JPH06134653A - Method for machining curved surface symmetrical to axis of revolution - Google Patents

Method for machining curved surface symmetrical to axis of revolution

Info

Publication number
JPH06134653A
JPH06134653A JP28725892A JP28725892A JPH06134653A JP H06134653 A JPH06134653 A JP H06134653A JP 28725892 A JP28725892 A JP 28725892A JP 28725892 A JP28725892 A JP 28725892A JP H06134653 A JPH06134653 A JP H06134653A
Authority
JP
Japan
Prior art keywords
tool
error
shape
machining
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28725892A
Other languages
Japanese (ja)
Inventor
Yukihisa Koizumi
幸久 小泉
Yukio Maeda
幸男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28725892A priority Critical patent/JPH06134653A/en
Publication of JPH06134653A publication Critical patent/JPH06134653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To machine with a high efficiency a curved surface which is excellent in the shape precision and symmetrical to the axis of revolution by modifying the original point of the locus, the radius and the position of the tool based on the results of the shape measurement, and executing the following machining by using the tool while executing a relative movement of the tool along the tool locus to be modified based on these modified values. CONSTITUTION:The error DELTAC when the tool original point is set, the mounting positional error DELTAR of a tool 6, and the original point error DELTAtheta of the tool position are obtained by a computation processing device 17 by using the errors of the shape of the surface to be machined which are measured by an electric displacement gauge and obtained from the shape of the surface to be machined. These values are received by a numerical control device 17, the tool original point, the tool mounting position and the original point of the tool position control are modified, and an objective shape of the surface to be machined can be obtained while an ideal tool locus being described by re-machining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転軸対称な曲面の研
削加工にかかわり、加工面を高精度に加工するのに好適
な加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machining method suitable for highly precisely machining a machined surface, which is involved in grinding a curved surface symmetrical with respect to a rotation axis.

【0002】[0002]

【従来の技術】従来、被加工物に回転軸対称曲面を加工
する場合、前記被加工物の自転軸と工具(たとえば、研
削砥石)が常に被加工面に垂直に当接するように工具の
姿勢を制御する回転中心軸が交差した位置を工具原点と
し、この工具原点からの座標系を用いて数値制御により
前記工具を相対的軌跡上を移動させることにより加工を
行っていた。
2. Description of the Related Art Conventionally, when a rotationally axisymmetric curved surface is machined on a work piece, the attitude of the tool is such that the rotation axis of the work piece and the tool (for example, a grinding wheel) are always in contact with the work surface vertically. The position where the center axis of rotation for controlling is intersected is set as the tool origin, and the coordinate system from this tool origin is used to perform the machining by moving the tool on the relative locus by numerical control.

【0003】しかし、工具原点設定時の誤差や工具半径
の誤差、および工具原点設定時と加工中における工具当
接点の変化(例えば研削砥石軸や研削砥石駆動スピンド
ルの熱膨張および遠心力による振れ回り)により、形状
精度の劣化を起こしていた。
However, the error at the time of setting the tool origin and the error of the tool radius, and the change of the tool contact point at the time of setting the tool origin and during machining (for example, whirling due to thermal expansion and centrifugal force of the grinding wheel shaft or the grinding wheel drive spindle) ) Caused deterioration in shape accuracy.

【0004】この劣化を防止するために、例えば、特開
昭60−114445号公報に記載のように、工具原点
設定時の誤差の一部について考慮しているものもある
が、工具半径の誤差や工具姿勢制御機能の工具原点につ
いて配慮していなかった。
In order to prevent this deterioration, for example, as described in Japanese Patent Laid-Open No. 60-114445, some of the errors at the time of setting the origin of the tool are considered, but the error of the tool radius is considered. We did not consider the origin of the tool or the tool attitude control function.

【0005】なお、特開昭60−114445号公報記
載の方法を適用しない場合には、加工面の形状測定から
得られた加工面形状誤差を加工面回転中心に対する工具
軌跡に修正しこれを繰り返すという方法によっていたの
で、加工に著しく時間を要した。
When the method described in Japanese Patent Laid-Open No. 60-114445 is not applied, the machining surface shape error obtained from the measurement of the machining surface shape is corrected to a tool locus with respect to the machining surface rotation center, and this is repeated. It took a very long time to process it.

【0006】[0006]

【発明が解決しようとする課題】上記したように、回転
軸対称曲面を加工する場合、被加工物の自転軸と工具の
姿勢制御を行なう回転中心軸を交差させ、この位置を半
径方向の工具原点とする。また、このとき被加工物自転
軸上に砥石と被加工物の当接点がある姿勢を工具姿勢制
御機能の工具原点とする。しかしこの工具原点設定時の
誤差により、前記自転軸に対する前記工具の相対的軌跡
の誤差をもたらした。また工具の姿勢制御機能への取付
け誤差により、被加工面の法線方向への削り過ぎ、もし
くは、削り残しが生じた。
As described above, when machining a rotationally axisymmetric curved surface, the rotation axis of the workpiece and the rotation center axis for controlling the attitude of the tool are intersected, and this position is set in the radial direction of the tool. Set as the origin. Further, at this time, the attitude in which the grindstone and the contact point of the workpiece are on the axis of rotation of the workpiece is the tool origin of the tool posture control function. However, the error in setting the tool origin causes an error in the relative trajectory of the tool with respect to the rotation axis. In addition, due to an error in mounting the tool to the attitude control function, too much or uncut part of the surface to be machined was caused in the normal direction.

【0007】上記した特開昭60−114445号公報
記載の従来技術では、工具原点設定時の誤差の一部につ
いては配慮しているものの、工具の姿勢制御機能への取
付け誤差には配慮しておらず、所定の形状精度を得るた
めには、補正に長時間を要し、加工能率が十分なもので
はなかった。
In the prior art described in Japanese Patent Laid-Open No. 60-114445, although some of the errors at the time of setting the tool origin are taken into consideration, the errors in attaching the tool to the attitude control function are taken into consideration. Therefore, in order to obtain a predetermined shape accuracy, it took a long time for the correction, and the working efficiency was not sufficient.

【0008】本発明は、上記した従来技術の問題点を解
決して、被加工物に形状精度の優れた回転軸対称曲面を
高能率に加工することができる。
The present invention can solve the above-mentioned problems of the prior art and efficiently process a rotationally axisymmetric curved surface having excellent shape accuracy on a workpiece.

【0009】[0009]

【課題を解決するための手段】上記問題を解決するため
の本発明にかかわる回転軸対称曲面の加工方法の構成
は、被加工物を自転運動させるとともに、工具姿勢制御
装置に取り付けられた工具を、被加工面に常に垂直に当
接するように工具姿勢を制御しつつ、前記被加工物の自
転軸を工具原点とする所定の工具軌跡に沿って相対移動
させ、前記工具によって前記被加工物に回転軸対称曲面
を加工する方法において、1回の加工を実行した後、被
加工物の加工面形状を測定し、この加工面形状誤差が目
標値以下であれば加工を終了し、目標値以上であれば前
記加工面形状誤差に基づいて工具原点設定誤差、工具の
取付け誤差、工具姿勢の原点設定誤差を演算し、この演
算結果によって工具原点、工具の取付け、工具姿勢原点
を修正し、このように修正した工具軌跡に沿って工具を
相対移動させながら、該工具によって次回の加工を実行
するという操作を繰り返すようにしたものである。
In order to solve the above-mentioned problems, a structure of a method for machining a rotationally axisymmetric curved surface according to the present invention is configured so that a workpiece is rotated and a tool attached to a tool attitude control device is used. , While controlling the tool posture so as to always come into contact with the surface to be machined perpendicularly, the rotation axis of the machined object is relatively moved along a predetermined tool locus with the tool origin, and the machined object is moved by the tool. In the method of machining a rotationally axisymmetric curved surface, after performing machining once, the machining surface shape of the workpiece is measured. If this machining surface shape error is less than the target value, the machining is finished If so, a tool origin setting error, a tool mounting error, and a tool posture origin setting error are calculated based on the machining surface shape error, and the tool origin, the tool mounting, and the tool posture origin are corrected according to the calculation results. So While relatively moving the tool along the modified tool path is obtained by the repeated operations of running the next machining by the tool.

【0010】さらに詳しくは、次の通りである。The details are as follows.

【0011】目標とする回転軸対称曲面の断面形状があ
る関数により与えられたとき、被加工物の自転軸から任
意の距離にある点での加工面形状誤差を、工具原点設定
時の誤差と工具の取付け誤差と工具姿勢の原点設定時の
誤差および前記自転軸からの距離の関数として表す。こ
の関数式に形状測定により求められた各々の測定点にお
ける加工面形状誤差を代入し、重回帰分析法により、工
具原点設定時の誤差と工具の取付け誤差および工具姿勢
原点設定時の誤差を算出する。この計算結果を数値制御
装置へ入力し、工具原点、工具の取付け位置、姿勢制御
の原点を修正したのち、加工を繰り返すことにより目標
とする加工面形状が得られるようにしたものである。
When the target cross-sectional shape of the rotational axis symmetric curved surface is given by a certain function, the machining surface shape error at a point at an arbitrary distance from the rotation axis of the workpiece is referred to as the error at the time of setting the tool origin. It is expressed as a function of the tool mounting error, the error in setting the origin of the tool posture, and the distance from the rotation axis. By substituting the machining surface shape error at each measurement point obtained by the shape measurement into this function formula, the error when setting the tool origin, the tool mounting error, and the error when setting the tool attitude origin are calculated by the multiple regression analysis method. To do. This calculation result is input to the numerical control device to correct the tool origin, the tool attachment position, and the attitude control origin, and then the machining is repeated to obtain the target machined surface shape.

【0012】[0012]

【作用】工具原点設定時の誤差や工具の取付け位置誤差
および工具姿勢制御の原点誤差は、形状精度劣化の大き
な要因であり、極力小さくする必要がある。しかし、工
具例えば研削砥石は、正確に形状を把握することが困難
であり、また加工中の摩耗、熱膨張、振れ回りなどによ
っても誤差が生ずる。そこで例えば電気式変位計で測定
した加工面の形状から求めた加工面形状誤差を用いて、
計算処理装置により、工具原点設定時の誤差、工具の取
付け位置誤差および工具姿勢の原点誤差を求め、これら
を数値制御装置に入力して工具原点、工具取付け位置お
よび工具姿勢制御の原点を修正し、再度加工することに
より理想的な工具軌跡を描かせつつ、目標とする加工面
形状を得ることができる。
The error in setting the tool origin, the tool mounting position error, and the tool attitude control origin error are major factors in the deterioration of the shape accuracy and must be minimized. However, it is difficult to accurately grasp the shape of a tool such as a grinding wheel, and an error occurs due to wear, thermal expansion, whirling, etc. during processing. So, for example, using the machining surface shape error obtained from the shape of the machining surface measured with an electric displacement meter,
The calculation processor calculates the error when setting the tool origin, the tool mounting position error, and the tool orientation origin error, and inputs these to the numerical controller to correct the tool origin, tool mounting position, and tool orientation control origin. By performing the machining again, it is possible to obtain the target machined surface shape while drawing an ideal tool path.

【0013】[0013]

【実施例】以下、本発明を実施例によって、図面を用い
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings.

【0014】図1は、本発明の一実施例にかかわる回転
軸対称曲面の加工方法の加工手順図である。図2は、図
1にかかわる加工方法の実施に使用される加工装置の一
例を示す略示構成図である。図3は、図2における研削
砥石の、工具原点設定時の誤差、工具の取付け誤差、工
具姿勢制御の原点設定誤差を示す断面図である。図4
は、前記誤差と加工面形状の精度劣化の関係を示すXY
平面における模式図である。
FIG. 1 is a processing procedure diagram of a method for processing a rotationally axisymmetric curved surface according to an embodiment of the present invention. FIG. 2 is a schematic configuration diagram showing an example of a processing apparatus used for carrying out the processing method according to FIG. FIG. 3 is a cross-sectional view showing an error in setting the tool origin, a tool mounting error, and an origin setting error in the tool attitude control of the grinding wheel in FIG. Figure 4
Is XY indicating the relationship between the error and the deterioration of the accuracy of the machined surface shape
It is a schematic diagram in a plane.

【0015】この実施例に使用される加工装置は、一般
の2次元(XY面)制御の加工装置であるが、その構成
を図2を用いて説明する。
The processing apparatus used in this embodiment is a general two-dimensional (XY plane) control processing apparatus, the configuration of which will be described with reference to FIG.

【0016】1は加工装置本体であり、この本体上にY
軸テーブル2がY軸方向に任意に移動できるように支承
されている。3はX軸テーブルであり、Y軸テーブル2
上にX軸方向に任意に移動できるように支承されてい
る。4は回転テーブル西手X軸テーブル3上に固定さ
れ、回転テーブル4上にはXYZステージ5が固定され
ている。研削砥石6が自転できるように支承している研
削スピンドル7はX軸、Y軸、Z軸方向に微動調整可能
なXYZステージ5に固定してある。8は被加工物にし
て自転運動できる主軸9に固定され、主軸9は主軸モー
タ10により駆動される。11は数値制御装置にして、
X軸テーブル駆動モータ12、Y軸テーブル駆動モータ
13、回転テーブル駆動モータ14を制御し、研削砥石
をXY平面内の任意の位置で任意の工具姿勢に制御する
ことができる。16は加工面形状を測定することが出来
る電気式変位計であり、この電気式変位計16はアーム
15を介して、Y軸テーブル3に固定されている。17
は計算処理装置であり、この計算処理装置17は前記数
値制御装置11と電気的に接続されている。
Reference numeral 1 denotes a processing apparatus main body, on which Y
The shaft table 2 is supported so as to be movable in the Y-axis direction. 3 is an X-axis table, and Y-axis table 2
It is supported so that it can move freely in the X-axis direction. Numeral 4 is fixed on the rotary table West X-axis table 3, and an XYZ stage 5 is fixed on the rotary table 4. The grinding spindle 7 supporting the grinding wheel 6 so that it can rotate is fixed to an XYZ stage 5 that can be finely adjusted in the X-axis, Y-axis, and Z-axis directions. A spindle 8 is fixed to a spindle 9 that can be rotated as a workpiece, and the spindle 9 is driven by a spindle motor 10. 11 is a numerical controller,
It is possible to control the X-axis table drive motor 12, the Y-axis table drive motor 13, and the rotary table drive motor 14 to control the grinding wheel to any tool posture at any position in the XY plane. Reference numeral 16 is an electric displacement gauge capable of measuring the shape of the machined surface, and this electric displacement gauge 16 is fixed to the Y-axis table 3 via an arm 15. 17
Is a calculation processing device, and the calculation processing device 17 is electrically connected to the numerical control device 11.

【0017】このように構成した加工装置を使用して、
本発明の一実施例にかかわる回転軸対称曲面の加工方法
を、図1、図2を参照しながら説明する。
By using the processing apparatus configured as described above,
A method of processing a rotationally symmetric curved surface according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

【0018】主軸9に被加工物8を取り付ける。この被
加工物8は、加工面形状y=f(x)と近似した形状に粗加
工されているものである。砥石スピンドル7によって研
削砥石6が回転し、主軸モータ10によって主軸9およ
び被加工物8が自転軸のまわりに回転する。
The work piece 8 is attached to the spindle 9. The workpiece 8 is roughly machined into a shape similar to the machined surface shape y = f (x). The grinding wheel 6 rotates the grinding wheel 6, and the spindle motor 10 rotates the spindle 9 and the workpiece 8 around the rotation axis.

【0019】数値制御装置11に、目標とする加工面
形状すなわち回転軸対称曲面y=f(x)、工具原点の座
標、工具姿勢の原点の座標を入力する。計算処理装置1
7には、加工面の形状誤差Δyから工具原点の設定誤差
ΔC、工具の取付け誤差ΔR、および工具姿勢原点の設
定誤差Δθを計算するための誤差計算式(後述する(数
5)式)を入力する(図1のI)。数値制御装置11に
より、前記加工面形状から工具軌跡を算出する(図1の
II)。この工具軌跡を指定するときの原点は、被加工
物8の自転軸と工具姿勢を制御する回転テーブル4の回
転軸が同一YZ平面内にあるときの点である。研削砥石
6は上記回転テーブルの回転軸上に研削砥石6が被加工
物8と当接する点が一致するように取り付けられてい
る。しかし、実際には工具原点における軸の一致や研削
砥石の取付けは必ずしも正確ではなく、誤差をともなっ
ている。
The target machining surface shape, that is, the rotationally axisymmetric curved surface y = f (x), the coordinates of the origin of the tool, and the coordinates of the origin of the tool posture are input to the numerical controller 11. Calculation processing device 1
In FIG. 7, an error calculation formula (equation (5) described later) for calculating a tool origin setting error ΔC, a tool mounting error ΔR, and a tool attitude origin setting error Δθ from the machining surface shape error Δy is shown. Input (I in FIG. 1). The numerical control device 11 calculates a tool trajectory from the machining surface shape (II in FIG. 1). The origin when designating this tool locus is the point when the rotation axis of the workpiece 8 and the rotation axis of the rotary table 4 for controlling the tool posture are in the same YZ plane. The grinding wheel 6 is mounted on the rotary shaft of the rotary table such that the points at which the grinding wheel 6 contacts the workpiece 8 coincide with each other. However, in reality, the alignment of the axes at the tool origin and the attachment of the grinding wheel are not always accurate, and have errors.

【0020】つぎに前記指定された工具軌跡に沿ってX
テーブル3、Yテーブル2が移動し、研削砥石6によっ
て、被加工物8に前記加工面形状が加工されて、1回目
の加工を終了する(図1のIII)。
Next, along the designated tool path, X
The table 3 and the Y table 2 are moved, the grinding surface 6 is used to process the processed surface shape on the workpiece 8, and the first processing is finished (III in FIG. 1).

【0021】ここで電気式変位計10により被加工物4
の回転中心軸、すなわち自転軸を含む平面にて、加工面
形状を測定する(図1のIV)。この測定結果が計算処
理装置17へ入力され、目標とする加工面形状の座標と
の比較により、加工面形状誤差を算出する(図1の
V)。
Here, the workpiece 4 is processed by the electric displacement gauge 10.
The machined surface shape is measured on the rotation center axis of, ie, the plane including the rotation axis (IV in FIG. 1). The measurement result is input to the calculation processing device 17, and the machining surface shape error is calculated by comparison with the coordinates of the target machining surface shape (V in FIG. 1).

【0022】そして、この加工面形状誤差が目標値以下
であるか否かを判断し(図1のVI)、それが目標値以
下であれば加工を完了する。しかし、目標値に達してい
なければ、上記加工面形状誤差から後述する(数5)式
を用いて、工具原点のX軸方向の設定誤差ΔC、工具の
取付け誤差ΔR、および工具姿勢原点の設定誤差Δθを
計算処理装置17によって算出する(図1のVII)。
この計算で求まった誤差ΔC、ΔR、Δθを数値制御装
置11へ入力し、工具原点、工具姿勢原点を修正し(図
1のVIII)たのち、再び工具軌跡の算出(図1のI
I)へ戻って、以後先と同様の操作を繰り返して、加工
面形状が目標値以下になったとき加工を完了する。そし
て、被加工物8を主軸9から取外せば、目標とする回転
軸対称曲面y=f(x)が加工された被加工物が得られる。
Then, it is judged whether or not the machining surface shape error is equal to or less than the target value (VI in FIG. 1), and if it is less than the target value, the machining is completed. However, if the target value is not reached, the setting error ΔC in the X-axis direction of the tool origin, the tool mounting error ΔR, and the tool attitude origin setting are made from the above-mentioned machining surface shape error using the equation (5) described later. The error Δθ is calculated by the calculation processing device 17 (VII in FIG. 1).
The errors ΔC, ΔR, and Δθ obtained by this calculation are input to the numerical controller 11 to correct the tool origin and the tool attitude origin (VIII in FIG. 1), and then the tool path is calculated again (I in FIG. 1).
After returning to I), the same operation as above is repeated, and when the processed surface shape becomes equal to or less than the target value, the processing is completed. Then, by removing the work piece 8 from the main shaft 9, a work piece having a target rotationally axisymmetric curved surface y = f (x) is obtained.

【0023】以上が加工方法の手順である。次に前記誤
差計算式((数5)式)の詳細を、図3、図4を用いて
説明する。図3は、被加工物8に対して研削砥石6が図
示の位置で工具原点を設定したときの工具原点の設定誤
差ΔC(X軸方向)、工具の取付け誤差ΔR,および工
具姿勢の原点設定誤差Δθを示したものであり、18は
被加工物の自転軸すなわち回転中心、19は回転テーブ
ル4の回転中心軸、20は研削砥石6と被加工物8の当
接点である。理想的には研削砥石6と被加工物8の当接
点20が、回転テーブル4の回転中心軸19の上にあ
り、かつ回転テーブル4の回転中心軸19が被加工物の
自転軸18の上にある。
The above is the procedure of the processing method. Next, details of the error calculation formula (Formula 5) will be described with reference to FIGS. FIG. 3 shows the setting error ΔC (X-axis direction) of the tool origin, the tool mounting error ΔR, and the origin setting of the tool posture when the grinding wheel 6 sets the tool origin at the position shown in the figure with respect to the workpiece 8. The error .DELTA..theta. Is shown, where 18 is the rotation axis of the workpiece, that is, the rotation center, 19 is the rotation center axis of the rotary table 4, and 20 is the contact point between the grinding wheel 6 and the workpiece 8. Ideally, the contact point 20 between the grinding wheel 6 and the workpiece 8 is on the rotation center axis 19 of the rotary table 4, and the rotation center axis 19 of the rotary table 4 is on the rotation axis 18 of the workpiece. It is in.

【0024】図4には、前記誤差と加工面形状の精度劣
化の関係を示すXY平面における模式図を示す。23は
目標とする加工面形状y=f(x)、21はこれを加工す
る理想的な研削砥石である。しかし、工具原点の設定誤
差ΔC(X軸方向)、工具の取付け誤差ΔR,および工
具姿勢の原点設定誤差Δθがあるので、研削砥石の位置
は22となりこれにより加工される面形状は24とな
る。目標とする加工面形状23は、y=f(x)で表され
るとすれば、被加工物の回転中心18(図4ではY軸に
一致)からX軸方向への距離xiにおける加工面形状誤
差Δyiは、幾何学的手法により工具原点の設定誤差Δ
C(X軸方向)、工具の取付け誤差ΔR、および工具姿
勢の原点設定誤差Δθに起因した砥石軸方向への位置誤
差ΔEを用いて次の(数1)式で表される。
FIG. 4 is a schematic diagram on the XY plane showing the relationship between the above-mentioned error and the deterioration in accuracy of the machined surface shape. Reference numeral 23 is a target processed surface shape y = f (x), and 21 is an ideal grinding wheel for processing this. However, since there is a tool origin setting error ΔC (X axis direction), a tool mounting error ΔR, and a tool attitude origin setting error Δθ, the position of the grinding wheel is 22 and the surface shape machined by this is 24. . If the target machining surface shape 23 is represented by y = f (x), machining at a distance x i from the rotation center 18 of the workpiece (corresponding to the Y axis in FIG. 4) in the X axis direction. The surface shape error Δy i is a tool origin setting error Δ by a geometric method.
C (X axis direction), tool mounting error ΔR, and position error ΔE in the grindstone axis direction due to the origin setting error Δθ of the tool attitude are expressed by the following (Equation 1).

【0025】[0025]

【数1】 [Equation 1]

【0026】ただし、θiは回転中心からX軸方向への
距離xiにおける、目標とする加工面形状23の接線が
X軸となす角度である。また、θiとy=f(x)の一次
導関数y'=f'(x)の間には、次の(数2)式が成立す
る。
However, θ i is the angle formed by the tangent line of the target machined surface shape 23 to the X axis at the distance x i from the center of rotation in the X axis direction. Further, the following expression (Formula 2) is established between θ i and the first derivative y ′ = f ′ (x) of y = f (x).

【0027】[0027]

【数2】 [Equation 2]

【0028】そこで(数1)式は(数3)式の形に置換
できる。
Therefore, the formula (1) can be replaced with the form of the formula (3).

【0029】[0029]

【数3】 [Equation 3]

【0030】よってTherefore

【0031】[0031]

【数4】 [Equation 4]

【0032】(数4)式より工具原点の設定誤差ΔC、
工具の取付け誤差ΔRおよび工具の位置誤差ΔEは重回
帰分析法により、次の行列式(数5)式から求めること
ができる。
From the equation (4), the tool origin setting error ΔC,
The tool mounting error ΔR and the tool position error ΔE can be obtained from the following determinant (Equation 5) by the multiple regression analysis method.

【0033】[0033]

【数5】 [Equation 5]

【0034】ただし、nは測定点の数であり、理論的に
は3個以上であるが、30個以上が好ましい。
However, n is the number of measurement points, which is theoretically 3 or more, preferably 30 or more.

【0035】このようにして工具原点の設定誤差ΔC、
工具の取付け誤差ΔRおよび砥石軸方向への位置誤差Δ
Eが求められ、これを用いて工具姿勢の原点設定誤差Δ
θと工具姿勢を修正した後の工具の取付け誤差ΔR'
は、幾何学的に(数6)式、(数7)式で求められる。
In this way, the tool origin setting error ΔC,
Tool mounting error ΔR and position error in the grindstone axis direction Δ
E is obtained, and using this, the origin setting error Δ of the tool posture
Tool mounting error ΔR 'after correcting θ and tool attitude
Is geometrically determined by the equations (6) and (7).

【0036】[0036]

【数6】 [Equation 6]

【0037】[0037]

【数7】 [Equation 7]

【0038】このようにして加工面形状誤差の測定結果
Δyiを代入すれば工具原点の設定誤差ΔC、工具の取
付け誤差ΔR'、および工具姿勢の原点設定誤差Δθを
求めることができる。
By substituting the measurement result Δy i of the machining surface shape error in this way, the tool origin setting error ΔC, the tool mounting error ΔR ′, and the tool posture origin setting error Δθ can be obtained.

【0039】具体例を示す。被加工物8は超硬合金K0
5製の直径30mmの素形材であり、この被加工物8を
主軸9で50r/minで回転させ、Y軸テーブル2、
X軸テーブル3を用いて、工具を0.5mm/minの
速度で移動させながら、ダイヤモンド電着砥石400番
の研削工具6(回転数18000r/min)により、
次の(数8)式で表される非球面の回転軸対称曲面を加
工した。
A specific example will be shown. Workpiece 8 is cemented carbide K0
5 is a raw material having a diameter of 30 mm, and the workpiece 8 is rotated at 50 r / min by the main shaft 9, and the Y-axis table 2,
While moving the tool at a speed of 0.5 mm / min using the X-axis table 3, the diamond electrodeposition grindstone No. 400 grinding tool 6 (rotation speed 18000 r / min)
A rotationally axisymmetric curved surface of an aspherical surface represented by the following (Equation 8) was processed.

【0040】[0040]

【数8】y=Cx2/(1+√1−(K+1)C22
+A44+A66+A88+A1010 ただし、C=3.2504×10~2 K=−5.0503×10~14=−6.8765×10~66=3.3117399×10~98=−3.8984728×10~1110=−1.314145×10~13 −14≦y≦14 工具原点、工具取付け位置および工具姿勢原点を一度修
正して災禍工を行なったところ、形状精度は±0.2μ
m、加工時間は約12時間であった。
Y = Cx 2 / (1 + √1− (K + 1) C 2 y 2 )
+ A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 However, C = 3.2504 × 10 to 2 K = −5.0503 × 10 to 1 A 4 = −6.8765 × 10 to 6 A 6 = 3.3117399 × 10 to 9 A 8 = −3.8984728 × 10 to 11 A 10 = −1.314145 × 10 to 13 −14 ≦ y ≦ 14 Tool origin, tool mounting position and tool attitude origin are once corrected. The accuracy of the shape is ± 0.2μ.
m, the processing time was about 12 hours.

【0041】これにたいして、従来の加工方法(補正回
数は3回)によって加工したところ、形状精度は±1μ
m、加工時間は約32時間であった。
On the other hand, when the conventional processing method (the number of corrections was 3 times) was applied, the shape accuracy was ± 1 μm.
m, the processing time was about 32 hours.

【0042】以上説明した実施例に選れば、次の効果が
ある。回転軸対称曲面の加工精度が向上する、加工
能率が従来に比べて60%以上向上する。なお上記実施
例においては工具として研削砥石を使用した場合につい
て説明したが、他の工具、たとえば切削バイトを使用し
ても切削加工を行なう場合にも、本発明を適用できる。
The following effects can be obtained by selecting the embodiment described above. The processing accuracy of the rotationally symmetric curved surface is improved, and the processing efficiency is improved by 60% or more as compared with the conventional one. In the above embodiments, the case where the grinding wheel is used as the tool has been described, but the present invention can be applied to the case where the cutting is performed by using another tool, for example, a cutting tool.

【0043】[0043]

【発明の効果】以上詳細に説明したように本発明によれ
ば、被加工物に形状精度の優れた回転軸対称曲面を、効
能率に加工することができる回転軸対称曲面の加工方法
を提供することができる。
As described in detail above, according to the present invention, there is provided a method of processing a rotationally symmetric curved surface capable of efficiently processing a rotationally symmetric curved surface having excellent shape accuracy on a workpiece. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかわる回転軸対称曲面の
加工方法の加工手順図である。
FIG. 1 is a processing procedure diagram of a method of processing a rotationally axisymmetric curved surface according to an embodiment of the present invention.

【図2】図1にかかわる加工方法の実施に使用される加
工装置の一例を示す略示構成図である。
FIG. 2 is a schematic configuration diagram showing an example of a processing apparatus used to carry out the processing method according to FIG.

【図3】図2における研削砥石の、工具原点設定時の誤
差、工具の取付け誤差、工具姿勢制御の原点設定誤差を
示す断面図である。
FIG. 3 is a cross-sectional view showing an error in setting a tool origin, a tool mounting error, and a tool attitude control origin setting error of the grinding wheel in FIG.

【図4】前記誤差と加工面形状の精度劣化の関係を示す
XY平面における模式図である。
FIG. 4 is a schematic diagram on an XY plane showing a relationship between the error and deterioration in accuracy of a machined surface shape.

【符号の説明】[Explanation of symbols]

1…加工装置本体、 2…Y軸テーブル、 3…X軸テーブル、 4…回転テーブル、 5…XYZステージ、 6…研削砥石、 7…研削スピンドル、 8…被加工物、 9…主軸、 10…主軸モータ、 11…数値制御装置にして、 12…X軸テーブル駆動モータ、 13…Y軸テーブル駆動モータ、 14…回転テーブル駆動モータ、 15…アーム、 16…電気式変位計、 17…計算処理装置、 18…被加工物の自転軸、 19…回転テーブル4の回転中心軸、 20…研削砥石6と被加工物8の当接点、 21…理想的な研削砥石、 22…実際の研削砥石の位置、 23…目標とする加工面形状、 24…実際に加工される面形状。 1 ... Machining apparatus main body, 2 ... Y-axis table, 3 ... X-axis table, 4 ... Rotating table, 5 ... XYZ stage, 6 ... Grinding grindstone, 7 ... Grinding spindle, 8 ... Workpiece, 9 ... Spindle, 10 ... Spindle motor, 11 ... Numerical control device, 12 ... X-axis table drive motor, 13 ... Y-axis table drive motor, 14 ... Rotation table drive motor, 15 ... Arm, 16 ... Electric displacement meter, 17 ... Calculation processing device , 18: rotation axis of the work piece, 19: center axis of rotation of the rotary table 4, 20: contact point between the grinding wheel 6 and the work piece 21, 21: ideal grinding wheel, 22: actual position of the grinding wheel , 23 ... Target processed surface shape, 24 ... Actually processed surface shape.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被加工物を自転運動させ、被加工物の自転
軸に対して工具が相対軌跡上を移動することにより、回
転軸対称の面を加工する工作機械において、工具軌跡を
数値制御できる数値制御手段と、工具を目標とする加工
面形状に対し常に垂直に当接させる工具姿勢制御手段を
有し、被加工物の加工形状を測定する形状検出手段と、
該検出手段から得られたデ−タをもとに被加工物の形状
誤差および工具設定時の誤差を求める演算手段を設け、
1回の加工を実行したのち加工面形状を測定し、この形
状測定結果に基づいて工具軌跡の原点、工具半径、工具
姿勢を修正し、この修正値に基づいて修正した工具軌跡
に沿って工具を相対移動させながら、該工具によって次
回の加工を実行することを特徴とする回転軸対称曲面の
加工方法。
1. A machine tool that rotates a rotationally symmetrical surface by rotating a workpiece and causing the tool to move on a relative trajectory with respect to the axis of rotation of the workpiece, thereby numerically controlling the tool trajectory. A numerical control means capable of, and a tool attitude control means for constantly contacting the tool perpendicularly to the target machining surface shape, shape detecting means for measuring the machining shape of the workpiece,
Provided is arithmetic means for obtaining the shape error of the workpiece and the error at the time of tool setting based on the data obtained from the detecting means,
After performing the machining once, measure the machining surface shape, correct the origin of the tool locus, the tool radius, and the tool posture based on this shape measurement result, and perform the tool along the modified tool locus based on these modified values. A method for processing a rotationally axisymmetric curved surface, characterized in that the next processing is executed by the tool while relatively moving.
JP28725892A 1992-10-26 1992-10-26 Method for machining curved surface symmetrical to axis of revolution Pending JPH06134653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28725892A JPH06134653A (en) 1992-10-26 1992-10-26 Method for machining curved surface symmetrical to axis of revolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28725892A JPH06134653A (en) 1992-10-26 1992-10-26 Method for machining curved surface symmetrical to axis of revolution

Publications (1)

Publication Number Publication Date
JPH06134653A true JPH06134653A (en) 1994-05-17

Family

ID=17715076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28725892A Pending JPH06134653A (en) 1992-10-26 1992-10-26 Method for machining curved surface symmetrical to axis of revolution

Country Status (1)

Country Link
JP (1) JPH06134653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528555A (en) * 2010-12-15 2012-07-04 上海工程技术大学 Geometry and mechanics integrated optimization information processing method of interference-free tool path on complex curved surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528555A (en) * 2010-12-15 2012-07-04 上海工程技术大学 Geometry and mechanics integrated optimization information processing method of interference-free tool path on complex curved surface

Similar Documents

Publication Publication Date Title
CN113518690B (en) Cutting device and contact position determination program
JPS6033006A (en) Truing device for cylindrical grinding wheel
US20100280650A1 (en) Machining apparatus and machining method
JPH07285069A (en) Automatic taper removal polishing method and device of wafer in sheet type polishing
JP2849387B2 (en) Method and apparatus for grinding a workpiece with a conductive grinding tool
JPH0253557A (en) Method and device for working non-spherical body
JPS60114457A (en) Spherical face forming grinder
JPH06134653A (en) Method for machining curved surface symmetrical to axis of revolution
JPH05293743A (en) Machining method for rotary shaft symmetrical curved surface
JP2708752B2 (en) Machining method of rotationally symmetric curved surface
JPH07136903A (en) Free curved surface machining method
JP5154884B2 (en) Continuous lens processing method
JPH11245152A (en) Polishing device
JP3613802B2 (en) How to set bytes
CN107942930B (en) Method for bevel edge machining based on five-axis numerical control system
JP4187849B2 (en) Disc-shaped tool control method and tool dressing machine
JP3777825B2 (en) Precision grinding machine and grinding wheel radius measurement method
JPS6234765A (en) Machining for non-cylindrical workpiece
JP2005122332A (en) Free curved surface machining device and free curved surface machining method
JPS61156022A (en) Automatic spectacle lens grinder
JP3920995B2 (en) Crankshaft processing equipment
JPS61241055A (en) Precision grinding device
JP3686196B2 (en) Method for creating spherical surface of optical member
JPH07164314A (en) Grinding wheel dimension measuring method and device in grinding machine
JPH0445292B2 (en)