JP2814415B2 - Artificial blood vessel and its manufacturing method - Google Patents

Artificial blood vessel and its manufacturing method

Info

Publication number
JP2814415B2
JP2814415B2 JP27729191A JP27729191A JP2814415B2 JP 2814415 B2 JP2814415 B2 JP 2814415B2 JP 27729191 A JP27729191 A JP 27729191A JP 27729191 A JP27729191 A JP 27729191A JP 2814415 B2 JP2814415 B2 JP 2814415B2
Authority
JP
Japan
Prior art keywords
tube
fiber
artificial blood
blood vessel
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27729191A
Other languages
Japanese (ja)
Other versions
JPH0584292A (en
Inventor
泰弘 奥田
Original Assignee
株式会社人工血管技術研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社人工血管技術研究センター filed Critical 株式会社人工血管技術研究センター
Priority to JP27729191A priority Critical patent/JP2814415B2/en
Publication of JPH0584292A publication Critical patent/JPH0584292A/en
Application granted granted Critical
Publication of JP2814415B2 publication Critical patent/JP2814415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Molding Of Porous Articles (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、生体組織適合性に優れ
たポリテトラフルオロエチレン製人工血管およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polytetrafluoroethylene artificial blood vessel having excellent biocompatibility and a method for producing the same.

【0002】[0002]

【従来の技術】従来、人工血管として、ポリエステル繊
維編物や織物、ポリテトラフルオロエチレン(以下、P
TFEと略記)チューブが用いられてきた。中でも、延
伸PTFEチューブは、PTFE素材自体が抗血栓性に
優れ、また延伸によって得られる繊維−結節による多孔
質構造が生組織適合性に優れているため、ポリエステ
ル繊維に比較して、より小口径の領域での人工血管とし
て実用化されてきた。しかしながら、延伸PTFEチュ
ーブでも抗血栓性が必ずしも十分であるとはいえず、特
に内径6mm以下の人工血管では十分な開存率は得られ
ていない。
2. Description of the Related Art Conventionally, as artificial blood vessels, knitted or woven fabrics of polyester fiber, polytetrafluoroethylene (hereinafter referred to as P
Tubes (abbreviated as TFE) have been used. Among them, expanded PTFE tubes, PTFE material itself is excellent in antithrombotic property and fiber obtained by drawing - for porous structure due to nodule is excellent in living body tissue compatibility, as compared to polyester fibers, a smaller It has been put to practical use as an artificial blood vessel in the area of caliber. However, an expanded PTFE tube does not always have sufficient antithrombotic properties, and in particular, a sufficient patency rate has not been obtained with an artificial blood vessel having an inner diameter of 6 mm or less.

【0003】人工血管の抗血栓性を改善する方法とし
て、(1)材料自体の抗血栓性を向上させる方法、
(2)人工血管を移植後に、生体組織を誘導し、内膜形
成を起こすことによって抗血栓性を付与する方法、など
が検討されている。しかしながら、(1)の方法におい
ては、相分離構造等の抗血栓性高分子材料や、抗血栓剤
固定化材料の開発が検討されているが、移植後長期にわ
たって良好な抗血栓性を示す材料は得られていない。
(2)の方法においては、移植後の内膜形成を促進する
ために、血管外部からの生体組織や毛細血管の侵入を促
進する方法についての検討がなされているのが現状であ
る。
[0003] As a method for improving the antithrombotic property of an artificial blood vessel, (1) a method for improving the antithrombotic property of the material itself,
(2) A method of inducing a living tissue after transplanting an artificial blood vessel to form an intima to impart antithrombotic properties, and the like are being studied. However, in the method (1), although development of an antithrombotic polymer material having a phase-separated structure or the like and a material for immobilizing an antithrombotic agent has been studied, a material exhibiting good antithrombotic properties for a long time after transplantation has been studied. Has not been obtained.
In the method (2), a method of promoting invasion of a living tissue or a capillary from the outside of a blood vessel in order to promote intimal formation after transplantation has been studied at present.

【0004】従来より使用されてきた延伸PTFE製の
人工血管は、組織侵入性が悪く、移植後に内膜を形成さ
せることは不可能であった。これは、延伸PTFEの多
孔質構造における孔径が生体組織や毛細血管の侵入に対
して十分に大きくなく、物理的に組織が十分に侵入でき
ないことが原因である。したがって、この問題を解決す
るためには、多孔質構造の孔径を、生体組織の侵入に対
して十分に大きくする必要がある。延伸PTFEチュー
ブは、非常に細かい繊維とその繊維により互いに連結さ
れた結節から成る微細な繊維構造を有しているため、孔
径を大きくするためには、延伸率を大きくして繊維を長
くすれば良い。
[0004] The artificial blood vessel made of expanded PTFE, which has been conventionally used, has poor tissue penetration, and it is impossible to form an intima after transplantation. This is because the pore size in the porous structure of expanded PTFE is not large enough for the penetration of living tissue or capillaries, and the tissue cannot physically penetrate sufficiently. Therefore, in order to solve this problem, it is necessary to make the pore diameter of the porous structure sufficiently large for penetration of living tissue. Since the expanded PTFE tube has a fine fiber structure composed of very fine fibers and knots connected to each other by the fibers, in order to increase the pore diameter, it is necessary to increase the drawing ratio and lengthen the fibers. good.

【0005】しかしながら、延伸PTFEチューブにお
いては、延伸によって生じた微細繊維が延伸方向に強く
配向しているため、チューブの管軸方向の引張強度は高
いがチューブ周方向の強度が低く、管軸方向に裂け易い
という欠点を有している。このため、延伸率を上げて繊
維を長くすると、チューブの力学的特性が著しく低下
し、特に、生体を縫合する際に縫合針や縫合糸がチュー
ブを引き裂いてしまったり、さらに長繊維化するとチュ
ーブが管腔構造を保持できなくなり、人工血管としての
使用に耐えられなくなる。
However, in the drawn PTFE tube, since the fine fibers generated by drawing are strongly oriented in the drawing direction, the tensile strength in the tube axis direction of the tube is high, but the strength in the tube circumferential direction is low, and the tube axis direction is low. It has the drawback of easily tearing. For this reason, if the stretching ratio is increased and the fiber is lengthened, the mechanical properties of the tube are significantly reduced.In particular, when a living body is sutured, a suture needle or a suture tears the tube, and when the fiber is further elongated, the tube becomes longer. Cannot maintain the luminal structure, and cannot withstand use as an artificial blood vessel.

【0006】延伸PTFEチューブを長繊維化した時の
力学的特性の低下を解決するための手段として、チュー
ブの壁厚を厚くしたり、チューブ外部をメッシュ等の補
強材で補強する方法などが考えられるが、前者の方法で
は、生体組織侵入性の低下をきたすという問題、後者の
方法では、補強材の剥離等の問題が生じる。
[0006] As means for solving the decrease in mechanical properties when the expanded PTFE tube is made into a long fiber, a method of increasing the wall thickness of the tube or reinforcing the outside of the tube with a reinforcing material such as a mesh is considered. However, the former method causes a problem that the invasiveness of the living tissue is reduced, and the latter method causes a problem such as peeling of the reinforcing material.

【0007】このため、従来の技術では、人工血管に用
いる延伸PTFEチューブの繊維−結節構造における繊
維の長繊維化には限界があり、組織侵入性に優れ、しか
も実用的に十分な力学的特性を有する人工血管を製造す
ることは不可能であった。
[0007] For this reason, in the prior art, there is a limit in elongation of the fiber in the fiber-knot structure of the expanded PTFE tube used for the artificial blood vessel, and it has excellent tissue penetration and sufficient mechanical properties for practical use. It was not possible to produce an artificial blood vessel having

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、生体
組織や毛細血管の侵入性に優れる長繊維構造を有し、か
つ、力学的特性にも優れた一体構造の延伸PTFE製の
人工血管を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an artificial blood vessel made of expanded PTFE having a long-fiber structure excellent in penetration of living tissues and capillaries and having an excellent mechanical property. Is to provide.

【0009】本発明者は、前記従来技術の有する問題点
を克服するために鋭意研究した結果、延伸PTFE多孔
質チューブの内表面と外表面の両面を焼結温度の327
℃以上の温度で加熱し、その際、外表面を内表面より5
0℃から300℃までの範囲の高い温度で加熱して、多
孔質チューブの内面と外面間に連続的に温度勾配を与え
ることにより、繊維−結節構造が、該チューブの内表面
から外表面に至るまで繊維の長い部分と繊維の短い部分
の二つの部分から実質的に構成され、かつ、繊維の短い
部分がチューブの周方向およびチューブ内表面から外表
面まで網目状に分布しているPTFE多孔質チューブの
得られることを見出した。
The inventor of the present invention has made intensive studies to overcome the problems of the prior art, and as a result, it has been found that both the inner surface and the outer surface of the expanded PTFE porous tube have a sintering temperature of 327.
Heat at a temperature of at least 5 ° C, with the outer surface being 5
By heating at a high temperature ranging from 0 ° C to 300 ° C,
Continuous temperature gradient between the inner and outer surfaces of the porous tube
Thus, the fiber-knot structure is substantially composed of two parts, a long part of the fiber and a short part of the fiber, from the inner surface to the outer surface of the tube, and the short part of the fiber is formed of the tube. It has been found that a porous PTFE tube can be obtained which is distributed in the circumferential direction and in a mesh form from the inner surface to the outer surface of the tube.

【0010】このPTFE多孔質チューブは、繊維−結
節構造における長繊維部分が生体組織成分や毛細血管が
人工血管外部から侵入するために十分な繊維長を有し、
短繊維部分はチューブの周方向とチューブ管壁の厚み方
向に網目状に分布した構造をとることにより、強度を維
持する役割を果たす。したがって、生体組織や毛細血管
侵入性に優れ、しかも力学的特性にも優れた一体構造の
延伸PTFE製の人工血管が得られる。本発明は、これ
らの知見に基づいて完成するに至ったものである。
[0010] The PTFE porous tubes, fibers - long fiber portion in nodular structure body tissue component or capillaries has sufficient fiber length in order to either et intrusion artificial blood vessels outside,
The short fiber portion plays a role of maintaining the strength by having a structure distributed in a mesh shape in the circumferential direction of the tube and the thickness direction of the tube tube wall. Therefore, an artificial blood vessel made of expanded PTFE having an integral structure and having excellent penetration into living tissues and capillaries and excellent mechanical properties can be obtained. The present invention has been completed based on these findings.

【0011】[0011]

【課題を解決するための手段】かくして、本発明によれ
ば、繊維と該繊維によって互いに連結された結節とから
なる微細繊維状組織を有するポリテトラフルオロエチレ
ン多孔質チューブからなり、繊維−結節構造が、該チュ
ーブの内表面から外表面に至るまで繊維の長い部分と繊
維の短い部分の二つの部分から実質的に構成され、か
つ、繊維の短い部分がチューブの周方向およびチューブ
内表面から外表面まで網目状に分布していることを特徴
とする人工血管が提供される。
Thus, according to the present invention, there is provided a fiber-knot structure comprising a polytetrafluoroethylene porous tube having a fine fibrous structure composed of fibers and knots connected to each other by the fibers. Is substantially composed of two parts, a long part of the fiber and a short part of the fiber, from the inner surface to the outer surface of the tube, and the short part of the fiber is out of the circumferential direction of the tube and from the inner surface of the tube. There is provided an artificial blood vessel characterized in that the artificial blood vessel is distributed in a mesh form up to the surface.

【0012】また、本発明によれば、液状潤滑剤を含む
未焼結のポリテトラフルオロエチレン混和物を押出し成
形後に少なくとも一方向に延伸して得られる多孔質チュ
ーブの内表面と外表面の両面を焼結温度の327℃以上
の温度で加熱し、その際、外表面を内表面より50℃か
ら300℃までの範囲の高い温度で加熱して、多孔質チ
ューブの内面と外面間に連続的に温度勾配を与えること
を特徴とする人工血管の製造方法が提供される。
Further, according to the present invention, both the inner surface and the outer surface of a porous tube obtained by extruding a green polytetrafluoroethylene mixture containing a liquid lubricant and stretching it in at least one direction after extrusion molding. Is heated at a sintering temperature of 327 ° C. or higher, and at this time, the outer surface is 50 ° C. higher than the inner surface.
To a high temperature in the range of
A method for producing an artificial blood vessel is provided, wherein a temperature gradient is continuously provided between an inner surface and an outer surface of a tube .

【0013】以下、本発明について詳述する。本発明が
対象とする延伸PTFE人工血管は、基本的には特公昭
42−13560号に記載の方法により製造される。本
発明の製造方法では、まずPTFE未燒結粉末に液状潤
滑剤を混和し、ラム式押出し機によってチューブ状に押
出す。このチューブから液状潤滑剤を除去し、あるいは
除去せずして、チューブを少なくとも管軸方向に延伸す
ると、繊維と該繊維によって互いに連結された結節とか
らなる微細繊維状組織を有するPTFE多孔質チューブ
が得られる。このPTFE多孔質チューブを、収縮しな
いように固定した状態で、327℃以上に加熱し、延伸
した状態を燒結すると、強度の向上した多孔質チューブ
が得られるが、本発明では、以下の操作を行なう点に特
徴を有する。
Hereinafter, the present invention will be described in detail. The expanded PTFE artificial blood vessel targeted by the present invention is basically manufactured by the method described in JP-B-42-13560. In the production method of the present invention, first, a liquid lubricant is mixed with the unsintered PTFE powder and extruded into a tube by a ram extruder. When the tube is stretched at least in the tube axis direction with or without removing the liquid lubricant from the tube, a PTFE porous tube having a fine fibrous structure composed of fibers and knots connected to each other by the fibers is obtained. Is obtained. When this PTFE porous tube is heated to 327 ° C. or more in a state where it is fixed so as not to shrink and sintered in a stretched state, a porous tube with improved strength can be obtained. In the present invention, the following operation is performed. It has a feature in performing it.

【0014】すなわち、多孔質チューブ両端を収縮しな
いように固定し、チューブの内表面と外表面の両面を焼
結温度の327℃以上で加熱するが、その際、外表面を
内表面より50℃から300℃、好ましくは100〜2
50℃までの範囲の高い温度で加熱して、多孔質チュー
ブの内面と外面間に連続的に温度勾配を与える。その結
果、多孔質チューブの内表面から外表面に至るまで繊維
−結節構造の再配列が起こり、処理前よりもさらに延伸
されて長繊維化した部分と、処理前より短繊維化した部
分が得られる。
[0014] That is, the porous tube ends fixed to so as not to shrink, but heating the both sides of the inner and outer surfaces of the tube at 327 ° C. or higher sintering temperature, time, the outer surface
50 ° C to 300 ° C from inner surface, preferably 100 to 2
Heat at a high temperature up to 50 ° C to
A temperature gradient is continuously provided between the inner surface and the outer surface of the valve. As a result, rearrangement of the fiber-knot structure occurs from the inner surface to the outer surface of the porous tube, and a portion that is further stretched to be longer than before treatment and a portion that is shorter than before treatment are obtained. Can be

【0015】PTFE多孔質チューブの内外両面を32
7℃以上に加熱し、かつ、両面に温度差を設ける方法と
しては、例えば、ステンレス鋼棒をチューブ内腔に挿入
し、該ステンレス鋼棒により内表面を加熱し、外表面に
は熱風を吹き付けることにより、両面を加熱するととも
に、内外面間に温度差を設けることができる。内表面温
度はPTFEが分解しないように500℃以下に制御す
ることが望ましい。
The inner and outer surfaces of the porous PTFE tube are 32
As a method of heating to 7 ° C. or more and providing a temperature difference on both sides, for example, a stainless steel rod is inserted into the tube lumen, the inner surface is heated by the stainless steel rod, and hot air is blown on the outer surface. This can heat both surfaces and provide a temperature difference between the inner and outer surfaces. It is desirable to control the inner surface temperature to 500 ° C. or lower so that PTFE does not decompose.

【0016】加熱時間は、加熱温度にもよるが、通常、
10〜200秒程度である。また、PTFE多孔質チュ
ーブの両面を327℃以上の温度で加熱しない場合、あ
るいは温度差を50〜300℃の範囲内に制御しない場
合には、長繊維と短繊維からなる前記特定の繊維−結節
構造を形成することができない。
The heating time depends on the heating temperature, but is usually
It is about 10 to 200 seconds. In addition, when both surfaces of the PTFE porous tube are not heated at a temperature of 327 ° C. or more, or when the temperature difference is not controlled within a range of 50 to 300 ° C., the specific fiber-knot consisting of long fibers and short fibers is used. The structure cannot be formed.

【0017】図1は、本発明のPTFE多孔質チューブ
からなる人工血管の内表面における微細構造の略図であ
る。図2は、本発明のPTFE多孔質チューブからなる
人工血管の延伸方向の断面の微細構造の略図である。こ
れらの略図は、いずれもPTFE多孔質チューブの顕微
鏡写真による観察結果に基づいて作成したものである。
1は長繊維部分、2は短繊維部分、3は結節を示し、繊
維の長手方向が延伸方向を示す。
FIG. 1 is a schematic view of the microstructure on the inner surface of an artificial blood vessel comprising a PTFE porous tube of the present invention. FIG. 2 is a schematic diagram of a microstructure of a cross section in a stretching direction of an artificial blood vessel made of a PTFE porous tube of the present invention. Each of these schematic diagrams was created based on the observation result of a micrograph of the PTFE porous tube.
1 indicates a long fiber portion, 2 indicates a short fiber portion, 3 indicates a nodule, and the longitudinal direction of the fiber indicates a stretching direction.

【0018】ところで、特公昭58−1656号には、
延伸方向と垂直方向の強度特性に優れたPTFE多孔質
体を製造する方法が開示されている。該公報に記載の発
明においては、PTFE多孔質体の一部分、例えば、P
TFE多孔質チューブの外側を加熱することにより、各
結節間を結ぶ繊維が切断され、いくつかの結節がより集
まって、加熱面は最終的には数十μmから数mmの孔径
を有する網状の凹凸構造が形成され、その結果、微細繊
維状組織の配向が一方向に強い部分と該方向と垂直方向
に強い部分を有するPTFE多孔質チューブが得られる
というものである。
By the way, in Japanese Patent Publication No. 58-1656,
A method for producing a PTFE porous body having excellent strength properties in the direction perpendicular to the stretching direction is disclosed. In the invention described in the publication, a part of the PTFE porous body, for example, P
By heating the outside of the TFE porous tube, the fibers connecting between the nodules are cut, and some nodules are gathered more and the heating surface finally becomes a net-like having a pore size of several tens μm to several mm. An uneven structure is formed, and as a result, a PTFE porous tube having a portion in which the orientation of the fine fibrous structure is strong in one direction and a portion in which the orientation is strong in a direction perpendicular to the direction is obtained.

【0019】しかしながら、該公報に記載の方法では、
延伸PTFE多孔質体の一部分を加熱するため、該多孔
質体の一方の表面は327℃以上に加熱されるが、他方
の表面は327℃未満であるため、本発明におけるよう
な、PTFE多孔質チューブの内表面から外表面に至る
までの繊維−結節構造の再配列が起きることはなく、し
かも、長繊維部と短繊維部に分かれ、短繊維部分がチュ
ーブの周方向および厚み方向に編目状に分布する構造は
得られない。
However, in the method described in the publication,
One surface of the expanded porous PTFE body is heated to 327 ° C. or higher to heat a part of the expanded PTFE porous body, but the other surface is lower than 327 ° C., so that the PTFE porous body as in the present invention is used. There is no rearrangement of the fiber-knot structure from the inner surface to the outer surface of the tube, and it is divided into long fiber portions and short fiber portions, and the short fiber portions are stitched in the circumferential direction and thickness direction of the tube. structure distribution is not obtained.

【0020】本発明による人工血管においては、長繊維
部分は孔径が大きく気孔率も高いため、細胞等の生体組
織成分や毛細血管が物理的に通過しやすく、移植後速や
かにかつ大量に生体組織が血管壁外部より侵入すること
ができる。こうして速やかにかつ大量に侵入した組織
は、長期にわたって安定な内膜を形成せしめることがで
きるため、本発明による人工血管では、移植後長期間に
わたって良好な開存特性を得ることができる。速やかに
生体組織を侵入せしめるためには、長繊維部分の平均繊
維長は60μm以上であることが必要であるが、好まし
くは100μm以上、より好ましくは150μm以上で
ある。
In the artificial blood vessel according to the present invention, since the long fiber portion has a large pore diameter and a high porosity, it is easy for physical tissue components such as cells and capillaries to physically pass therethrough. Can invade from outside the blood vessel wall. Thus, a tissue that has invaded quickly and in a large amount can form a stable intima over a long period of time, so that the artificial blood vessel according to the present invention can obtain good patency over a long period after transplantation. The average fiber length of the long fiber portion is required to be 60 μm or more, but is preferably 100 μm or more, more preferably 150 μm or more, in order to allow the living tissue to penetrate quickly.

【0021】短繊維で構成される部分は、結節の密度が
高いため強度特性に優れているが、さらに、短繊維部分
がチューブ周方向および管壁の内表面から外表面まで網
目状に連続した構造をとることによって、上述のような
長繊維構造の部分を有していても、チューブとしての構
造を維持し、かつ縫合時に必要な引裂強度や引張強度を
付与することができる。短繊維部分の繊維長は、20μ
m以下であることが好ましい。
The portion composed of short fibers has excellent strength characteristics due to the high knot density, but the short fiber portion is continuous in a mesh shape from the inner surface to the outer surface of the tube in the circumferential direction and the tube wall. By adopting the structure, even if it has the long fiber structure as described above, it is possible to maintain the structure as a tube and to impart necessary tear strength or tensile strength at the time of suturing. The fiber length of the short fiber part is 20μ
m or less.

【0022】以上のような長繊維・短繊維構造を有する
延伸PTFE多孔質チューブは、従来の延伸PTFE多
孔質チューブに比べて柔軟性に富んでおり、コンプライ
アンスは、市販の延伸PTFEチューブより1桁高く、
より生体血管に近いコンプライアンスを有する。このた
め、従来の延伸PTFE人工血管で指摘されている吻合
部での内膜肥厚が起きにくく、長期にわたって安定した
内膜を維持することができる。
The expanded PTFE porous tube having the above-mentioned long fiber / short fiber structure is more flexible than the conventional expanded PTFE porous tube, and the compliance is one order of magnitude higher than that of a commercially available expanded PTFE tube. high,
It has compliance closer to that of living blood vessels. For this reason, the intimal thickening at the anastomotic portion, which is pointed out in the conventional expanded PTFE artificial blood vessel, is unlikely to occur, and a stable intima can be maintained for a long period of time.

【0023】以上記したように、網目状に連続する短繊
維部分によって力学特性を付与することにより、生体組
織や毛細血管侵入性に優れた長繊維構造を有し、しかも
柔軟で、長期にわたって良好な開存性を示し、かつ実用
化に必要な力学特性を有する人工血管を提供することが
できる。
As described above, the mechanical properties are imparted by the short fiber portions which are continuous in a network, so that the fibers have a long fiber structure excellent in penetration into living tissues and capillaries, and are flexible and good for a long time. It is possible to provide an artificial blood vessel which exhibits excellent patency and has mechanical characteristics required for practical use.

【0024】[0024]

【実施例】以下に実施例および比較例を挙げて、本発明
についてさらに具体的に説明するが、本発明は、これら
の実施例のみに限定されるものではない。
EXAMPLES The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0025】なお、物性の測定方法は以下の通りであ
る。 〈平均繊維長〉走査型電子顕微鏡で、結節間距離を測定
した平均値。 〈バブルポイント〉延伸PTFEチューブをイソプロピ
ルアルコールに含浸し、管壁の孔内をイソプロピルアル
コールで充満した後、チューブの内側より徐々に空気圧
を負荷したときに、初めて気泡が出てくる時の圧力を測
定する。 〈漏水圧〉延伸PTFEチューブの内側から徐々に水圧
を負荷したときに、初めて水が管壁から出てくる時の水
圧を測定する。 〈ポロシティ〉120mmHg圧力負荷時の水の透過量
(ml/min.cm2) 〈周方向引張強度〉チューブを円周方向に切り開き、引
張速度100mm/分で引張った時に破断する強さを断
面積で割ったもの。 〈引裂強度〉チューブ端より3mmのところに0.2m
mφの針金を通して引張った時に引裂きの起きる荷重。 〈力学的実用性の可否〉周方向引張強度と引裂強度から
判断した。 〈円周方向コンプライアンス〉チューブを円周方向に切
り開き、引張速度100mm/分での引張弾性率(初期
勾配)の逆数。
The method for measuring physical properties is as follows. <Average fiber length> The average value of the internodal distance measured with a scanning electron microscope. <Bubble point> After the expanded PTFE tube is impregnated with isopropyl alcohol, the inside of the tube wall is filled with isopropyl alcohol, and when air pressure is gradually applied from the inside of the tube, the pressure at which bubbles come out for the first time is reduced. Measure. <Water leak pressure> When the water pressure is gradually applied from the inside of the expanded PTFE tube, the water pressure when water first comes out of the tube wall is measured. <Porosity> Permeation amount of water under a pressure load of 120 mmHg (ml / min.cm 2 ) <Circumferential tensile strength> The cross-sectional area indicates the strength at which the tube breaks when it is cut open in the circumferential direction and pulled at a tensile speed of 100 mm / min. Divided by <Tear strength> 0.2m at 3mm from tube end
The load at which tearing occurs when pulled through a wire of mφ. <Possibility of mechanical practicality> Judgment was made from circumferential tensile strength and tear strength. <Circumferential compliance> The tube is cut open in the circumferential direction, and the reciprocal of the tensile modulus (initial gradient) at a tensile speed of 100 mm / min.

【0026】[実施例1] PTFE粉末(ダイキン工業製、商品名ポリフロンF−
104)100重量部に対して、液状潤滑剤27部を添
加して混和し、加圧予備成形後、ラム押出機で内径1.
5mm、外径2.5mmのチューブ状に押出した。この
チューブから液状潤滑剤を乾燥除去した後、1000%
の延伸倍率で延伸し、このチューブ全体を延伸した状態
のまま390℃に加熱して焼結した。この延伸チューブ
に、外径1.5mmのステンレス鋼棒を挿入し、外表面
側を650℃、内表面側を450℃にて35秒間加熱し
た。
Example 1 PTFE powder (manufactured by Daikin Industries, trade name: Polyflon F-
104) To 100 parts by weight, 27 parts of a liquid lubricant was added and mixed.
It was extruded into a tube having a diameter of 5 mm and an outer diameter of 2.5 mm. After drying and removing the liquid lubricant from this tube, 1000%
, And the tube was heated to 390 ° C. and sintered in the stretched state. A stainless steel rod having an outer diameter of 1.5 mm was inserted into the drawn tube, and the outer surface side was heated at 650 ° C. and the inner surface side at 450 ° C. for 35 seconds.

【0027】得られたチューブの物性の測定結果を表1
に示す。このPTFE多孔質チューブを人工血管とし
て、10週令ラットの腹部大動脈に移植し、内皮細胞の
被覆率、毛細血管の形成状態を2週間後に調査した。そ
の結果、内皮細胞被覆率は55%であり、管壁内は繊維
芽細胞等の生体組織成分により満たされていた。
Table 1 shows the measurement results of the physical properties of the obtained tubes.
Shown in This porous PTFE tube was transplanted into an abdominal aorta of a 10-week-old rat as an artificial blood vessel, and the coverage of endothelial cells and the state of formation of capillaries were examined two weeks later. As a result, the endothelial cell coverage was 55%, and the inside of the tube wall was filled with living tissue components such as fibroblasts.

【0028】[実施例2] PTFE粉末(ポリフロンF−104)100重量部に
対して、液状潤滑剤27部を添加して混和し、加圧予備
成形後、ラム押出機で内径3mm、外径4mmのチュー
ブ状に押出した。このチューブから液状潤滑剤を乾燥除
去した後、1000%の延伸倍率で延伸し、このチュー
ブ全体を延伸した状態のまま390℃に加熱して焼結し
た。この延伸チューブに、外径3mmのステンレス鋼棒
を挿入し、外表面側を680℃、内表面側を460℃に
て70秒間加熱した。得られたチューブの物性の測定結
果を表1に示す。
Example 2 To 100 parts by weight of PTFE powder (Polyflon F-104), 27 parts of a liquid lubricant was added and mixed. After preforming under pressure, the inner diameter was 3 mm and the outer diameter was ram extruder. Extruded into a 4 mm tube. After drying and removing the liquid lubricant from the tube, the tube was stretched at a stretching ratio of 1000%, and the tube was heated to 390 ° C. while being stretched and sintered. A stainless steel rod having an outer diameter of 3 mm was inserted into the drawn tube, and the outer surface side was heated at 680 ° C. and the inner surface side at 460 ° C. for 70 seconds. Table 1 shows the measurement results of the physical properties of the obtained tube.

【0029】[比較例1]PTFE粉末(ポリフロンF
−104)100重量部に対して、液状潤滑剤27部を
添加して混和し、加圧予備成形後、ラム押出機で内径
1.5mm、外径2.5mmのチューブ状に押出した。
このチューブから液状潤滑剤を乾燥除去した後、100
0%の延伸倍率で延伸した。このチューブ全体を延伸し
た状態のまま約390℃に加熱することにより燒結し
た。得られたチューブの物性の測定結果を表1に示す。
このチューブは、強度が低く、管腔構造を維持できない
上に、引裂強度が低いため、人工血管としてラットへの
移植は不可能であった。
Comparative Example 1 PTFE powder (Polyflon F
-104) 27 parts of a liquid lubricant was added to and mixed with 100 parts by weight, and after preforming under pressure, the mixture was extruded with a ram extruder into a tube having an inner diameter of 1.5 mm and an outer diameter of 2.5 mm.
After drying and removing the liquid lubricant from this tube, 100
The film was stretched at a stretch ratio of 0%. The entire tube was sintered by heating it to about 390 ° C. in a stretched state. Table 1 shows the measurement results of the physical properties of the obtained tube.
This tube was low in strength, could not maintain the luminal structure, and had low tear strength, so that it was impossible to implant it into a rat as an artificial blood vessel.

【0030】[比較例2]PTFE粉末(ポリフロンF
−104)100重量部に対して、液状潤滑剤27部を
添加して混和し、加圧予備成形後、ラム押出機で内径
1.5mm、外径2.5mmのチューブ状に押出した。
このチューブから液状潤滑剤を乾燥除去した後、500
%の延伸倍率で延伸した。このチューブ全体を延伸した
状態のまま約390℃に加熱することにより燒結した。
得られたチューブの物性の測定結果を表1に示す。
Comparative Example 2 PTFE powder (Polyflon F
-104) 27 parts of a liquid lubricant was added to and mixed with 100 parts by weight, and after preforming under pressure, the mixture was extruded with a ram extruder into a tube having an inner diameter of 1.5 mm and an outer diameter of 2.5 mm.
After drying and removing the liquid lubricant from this tube, 500
%. The entire tube was sintered by heating it to about 390 ° C. in a stretched state.
Table 1 shows the measurement results of the physical properties of the obtained tube.

【0031】このPTFE多孔質チューブを人工血管と
して10週令ラットの腹部大動脈に移植し、内皮細胞の
被覆率、毛細血管の形成状態を2週間後に調査した。そ
の結果、内皮細胞被覆率は8%と低く、また管壁内への
生体組織成分の侵入はほとんど認められなかった。
This porous PTFE tube was transplanted as an artificial blood vessel into the abdominal aorta of a 10-week-old rat, and the coverage of endothelial cells and the state of formation of capillaries were examined two weeks later. As a result, the endothelial cell coverage was as low as 8%, and almost no invasion of living tissue components into the tube wall was observed.

【0032】[比較例3] PTFE粉末(ポリフロンF−104)100重量部に
対して、液状潤滑剤27部を添加して混和し、加圧予備
成形後、ラム押出機で内径3mm、外径4mmのチュー
ブ状に押出した。このチューブから液状潤滑剤を乾燥除
去した後、1000%の延伸倍率で延伸し、延伸状態で
390℃に加熱して焼結した。この延伸チューブに、外
径3mmのステンレス鋼棒を挿入し、外表面側を600
℃、内表面側を285℃にて65秒間加熱した。得られ
たチューブの物性の測定結果を表1に示す。このチュー
ブは、強度が低く、管腔構造を維持できない上に、引裂
強度が低いため、人工血管としてラットへの移植は不可
能であった。
Comparative Example 3 To 100 parts by weight of PTFE powder (Polyflon F-104), 27 parts of a liquid lubricant was added and mixed. After preforming under pressure, the inside diameter was 3 mm and the outside diameter was ram extruder. Extruded into a 4 mm tube. After drying and removing the liquid lubricant from the tube, the tube was stretched at a stretching ratio of 1000%, and then heated to 390 ° C. in a stretched state and sintered. A stainless steel rod having an outer diameter of 3 mm was inserted into the drawn tube, and the outer surface side was set to 600 mm.
° C, the inner surface side was heated at 285 ° C for 65 seconds. Table 1 shows the measurement results of the physical properties of the obtained tube. This tube was low in strength, could not maintain the luminal structure, and had low tear strength, so that it was impossible to implant it into a rat as an artificial blood vessel.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明のPTFE多孔質チューブからな
る人工血管は、繊維−結節構造が長繊維部分と短繊維部
分とから構成され、長繊維部分は生体組織や毛細血管の
侵入性に優れるため長期にわたって安定な内膜を形成す
ることが可能であり、短繊維部分は結節部分の密度が高
いため強度特性に優れる。この短繊維部分がチューブの
周方向および管壁の内表面から外表面まで網目状に分布
した構造をとることによって、チューブとして必要な力
学特性である引裂強度や引張強度を付与する。そのた
め、人工血管が長繊維構造を有していても、チューブと
しての構造維持が可能であり、また、縫合の際に引裂等
のトラブルを起こすことがない。このように、本発明に
よる人工血管は、従来の技術では達成できなかった生体
組織侵入性、ひいては内膜の長期安定性と力学特性の双
方に優れた人工血管であり、特に従来いかなる材料を用
いても良好な開存特性が得られなかった内径3mm以下
の人工血管として優れた性能を示す。
The artificial blood vessel made of the porous PTFE tube of the present invention has a fiber-knot structure composed of a long fiber portion and a short fiber portion, and the long fiber portion has excellent penetration of living tissue and capillaries. It is possible to form a stable inner membrane over a long period of time, and the short fiber portion has excellent strength characteristics due to the high density of the nodule portion. By providing a structure in which the short fiber portion is distributed in a mesh shape from the inner surface to the outer surface of the tube in the circumferential direction of the tube and the outer surface thereof, it imparts tear strength and tensile strength, which are the mechanical properties required for the tube. . Therefore, even if the artificial blood vessel has a long fiber structure, the structure as a tube can be maintained, and trouble such as tearing does not occur at the time of suturing. As described above, the artificial blood vessel according to the present invention is an artificial blood vessel that is superior in both invasiveness to living tissue and, in addition, both long-term stability and mechanical properties of the intima, which cannot be achieved by the conventional technology. Even when the artificial vascular device has an inner diameter of 3 mm or less, excellent performance cannot be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のチューブ状PTFE多孔質体の内面の
走査型電子顕微鏡写真に基づいて作成した模式図であ
る。
FIG. 1 is a schematic diagram created based on a scanning electron micrograph of the inner surface of a tubular porous PTFE body of the present invention.

【図2】本発明のチューブ状PTFE多孔質体の延伸方
向の断面の走査型電子顕微鏡写真に基づいて作成した模
式図である。
FIG. 2 is a schematic diagram created based on a scanning electron micrograph of a cross section in the stretching direction of the tubular PTFE porous body of the present invention.

【符号の説明】[Explanation of symbols]

1 繊維の長い部分 2 繊維の短い部分 3 結節 1 long part of fiber 2 short part of fiber 3 nodule

フロントページの続き (51)Int.Cl.6 識別記号 FI C08J 9/00 CEW C08J 9/00 CEWA // B29K 27:18 C08L 27:18 Continued on the front page (51) Int.Cl. 6 Identification code FI C08J 9/00 CEW C08J 9/00 CEWA // B29K 27:18 C08L 27:18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊維と該繊維によって互いに連結された
結節とからなる微細繊維状組織を有するポリテトラフル
オロエチレン多孔質チューブからなり、繊維−結節構造
が、該チューブの内表面から外表面に至るまで繊維の長
い部分と繊維の短い部分の二つの部分から実質的に構成
され、かつ、繊維の短い部分がチューブの周方向および
チューブ内表面から外表面まで網目状に分布しているこ
とを特徴とする人工血管。
1. A polytetrafluoroethylene porous tube having a fine fibrous structure composed of fibers and nodes connected to each other by the fibers, wherein a fiber-node structure extends from the inner surface to the outer surface of the tube. The fiber is substantially composed of two parts, a long part of the fiber and a short part of the fiber, and the short part of the fiber is distributed in the circumferential direction of the tube and in a mesh form from the inner surface to the outer surface of the tube. And artificial blood vessels.
【請求項2】 繊維−結節構造における繊維の長い部分
の繊維の平均繊維長が60μm以上で、繊維の短い部分
の繊維の平均繊維長が20μm以下である請求項1記載
の人工血管。
2. The artificial blood vessel according to claim 1, wherein the average length of the fibers in the long part of the fiber in the fiber-knot structure is 60 μm or more, and the average length of the fibers in the short part of the fiber is 20 μm or less.
【請求項3】 液状潤滑剤を含む未焼結のポリテトラフ
ルオロエチレン混和物を押出し成形後に少なくとも一方
向に延伸した後に、327℃以上の温度で加熱して得ら
れる多孔質チューブの内表面と外表面の両面を焼結温度
の327℃以上の温度もう一度加熱し、その際、外表
面を内表面より50℃から300℃までの範囲の高い温
度で加熱して、多孔質チューブの内面と外面間に連続的
に温度勾配を与えることを特徴とする人工血管の製造方
法。
3. An inner surface of a porous tube obtained by extruding an unsintered polytetrafluoroethylene mixture containing a liquid lubricant, stretching in at least one direction after extrusion molding, and heating at a temperature of 327 ° C. or higher. both sides of the outer surface was heated again at 327 ° C. or more temperatures sintering temperature, whereby the outer table
The surface has a higher temperature in the range of 50 ° C to 300 ° C than the inner surface.
Heat between the inner and outer surfaces of the porous tube
A method for producing an artificial blood vessel, wherein a temperature gradient is applied to the artificial blood vessel.
JP27729191A 1991-09-27 1991-09-27 Artificial blood vessel and its manufacturing method Expired - Fee Related JP2814415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27729191A JP2814415B2 (en) 1991-09-27 1991-09-27 Artificial blood vessel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27729191A JP2814415B2 (en) 1991-09-27 1991-09-27 Artificial blood vessel and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0584292A JPH0584292A (en) 1993-04-06
JP2814415B2 true JP2814415B2 (en) 1998-10-22

Family

ID=17581491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27729191A Expired - Fee Related JP2814415B2 (en) 1991-09-27 1991-09-27 Artificial blood vessel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2814415B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1186309B1 (en) * 1999-05-31 2008-03-19 Sumitomo Electric Industries, Ltd. Prosthesis for blood vessel
WO2003093356A1 (en) * 2002-05-02 2003-11-13 Sumitomo Electric Industries, Ltd. Stretched polytetrafluoroethylene moldings and process for production thereof
US7857843B2 (en) * 2004-12-31 2010-12-28 Boston Scientific Scimed, Inc. Differentially expanded vascular graft
US7806922B2 (en) 2004-12-31 2010-10-05 Boston Scientific Scimed, Inc. Sintered ring supported vascular graft
KR102200859B1 (en) * 2018-12-20 2021-01-12 성균관대학교산학협력단 Method for manufacturing cell-laden scaffold for tissue regeneration using cell electrospinning

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152470A (en) * 1985-12-24 1987-07-07 住友電気工業株式会社 Tubular organ prosthetic material
JPH0734818B2 (en) * 1985-12-26 1995-04-19 住友電気工業株式会社 Method for manufacturing tubular organ prosthesis

Also Published As

Publication number Publication date
JPH0584292A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
US4713070A (en) Porous structure of polytetrafluoroethylene and process for production thereof
US4725273A (en) Artificial vessel having excellent patency
US6436135B1 (en) Prosthetic vascular graft
US4475972A (en) Implantable material
US7115220B2 (en) Vascular prosthesis and method for production thereof
US4857069A (en) Artificial vessel and process for preparing the same
Leidner et al. A novel process for the manufacturing of porous grafts: Process description and product evaluation
EP0128501B1 (en) Artificial vessel and process for preparing the same
WO2000072894A1 (en) Prosthesis for blood vessel
JPS6037734B2 (en) Tubular organ prosthesis material and its manufacturing method
JPS62152470A (en) Tubular organ prosthetic material
US4871361A (en) Artificial vessel
JP2814415B2 (en) Artificial blood vessel and its manufacturing method
GB2115776A (en) Implantable material
US4596577A (en) Napped fluororesin materials having continuous pores, and a method of manufacturing the same
EP0057590A2 (en) Napped fluororesin material having continuous pores, and a method of manufacturing the same
EP0275653B1 (en) Vascular prosthesis
JPS6037736B2 (en) Tubular organ prosthetics
JPS61185271A (en) Artificial blood vessel of which compliance and stress-strain curve are similar to live blood vessel and itsproduction
JPS62152467A (en) Production of tubular organ prosthetic material
JPH0262264B2 (en)
JPH05237141A (en) Artificial blood vessel and its production
JPS61238238A (en) Production of artificial blood vessel
JPH0228337B2 (en)
JPS6316261B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees