tube 4 Two tube holes of base material of branch tube 5 Base material of branch tube Wall thickness of the tube hole of 6 Branch wall distance between the median lines of the two tube holes of the branch tube base material 7 Wall thickness between the inner surfaces of the two tube holes of the branch tube base material 8 Core pin (cross section) 9 Dice Inner surface 10 Distance between core pin and inner surface of die d 11 Core pin diameter r 12 Tube cross section before cutting operation to connect two tube holes into one tube hole 13 Cutting operation to connect two tube holes into one tube hole Tube section after 14 14 Surface to divide when connecting 2 tube holes into 1 tube hole 15 2 tubes with 1 tube hole Tube section before cutting operation 16 1 tube hole 2 Cutting operation into one tube Cross-section of tube after production 17 Surface for cutting when making two tubes with one tube hole 18 Surface for cutting when connecting multiple tube holes into one tube hole 19 Multiple tubes with one tube hole Surface to be cut into tubes 20 Dividing tube holes opened in the center of a long body to adjust the shape after cutting into multiple tubes having one tube hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 長軸方向の中心線の回りに複数の管孔が
配置された形状の長尺体であって、該長尺体の一端に、
各管孔を分割するように管孔間の壁を切断して形成され
た複数の分岐管を有し、他端には、複数の管孔を1つに
つなぐように管孔間の壁を切断して形成された大孔径の
管孔を有することを特徴とする分岐チューブ。
1. A long body having a shape in which a plurality of tube holes are arranged around a center line in the long axis direction, and at one end of the long body,
It has a plurality of branch pipes formed by cutting the wall between the pipe holes so as to divide each pipe hole, and at the other end, a wall between the pipe holes is formed so as to connect the plurality of pipe holes to one. A branched tube having a large hole tube hole formed by cutting.
【請求項2】 長軸方向の中心線の回りに複数の管孔が
配置された形状の長尺体が、延伸多孔質体である請求項
1記載の分岐チューブ。
2. The branch tube according to claim 1, wherein the elongated body having a shape in which a plurality of tube holes are arranged around a center line in the major axis direction is a stretched porous body.
【請求項3】 (1)長軸方向の中心線の回りに複数の
管孔が配置された形状の長尺体を形成し、次いで、
(2)該長尺体の一端において、各管孔を分割するよう
に管孔間の壁を切断して複数の分岐管を形成し、(3)
他端においては、複数の管孔を1つにつなぐように管孔
間の壁を切断して大孔径の管孔を形成することを特徴と
する分岐チューブの製造方法。
3. (1) Forming a long body having a shape in which a plurality of tube holes are arranged around a center line in the long axis direction, and then,
(2) At one end of the elongated body, a wall between the tube holes is cut so as to divide each tube hole to form a plurality of branch pipes, (3)
At the other end, a method of manufacturing a branch tube, characterized in that a wall between tube holes is cut so as to connect a plurality of tube holes to each other to form a tube hole having a large hole diameter.
【請求項4】 長軸方向の中心線の回りに複数の管孔が
配置された形状の長尺体であって、複数の管孔間の中線
が通る長尺体の外面部分が、長尺体の長軸方向の中心線
に向けてくびれた形状であることを特徴とする分岐チュ
ーブ製造用長尺体。
4. An elongated body having a shape in which a plurality of tube holes are arranged around a center line in the major axis direction, and an outer surface portion of the elongated body through which a midline between the plurality of tube holes passes is a long body. An elongated body for manufacturing a branched tube, which has a shape that is constricted toward the center line of the longitudinal body in the long axis direction.
【請求項5】 長軸方向に単一の管孔をもつ長尺体を複
数本束ねて、その一端において、各長尺体の管壁を接着
により一体化した後、複数の管孔を1つにつなぐように
管孔間の壁を切断して大孔径の管孔を形成することを特
徴とする分岐チューブの製造方法。
5. A plurality of elongated bodies having a single tubular hole in the major axis direction are bundled, and at one end thereof, the tubular walls of the respective elongated bodies are integrated by adhesion, and then the plurality of tubular holes are formed into one. A method for manufacturing a branched tube, characterized in that a wall between tube holes is cut so as to connect two tubes to form a tube hole having a large diameter.
JP30948392A 1992-10-24 1992-10-24 Branch tube and production thereof Pending JPH06134886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30948392A JPH06134886A (en) 1992-10-24 1992-10-24 Branch tube and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30948392A JPH06134886A (en) 1992-10-24 1992-10-24 Branch tube and production thereof

Publications (1)

Publication Number Publication Date
JPH06134886A true JPH06134886A (en) 1994-05-17

Family

ID=17993536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30948392A Pending JPH06134886A (en) 1992-10-24 1992-10-24 Branch tube and production thereof

Country Status (1)

Country Link
JP (1) JPH06134886A (en)

Similar Documents

Publication Publication Date Title
CA1341519C (en) Prosthetic vascular graft
US4208745A (en) Vascular prostheses composed of polytetrafluoroethylene and process for their production
US5425739A (en) Anastomosis stent and stent selection system
US6042666A (en) Prosthesis with in-wall modulation
US4234535A (en) Process for producing porous polytetrafluoroethylene tubings
CA2131902C (en) Controlled porosity expanded polytetrafluoroethylene products and fabrication
JP4818277B2 (en) Vascular grafts with different degrees of expansion
US6287337B1 (en) Multi-stage prosthesis
US4731073A (en) Arterial graft prosthesis
AU764765B2 (en) Prosthesis for blood vessel
GB1577327A (en) Vascular prostheses
JPH06134886A (en) Branch tube and production thereof
JP4466368B2 (en) Stretched polytetrafluoroethylene molded body and method for producing the same
US8226875B2 (en) Extremely thin-walled ePTFE
JP5987138B2 (en) Cylindrical structure and manufacturing method thereof
RU2128024C1 (en) Implanted hollow prosthesis and method of its manufacture
US4822352A (en) Medical tubes with porous textured walls
JP2814415B2 (en) Artificial blood vessel and its manufacturing method
JPH05237141A (en) Artificial blood vessel and its production
GB1577326A (en) Porous polytetrafluoroethylene tubing
JPH0767894A (en) Artificial blood vessel
CN109498209B (en) A kind of adjustable MULTILAYER COMPOSITE artificial blood vessel of compliance
JP2553522B2 (en) Medical tube and method of manufacturing the same
JPH08238263A (en) Artificial blood vessel
JPS61215709A (en) Hollow fiber and production thereof