JPH0734818B2 - Method of manufacturing a tubular organ prosthesis - Google Patents

Method of manufacturing a tubular organ prosthesis


Publication number
JPH0734818B2 JP29584585A JP29584585A JPH0734818B2 JP H0734818 B2 JPH0734818 B2 JP H0734818B2 JP 29584585 A JP29584585 A JP 29584585A JP 29584585 A JP29584585 A JP 29584585A JP H0734818 B2 JPH0734818 B2 JP H0734818B2
Grant status
Patent type
Prior art keywords
tubular organ
outer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Other versions
JPS62152467A (en )
晃一 沖田
茂 浅古
Original Assignee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date



【発明の詳細な説明】 (発明の目的) 本発明はポリテトラフルオロエチレン(以下PTFEと略記する)多孔質チユーブから成る管状臓器補綴材の製造方法に関するもので、チユーブの強度と生体組織結合性の向上を目的とするものである。 DETAILED DESCRIPTION OF THE INVENTION (OBJECT OF THE INVENTION) The present invention (hereinafter abbreviated as PTFE) polytetrafluoroethylene relates to a process for the preparation of the tubular organ prosthesis consisting of porous Chiyubu, strength Chiyubu the body tissue binding it is an object of the present invention to improve.

(従来の技術) 延伸法により製造されたPTFE多孔質チユーブが管状臓器補綴材として、特に人口血管として臨床的に使用し得ることは多く報告されており、従来の編物、織物から成る補綴材より優れたものであるとされている。 As (prior art) PTFE porous Chiyubu tubular organ prosthesis produced by stretching process, in particular are often reported to be used clinically as population vessel, conventional knit, from prosthesis consisting of woven fabric there is a is excellent. 延伸処理を受けたPTFEチユーブは非常に細い繊維とその繊維により互に連結された結節とから成る微細繊維状組織を有しており、この繊維の径は各種延伸処理条件によつて変化するが、上述の編物、織物用の繊維よりもはるかに小さくすることが出来る。 PTFE Chiyubu that received stretching treatment has a fine fibrous structure consisting of very fine fibers and each other connected nodule by the fiber, the diameter of the fibers although by connexion changed to various stretching conditions , above knitting it can be much smaller than the fiber for fabrics. しかもその孔径と気孔率は自由に変化し得るため、例えば人口血管として使用される場合には、柔軟で血栓を生じることもほとんどなく、内腔面に於ける仮性内膜形成性も良好で、周囲の組織への為害性も認められないことから、最も優れた管状臓器補綴材の1つであるとされている。 Moreover since the pore diameter and the porosity can vary freely, for example when used as a population vessels, it is also hardly causing flexible thrombosis, in pseudorabies the film forming the inside surface was good, since no observed for damage of the surrounding tissue, and is to be one of the best tubular organ prosthesis.

(本発明が解決しようとする問題点) しかしこの延伸により製造されたPTFE多孔質チユーブは、管状臓器補綴材として生体と吻合する際に縫合針や縫合糸がチユーブを引裂いてしまう傾向にあることが問題とされている。 PTFE porous Chiyubu produced by (the present invention is to solve problems) but this stretching is that the suture needle and suture during the anastomosis vivo as the tubular organ prosthesis is in the tendency to tear the Chiyubu There has been a problem. この裂けはPTFE多孔質チユーブの管軸方向に起ることが多いが、それは延伸により生じたPTFE PTFE This tearing often occurs in the axial direction of the tube of porous PTFE Chiyubu, it caused by stretching
の微細繊維状組織が管軸方向に強く配向しているためと考えられる。 Microfibrous tissue is considered because it is strongly oriented in the axial direction of the tube. この裂けの問題を解決するためにチユーブの外表面に更にPTFE多孔質テープや他の材料の繊維を螺旋状に巻付けて一体化したものが提案されている。 That the fibers of the further porous PTFE tape or other materials to the outer surface of the Chiyubu To solve this tearing problem was integrated wound spirally has been proposed. それらはチユーブの外表面に管軸周りの配向を持たせて管軸方向の引裂きを防止すうものであるが、本発明の製造方法によれば単一のチユーブ内で管軸方向と管軸周りの配向を共に有する管状臓器補綴材を提供するものである。 Although they are intended to suck prevent tearing of the have not been tube axis orientation around the tube axis to the outer surface of the Chiyubu, single tube axis and the tube axis around within Chiyubu According to the manufacturing method of the present invention there is provided a tubular organ prosthesis having an orientation of both.
即ち、PTFEの繊維状組織が管軸方向に強い配向を有する内表面から管軸周りに強い配向を有する外表面に達する迄管肉内で連続的に変化させることによりチユーブの裂けの問題を解決したものである。 That is, the solution to tearing problems Chiyubu by PTFE fibrous tissue be continuously changed within a pipe wall until it reaches an outer surface having a strong orientation around the tube axis from the inner surface having a strong orientation in the axial direction of the tube one in which the. また従来のPTFE多孔質チユーブでは小さな径に曲げるとチユーブが座屈し、円筒形状を保てないことも実用上の障害となつているが、 The Chiyubu buckles when bent to a small diameter in the conventional PTFE porous Chiyubu, but also summer and fault practical to not keep a cylindrical shape,
本発明の製造方法による管状臓器補綴材はチユーブ外表面の管軸周りの強い配向により座屈し難いという特性をも備えている。 The tubular organ prosthesis according to the manufacturing method of the present invention also has a characteristic that hardly buckled due to the strong orientation around the tube axis of Chiyubu outer surface. 更に従来のPTFE多孔質チユーブでは臓器補綴材として使用するに際して周囲の生体組織との結合性が低い点が問題となつているが、本発明ではチユーブ外表面の平均繊維長を内表面の平均繊維長より大きくすることにより周囲の生体組織の侵入と結合を容易にして器質化を促進するという特徴を上記の特徴に加えて保有する管状臓器補綴材の製造方法を提出するものである。 Furthermore although the conventional PTFE porous Chiyubu point lower binding with the surrounding biological tissue when used as an organ prosthesis is summer and issues the average fiber of the inner surface an average fiber length of Chiyubu outer surface in the present invention in which the characteristic of promoting organized to facilitate binding and entry of surrounding biological tissue submitting a manufacturing method of the tubular organ prosthesis held in addition to the above features by greater than the length.

(発明の構成) 本発明が対象とするPTFE多孔質チユーブの製造方法は基本的には特公昭42−13560に記載の方法により製造される。 PTFE porous Chiyubu method for manufacturing the present invention is applied (the configuration of the invention) is basically produced by the method described in JP-B-42-13560. 先ずPTFE未焼結粉末に液状潤滑剤を混和しラム式押出機によつてチユーブ状に押出す。 First, PTFE unsintered powder and mixed the liquid lubricant to extrude by connexion Chiyubu shaped ram extruder. このチユーブから液状潤滑剤を除去し、あるいは除去しながらチユーブを少なくとも管軸方向に延伸する。 The liquid lubricant was removed from Chiyubu or stretched in at least the tube axis direction Chiyubu while removing. 即ち、管軸方向への延伸のみを行なうか、それと共にあるいは逐次的に径の膨張を行なつてもよい。 That is, whether to only draw in the tube axis direction, therewith or sequentially expansion diameter line of connexion may. 収縮が起らないように固定しながら焼結が開始される温度(以下、焼結温度という)の327 Temperature with fixed such shrinkage does not occur sintering is started (hereinafter, referred to as the sintering temperature) of 327
℃以上に加熱して延伸した構造を焼結固定すると強度の向上したチユーブが得られる。 Improved Chiyubu of the ℃ heated by stretching the structure above sintering fixing strength can be obtained. このPTFE多孔質チユーブは非常に細い繊維とその繊維により互に連結された結節とから成る微細繊維状組織を有しており、その繊維径と長さ、結節の大きさやそれらの数は延伸と焼結の条件により変化させ得るため、得られる多孔質体の孔径と気孔率も自由に決定し得る。 The PTFE porous Chiyubu has a fine fibrous structure consisting of mutually concatenated nodules by very fine fibers and the fibers, fiber diameter and length, size and number of these nodules stretched and since capable of changing the conditions of sintering, even pore diameter and the porosity of the resultant porous body can be determined freely. このチユーブを臓器補綴材として使用するに際し人工血管の場合、平均繊維長が10〜10 For artificial blood vessel upon using this Chiyubu as organ prosthesis, an average fiber length of 10 to 10
0μm、平均孔径が1〜100μm、気孔率が70%以上、チユーブの肉厚が0.3〜1.0mmのものが適当であることが臨床的に確認されている。 0 .mu.m, an average pore diameter of 1 to 100 [mu] m, porosity of 70% or more, it has been confirmed clinically thickness of Chiyubu is appropriately in a 0.3 to 1.0 mm.

上記の方法で得られるPTFE多孔質チユーブは通常PTFEの繊維状組織が管軸方向に強い配向を有しているものであるが、本発明では上記の焼結工程を含めて、加熱温度の異なる少なくとも2つ以上の温度で焼結することを特徴としており、通常の焼結処理、外表面の網状処理、管肉厚方向における構造処理を含む微細繊維状組織を決定する熱処理を行ない、その結果として、外表面における平均繊維長を内表面の平均繊維長より長がくし、さらに外表面の平均結節太さが内表面の平均結節太さよりも大きく、さらに内表面における繊維方向が外表面における繊維方向よりも放射状になるようにすると同時にPTFEの繊維状組織が管軸方向に強い配向を有する内表面から管軸周りに強い配向を有する外表面に達する迄管肉内で連続的に変化した構造とし Although PTFE porous Chiyubu obtained by the above method are those fibrous tissue usually PTFE has a strong orientation in the axial direction of the tube, in the present invention, including the above-mentioned sintering step, different heating temperatures and characterized by sintering at least two temperatures, the normal sintering process, reticulated treatment of the outer surface, and was heat-treated for determining the fine fibrous structure comprising a structural process in the tube thickness direction, as a result as the average fiber length than the length a comb of inner surface an average fiber length in the outer surface, larger than the average nodule diameter of the inner surface average nodule diameter of the outer surface, the fiber direction fiber direction of the outer surface of the inner surface further and continuously altered structure in the pipe wall until it reaches an outer surface having a strong orientation from the inner surface at the same time the PTFE fibrous tissue when set to be radially has a strong orientation in the axial direction of the tube around the tube axis than PTFE多孔質チユーブを管状臓器補綴材として提出するものである。 It is to submit a PTFE porous Chiyubu as a tubular organ prosthesis. チユーブの外表面が網状構造となるまで処理するには、通常の焼結温度よりも少なくとも200℃以上高温度、好ましくは400℃以上の高温度でチユーブ管肉厚に温度勾配が大きく形成される条件で処理する。 The outer surface of the Chiyubu processes until the network is at least 200 ° C. or higher high temperature, preferably a temperature gradient Chiyubu tube wall thickness at high temperatures above 400 ° C. is greater than the normal sintering temperature treated with conditions. その結果チユーブを構成するPTFE繊維状組織は最外層表面から順次微細繊維の切断や融着、結節部分の再延伸や融着が生じ、繊維の直径が増えたり、 Consequently PTFE fibrous tissue that constitutes the Chiyubu cutting and fusion of sequential fine fibers, is re-stretching and fusing of nodules resulting from the outermost surface, or increasing the diameter of the fibers,
繊維長さの大きいものや、結節部分が合体集合により回転楕円体の長軸方向が長く伸びていくのみならずその短軸方向も太くなつていき、さらに全体として綱状構造となつていく。 Fiber length larger ones and the long axis direction is long extending go not only its minor axis direction of the spheroid by coalescence set is nodules also gradually thicker summer, will summer and rope-like structure as a further whole. そして熱処理温度を一定にしてその時間を長くしていくと次第に管肉厚の内部にまで網状構造が進行していく。 The network progresses until the temperature of the heat treatment within gradually tube wall thickness As you increase the time in the constant.

また熱処理温度を高かくしていくと綱状構造が順次微細になつていく。 The rope-like structure when the heat treatment temperature gradually high hiding go summer sequentially finely.

具体的な綱状処理温度としては600℃以上である。 Specific rope form treatment temperature is 600 ° C. or higher. さらに800°以上の温度であることがより好ましい温度範囲となる。 It is more preferred temperature range is further 800 ° or higher. しかしながら2000℃以上の温度になると綱状構造が形成されるもののPTFEの熱分解速度も大きくなるので制御された綱状構造を製作する目的からするとあまり好ましくない。 However not preferable when the purpose of making a controlled rope-like structure because the thermal decomposition rate of the PTFE is also increased although rope-like structure is formed becomes to 2000 ° C. or higher. この結果、綱状構造を製作するに特に適した温度範囲は800℃から1600℃程度の範囲であることが判つた。 As a result, particularly suitable temperature range for fabricating a rope-like structure in the range of about 1600 ° C. from 800 ° C. HanTsuta.

さらにもつ1つの熱処理はPTFEチユーブの厚みを少なくすることと、内表面における繊維状組織を微細化することを兼ねたものであり、具体的にはPTFEチユーブの内径を拡大膨張させる工程である。 One heat treatment with further are those that also functions as the reducing the thickness of the PTFE Chiyubu, to refine the fibrous tissue in the inner surface, in particular a step of expanding the expansion of the inner diameter of the PTFE Chiyubu. この処理温度は通常の焼結処理と同時に行なうことも出来るが、好ましくは通常の焼結温度よりも50℃から200℃の範囲で高温であることである。 This treatment temperature is normal sintering process and can also be carried out simultaneously, is that preferably is a high temperature in the normal range of 200 ° C. from 50 ° C. than the sintering temperature. PTFEチユーブを加熱した直後にチユーブの外周を減圧することによつて連続的な内径膨張を行なうことができる。 The outer periphery of Chiyubu immediately after heating the PTFE Chiyubu can be performed by connexion continuous inner diameter expands to vacuum.

これら三つの熱処理の順番は幾つかの選択できる順番がある。 The order of these three heat treatment is the order in which several can be selected. まず通常の焼結処理を行ない、次いで膨張処理を行ない最後に綱状処理を行なうという組合せが1つである。 First performs normal sintering process, then combining that is performed at the end Tsunajo process performs expansion processing is one. もう1つの順番は焼結を先に行つて直ちに綱状処理を行ない最後に膨張処理を行なう組合せである。 Another order is a combination of performing the last expansion processing performed previously the means pursuant immediately rope-like handle sintering. さらに特別な組合せとしては膨張処理−綱状処理−焼結処理の順番もありうる。 More particular expansion process as a combination - rope-like process - there may be the order of the sintering process. これらの順番によつて平均の繊維長さや結節の大きさが変わつてくる。 Fiber length and the size of the nodule by connexion average in these order is River One to come.

本発明者が種々検討した結果、外表面の平均繊維長さを内表面の平均繊維長さの少なくとも5倍以上にし、また外表面の平均の結節太さを内表面の平均結節太さの少なくとも10倍以上とすることで、生体内に管状臓器補綴材を移植した際の生体組織の侵入と結合を秀れたものにできることが判かり、炉温度の異なる少なくとも2つ以上の温度で焼結する製造方法の優位性が確認できた。 The inventors of the present inventors have made various investigations, and more than at least 5 times the average fiber length of the inner surface an average fiber length of the outer surface, and at least an average nodule diameter of the inner surface an average nodule diameter of the outer surface with 10 times or more, the binding and penetration of living tissue when implanted tubular organ prosthesis in vivo borrowed determine that it is possible to those which soo, sintered at least two or more different temperatures of the furnace temperature superiority of the manufacturing method to be could be confirmed.

さらに好適な繊維構造としては、内表面の平均繊維長が Further suitable fiber structure, the average fiber length of the inner surface
10μm〜100μm、外表面では50μm〜500μmの平均繊維長の範囲であり、また内表面の平均結節太さ0.5μm 10 m - 100 m, a range of the average fiber length of 50μm~500μm the outer surface, the average nodule thickness 0.5μm inner surface
〜5μm、外表面では20μm〜200μmの平均結節太さの範囲、即ち内表面よりも外表面の平均結節太さを40倍以上に大きくした構造である。 5 .mu.m, the outer surface is a structure having an increased average nodule thickness of the outer surface than 40 times than the average nodule diameter in the range, i.e., the inner surface of the 20Myuemu~200myuemu.

さらに好ましいもう1つの繊維構造としては、管肉厚の厚み方向において、外表面の繊維状組織を有する厚みと内表面の繊維状組織を有する厚みとの比が1:1から9:1までの範囲と外表面の繊維状組織を相対的に多くすることである。 Further preferred another fiber structure in the thickness direction of the pipe wall thickness, the ratio of the thickness with a fibrous tissue thickness and inner surface having a fibrous structure of the outer surface 1: 1 to 9: up to 1 range and fibrous tissue of the outer surfaces is that relatively increased. 外表面の繊維状組織が増える程生体組織の侵入が容易となり移植後のき器質化を促進することが出来る。 Invasion of the fibrous tissue increases as the body tissue of the outer surfaces can be promoted easily and will come organized after implantation.

本発明の管状臓器補綴材は諸特性の向上により裂けや座屈の問題を解決したばかりでなく、周囲の生体組織の侵入の容易な空間を設けたことにもなるため生体組織結合性の改善にも寄与するものである。 The tubular organ prosthesis of the present invention not only solves the tearing or buckling problems by improving the properties, improved easy for even become a provided was that space living tissue binding of invasion of surrounding biological tissue also it is intended to contribute.

以上詳述した如く、本発明の管状臓器補綴材は人口血管として非常に有用なものであるが、また人工の食道、気管、胆汁管、尿管、尿道等、他の管状臓器を補綴する際にも用いられるものである。 As described in detail above, when the tubular organ prosthesis of the present invention is is very useful as a population vessels, also the prosthetic artificial esophagus, trachea, bile tract, urinary tract, urethra, etc., the other tubular organs and it is used to.

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明の範囲はこれによつえ限定されるものではない。 The present invention will be described by way of examples in more detail below, but the scope of the present invention is not intended to be Yonkai limited thereto.

実施例1 PTFEフアインパウダー・ポリフロントF−104E(ダイキン工業製)100重量部に対し液状潤滑剤デオベース29重量部を加えて均一に混和し、加圧予備成形後ラム式押出機で内径2.0mm、外径3.5mmのチユーブ状に押出した。 EXAMPLE 1 PTFE off Ain Powder Poly front F-104E (manufactured by Daikin Industries) was added to liquid lubricant Deobesu 29 parts by weight and uniformly mixed relative to 100 parts by weight, the inner diameter 2.0 in a pressurized preforming after ram extruder mm, and extruded into Chiyubu shaped outer diameter 3.5 mm. このチユーブをトリクロロエチレンに浸漬して液状潤滑剤を抽出除去し、次いで約290℃に加熱した状態で管軸方向に500%延伸した。 The Chiyubu a was immersed in trichlorethylene to extract and remove the liquid lubricant and then stretched 500% in the tube axis direction in a state heated to about 290 ° C.. この延伸チユーブを約550℃に加熱し、チユーブ外表面から減圧することによつて内径を3. Heating the stretched Chiyubu about 550 ° C., a by connexion inner diameter to reduced pressure Chiyubu outer surface 3.
0mmに膨張させてPTFE多孔質チユーブを得た。 To obtain a PTFE porous Chiyubu inflate to 0 mm. このチユーブに3.0mm径のステンレス鋼棒を挿入し、両端を固定して800℃で30秒間加熱した。 The Chiyubu Insert the stainless steel rod of 3.0mm diameter, and heated for 30 seconds at a fixed to 800 ° C. both ends. 室温迄冷却してからステンレス鋼棒を抜き、内径3.0mm、外径3.8mm、気孔率70 Remove the stainless steel bar was cooled to room temperature, inner diameter 3.0 mm, outer diameter 3.8 mm, porosity 70
%、内表面の平均繊維長60μm、外表面平均繊維長500 %, Average fiber length 60μm inner surface, an outer surface average fiber length 500
μmのチユーブを得た。 It was obtained Chiyubu of μm. このチユーブの一端から5mmの管壁に0.4mm径のステンレス鋼線を通して輪状とし、管軸方向に50mm/分の速度で引張つた場合に引裂きの起る荷重は3400gであり、通常の焼結を行なつたPTFE多孔質チユーブのその値180gを大幅に上回る値となつた。 This was a ring from one end of Chiyubu the tube wall of 5mm through a stainless steel wire of 0.4mm diameter, load occurring of tearing when One tensile 50 mm / min in the axial direction of the tube is 3400 g, the normal sintering It becomes such a value that exceeds the value 180g row Natsuta PTFE porous Chiyubu significantly.

実施例2 内径3.0mm、外径4.0mmのチユーブ形状に押出し、280℃ Example 2 inner diameter 3.0 mm, extruded into Chiyubu shape of the outer diameter of 4.0 mm, 280 ° C.
で200%の管軸方向延伸し、約560℃でチユーブ外表面を減圧することによつて、内径を4.5mmに膨張させた。 In 200% of the tube axis direction stretching it was expanded Yotsute to depressurize the Chiyubu outer surface at about 560 ° C., the inner diameter 4.5 mm.

このチユーブを収縮しないように固定しながら900℃で1 Fixed while the Chiyubu not to shrink 1 at 900 ° C.
0秒間加熱したところ、気孔率は69%、平均繊維長は内表面で45μm、外表面で400μm、平均の結節太さは、 Was heated 0 seconds, porosity 69%, average fiber length 45μm in the inner surface, 400 [mu] m at the outer surface, nodules thickness of average,
内表面で1.0μm、外表面で220μmであつた。 1.0μm at the inner surface, Atsuta at 220μm at the outer surface. また管肉厚の70%が外表面の繊維状組織であつた。 The 70% of the tube wall thickness Atsuta fibrous tissue of the outer surface.

実施例3 内径2.0mmの多孔性チユーブを実施例1と類似の方法で製作した。 Porous Chiyubu Example 3 internal diameter 2.0mm were fabricated in Example 1 and analogous methods. 330℃の温度で管軸方向に8%/秒の延伸速度で300%延伸し、次いで400℃の温度で焼結した。 330 temperature at a stretching 300% at a stretching rate of 8% / sec in the axial direction of the tube of ° C., and then sintered at a temperature of 400 ° C.. 次いで500℃の温度でチユーブ外周を減圧にすることによつて内径を3.0mmに膨張せしめ、さらに900℃の温度で外表面を綱状処理した。 The Chiyubu periphery at a temperature of then 500 ° C. inflated to 3.0mm and by connexion inner diameter to the reduced pressure, and further rope-like processing an outer surface at a temperature of 900 ° C..

この様にして得た多孔性チユーブは、平均繊維長が内表面で25μm、外表面で350μm、平均の結節太さは内表面で2μm、外表面で200μmであり、また管肉厚において70%が外表面の繊維状組織を有していた。 Porous Chiyubu obtained in this manner has an average fiber length of 25μm at the inner surface, 350 .mu.m in the outer surface, the average of the knot thickness is 2μm in the inner surface is 200μm in the outer surface and 70% in the tube wall thickness but it had a fibrous structure of the outer surface.

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】液状潤滑材を含むポリテトラフルオロエチレン混和物をチューブ状に成形し、該液状潤滑材を除去したのち又は除去しながらチューブの長さ方向に延伸し、次いで膨張工程及び網状処理工程を含む管状臓器補綴材の製造方法であって、前記膨張工程における熱処理温度がポリテトラフルオロエチレンの焼結温度より50℃ 1. A polytetrafluoroethylene blends comprising a liquid lubricant is molded into a tubular shape, while after or removed to remove the liquid lubricant was stretched in the longitudinal direction of the tube, and then the expansion process and network processing a method of manufacturing a tubular organ prosthesis comprising a step, 50 ° C. heat treatment temperature in the expansion step is the sintering temperature of the polytetrafluoroethylene
    以上であり、前記網状処理工程における熱処理温度が前記焼結温度より200℃以上であることを特徴とする管状臓器補綴材の製造方法。 Above, and the manufacturing method of the tubular organ prosthesis, wherein the heat treatment temperature in the mesh process is 200 ° C. or higher than the sintering temperature.
  2. 【請求項2】前記網状処理工程における熱処理温度が前記焼結温度より400℃以上である特許請求の範囲第1項記載の管状臓器補綴材製造方法。 Wherein said reticulated processing heat treatment temperature is tubular organ prosthesis manufacturing method of claim 1 wherein the appended claims is 400 ° C. or higher than the sintering temperature in step.
JP29584585A 1985-12-26 1985-12-26 Method of manufacturing a tubular organ prosthesis Expired - Lifetime JPH0734818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29584585A JPH0734818B2 (en) 1985-12-26 1985-12-26 Method of manufacturing a tubular organ prosthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29584585A JPH0734818B2 (en) 1985-12-26 1985-12-26 Method of manufacturing a tubular organ prosthesis

Publications (2)

Publication Number Publication Date
JPS62152467A true JPS62152467A (en) 1987-07-07
JPH0734818B2 true JPH0734818B2 (en) 1995-04-19



Family Applications (1)

Application Number Title Priority Date Filing Date
JP29584585A Expired - Lifetime JPH0734818B2 (en) 1985-12-26 1985-12-26 Method of manufacturing a tubular organ prosthesis

Country Status (1)

Country Link
JP (1) JPH0734818B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814415B2 (en) * 1991-09-27 1998-10-22 株式会社人工血管技術研究センター Artificial blood vessel and a method of manufacturing the same
JPH10506291A (en) 1994-05-06 1998-06-23 エンドームド・インコーポレーテッド Expandable polytetrafluoroethylene radially
ES2239322T3 (en) 1994-06-27 2005-09-16 Bard Peripheral Vascular, Inc. Polytetrafluoroethylene radially expandable and expandable endovascular stents formed subject.
US20090234329A1 (en) 2005-10-17 2009-09-17 Kaneka Corporation Medical Catheter Tubes and Process for Production Thereof

Also Published As

Publication number Publication date Type
JPS62152467A (en) 1987-07-07 application

Similar Documents

Publication Publication Date Title
US3272204A (en) Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
US3316557A (en) Surgical, vascular prosthesis formed of composite yarns containing both synthetic and animal derivative strands
US6743388B2 (en) Process of making polymer articles
US6423089B1 (en) Vascular endoprosthesis and method
US6974586B2 (en) Supported lattice for cell cultivation
US4345414A (en) Shaping process
US6955661B1 (en) Expandable fluoropolymer device for delivery of therapeutic agents and method of making
US6814753B2 (en) Implantable tubular prosthesis
US5607464A (en) Prosthetic vascular graft with a pleated structure
US4857069A (en) Artificial vessel and process for preparing the same
US6010529A (en) Expandable shielded vessel support
US5716395A (en) Prosthetic vascular graft
US5700287A (en) Prosthetic vascular graft with deflectably secured fibers
US5549664A (en) Artificial blood vessel
US20040199243A1 (en) Filtering device and method for a venous furcation
US6746478B2 (en) Stent formed from encapsulated stent preforms
US6436135B1 (en) Prosthetic vascular graft
US20060216320A1 (en) Composite of support matrix and collagen, and process for producing support substrate and composite
US6428571B1 (en) Self-sealing PTFE vascular graft and manufacturing methods
US3479670A (en) Tubular prosthetic implant having helical thermoplastic wrapping therearound
US20110030885A1 (en) Prosthetic device including electrostatically spun fibrous layer and method for making the same
US5556426A (en) PTFE implantable tubular prostheses with external coil support
US20060129227A1 (en) Auxetic tubular liners
US4234535A (en) Process for producing porous polytetrafluoroethylene tubings
US3337673A (en) Uniformly corrugated prosthesis and process of making same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term