JPH0613408B2 - Method of manufacturing active formulations - Google Patents

Method of manufacturing active formulations

Info

Publication number
JPH0613408B2
JPH0613408B2 JP2085947A JP8594790A JPH0613408B2 JP H0613408 B2 JPH0613408 B2 JP H0613408B2 JP 2085947 A JP2085947 A JP 2085947A JP 8594790 A JP8594790 A JP 8594790A JP H0613408 B2 JPH0613408 B2 JP H0613408B2
Authority
JP
Japan
Prior art keywords
solution
iron
active
active substance
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2085947A
Other languages
Japanese (ja)
Other versions
JPH03205318A (en
Inventor
昭治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AI BII II JUGEN
Original Assignee
AI BII II JUGEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP59195287A external-priority patent/JPS6172627A/en
Application filed by AI BII II JUGEN filed Critical AI BII II JUGEN
Priority to JP2085947A priority Critical patent/JPH0613408B2/en
Publication of JPH03205318A publication Critical patent/JPH03205318A/en
Publication of JPH0613408B2 publication Critical patent/JPH0613408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Iron (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は防菌、防黴、廃水処理、石油改質および繊維、
プラスチック製品等の帯電防止剤等の広範囲な用途に高
度の有用性をもつ活性配合物の製造法に関するものであ
るり、該活性配合物は二価三価鉄塩と推定される活性物
質と、亜鉛化合物とからなる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to antibacterial, antifungal, wastewater treatment, petroleum reforming and fiber,
The present invention relates to a method for producing an active composition having a high degree of utility in a wide range of applications such as antistatic agents for plastic products, the active composition comprising an active substance presumed to be a divalent and trivalent iron salt, It consists of a zinc compound.

二価三価鉄塩として公知のものは例えばFe3Cl7・xH2
OあるいはFe3Cl8・xH2O等があるが、これら二価
三価鉄塩は二価鉄と三価鉄との錯塩であると考えられて
いる。そしてこれら二価三価鉄塩は従来では二価鉄にも
とずく吸着作用が認められていた程度であり特に有用な
ものとは認められていなかった。
Known divalent and trivalent iron salts are, for example, Fe 3 Cl 7 .xH 2
O or Fe 3 Cl 8 · xH 2 O and the like are present, but these divalent and trivalent iron salts are considered to be complex salts of divalent iron and trivalent iron. Further, these divalent and trivalent iron salts have so far been found to have an adsorbing action based on divalent iron, and have not been recognized to be particularly useful.

しかしながら本発明者はこれら二価三価鉄塩には生物活
性作用、イオン化抑制作用等の極めて興味ある作用が存
在するという驚くべき事実を発見し、このような作用は
特に新規な二価三価鉄塩であるFe2Cl5と推定される活
性物質において顕著であり、そして本活性物質に亜鉛化
合物を配合した時には本活性物質は安定化され、その作
用は更に顕著になることを確認し、本発明を完成したの
である。
However, the present inventors have discovered the surprising fact that these divalent and trivalent iron salts have extremely interesting actions such as biologically active action and ionization-inhibiting action, and such action is particularly novel. It was confirmed that it is remarkable in the active substance presumed to be Fe 2 Cl 5 which is an iron salt, and that when this active substance is mixed with a zinc compound, the active substance is stabilized and its action becomes more remarkable, The present invention has been completed.

本発明を以下に詳細に説明する。The present invention is described in detail below.

本発明の活性物質はFeCl2とFeCl3との1:1当
量の単なる混合物ではなく複合体であると思われ、塩化
第二鉄より下記のプロセスで製造される。
The active substance of the present invention appears to be a complex rather than a mere 1: 1 equivalent mixture of FeCl 2 and FeCl 3 , prepared from ferric chloride by the following process.

塩化第二鉄をカセイソーダ水溶液に溶解した後塩酸で中
和し、濃縮して得られた結晶をイソプロパノール−水混
合液に溶解し、該溶液を過後濃縮して本活性物質の結
晶を得る。
Ferric chloride is dissolved in an aqueous caustic soda solution, neutralized with hydrochloric acid, concentrated, and the obtained crystals are dissolved in an isopropanol-water mixed solution, and the solution is concentrated after excess to obtain crystals of the active substance.

本発明に用いられる亜鉛化合物とは、ZnCl2、Zn
SO4、(CH3COO)2Zn、ZnO、Zn(OH)2等の
亜鉛の無機酸もしくは有機酸の塩類、水酸化物、酸化物
等の化合物である。
The zinc compound used in the present invention means ZnCl 2 , Zn
Compounds such as salts of inorganic or organic acids of zinc such as SO 4 , (CH 3 COO) 2 Zn, ZnO and Zn (OH) 2 , hydroxides and oxides.

本発明の活性配合物を得る更に望ましい方法は上記の方
法のようにいったん本活性物質を製造してから配合物を
調製するかわりに本活性物質を製造する際に上記亜鉛化
合物を存在せしめておいて一段階で本発明の活性配合物
を得る方法である。このような方法の一例を以下に示
す。
A more desirable method of obtaining the active formulation of the present invention is to allow the zinc compound to be present in the production of the active substance instead of once preparing the active substance and then preparing the formulation as in the above method. It is a method of obtaining the active composition of the present invention in one step. An example of such a method is shown below.

塩化第二鉄をカセイソーダ水溶液に溶かした後更に塩化
亜鉛を該溶液に溶解させた後塩酸で中和し、濃縮して得
られた結晶をメタノールに溶かし、該溶液を過後濃縮
して本発明の活性配合物を得る。上記方法によって得ら
れた本発明の活性配合物は更にピリジン洗浄後エタノー
ルで再結晶することにより精製される。
After dissolving ferric chloride in a caustic soda aqueous solution, further dissolving zinc chloride in the solution, neutralizing the mixture with hydrochloric acid, and concentrating, the resulting crystals are dissolved in methanol, and the solution is concentrated after excessively An active formulation is obtained. The active formulation according to the invention obtained by the above process is further purified by washing with pyridine and recrystallisation with ethanol.

本発明の活性配合物は、単独もしくは複合体として前記
したような広範囲な用途に用いられる。複合体とする場
合には本発明の活性配合物には更に付加物が配される。
上記付加物としては金属、植物繊維、化学製品等の広範
囲な物質が適用され、上記付加物は夫々の用途に応じて
適宜選択される。
The active formulations according to the invention are used in a wide variety of applications such as those mentioned above, either alone or as a complex. In the case of a complex, the active formulation according to the invention is additionally provided with an adduct.
A wide range of substances such as metals, vegetable fibers, and chemical products are applied as the above-mentioned additive, and the above-mentioned additive is appropriately selected according to each application.

更に本発明においては本発明の活性配合物により処理さ
れた金属が、本発明の活性配合物の有する作用を更に増
幅あるいは改変した状態で保有するに至ると言う事実が
見出された。上記本発明の活性配合物により処理される
金属としては鉄、銅、アルミニウム等がある。該金属を
本発明の活性配合物によって処理するには該金属の粉末
状、粒状、リボン状等の細片を本発明の活性配合物に浸
漬した後該金属を該水溶液から分離する。該処理におい
て、炭素、あるいは珪酸塩、酸化珪素等の珪素化合物、
あるいはゼオライト、川砂等の珪素含有物質を存在させ
ると処理効果が増強される。
Furthermore, it has been found in the present invention that the metal treated with the active formulation of the invention retains the action of the active formulation of the invention in a further amplified or modified state. Metals treated with the active formulations of the present invention include iron, copper, aluminum and the like. To treat the metal with the active formulation of the present invention, powdery, granular, ribbon-like strips of the metal are soaked in the active formulation of the present invention and then the metal is separated from the aqueous solution. In the treatment, carbon or a silicon compound such as silicate or silicon oxide,
Alternatively, the presence of a silicon-containing substance such as zeolite or river sand enhances the treatment effect.

以下に本発明を更に具体的に説明するための実施例につ
いて述べる。
Examples for more specifically explaining the present invention will be described below.

実施例1(塩化亜鉛配合塩化第一鉄−塩化第二鉄の製
造) 1gの塩化第二鉄を10Nカセイソーダ水溶液5ml中に
入れ、撹拌後10N塩酸水溶液にて中和し、その後不溶
性成分を紙(No.5C)で過する。該溶液部分の一
部をサンプリングして減圧濃縮してデシケーター中で乾
燥する。得られた乾燥粉末に10mlのイソプロパノール
80重量%水溶液を加えて溶出成分を集め、減圧濃縮し
溶媒を除去、乾燥させる。上記抽出−濃縮−乾燥操作を
数回繰返すことによって活性物質の結晶が得られる。
Example 1 (Production of zinc chloride-containing ferrous chloride-ferric chloride) 1 g of ferric chloride was put in 5 ml of 10N caustic soda aqueous solution, stirred and neutralized with 10N hydrochloric acid aqueous solution, and then insoluble components were removed from the paper. (No. 5C) A part of the solution portion is sampled, concentrated under reduced pressure, and dried in a desiccator. 10 ml of an 80% by weight aqueous solution of isopropanol was added to the obtained dry powder, and the eluted components were collected and concentrated under reduced pressure to remove the solvent and dry. Crystals of the active substance are obtained by repeating the above extraction-concentration-drying operation several times.

該結晶の5重量%水溶液を作成し、その0.01mlをペ
ーパークロマトグラフ用紙No.51A(2cm×40
c)下端から3cm内側の個所にスポットし、n−ブタノ
ール:酢酸:水=5:1:4容量比混合物を展開溶媒と
して20℃、15時間の上方展開を行なう。展開後該
紙を乾燥させてから1重量%フエリシアン化カリウム水
溶液を発色試薬として紙に噴霧発色させると該結晶の
展開位置は1スポットでRf=0.07であることが確
認された。
A 5% by weight aqueous solution of the crystals was prepared, and 0.01 ml thereof was used as a paper chromatograph paper No. 51A (2 cm × 40 cm).
c) Spot 3 cm inside from the lower end, and perform upward development at 20 ° C. for 15 hours using a mixture of n-butanol: acetic acid: water = 5: 1: 4 by volume as a developing solvent. After the development, the paper was dried and then spray-developed on the paper with a 1% by weight aqueous solution of potassium ferricyanide as a coloring reagent, and it was confirmed that the developed position of the crystal was Rf = 0.07 at one spot.

次いで同様のペーパークロマトグラフテストをFeCl
2およびFeCl3の1:1当量混合物について行なった
所、展開の結果は2スポットとなりRf=0.095
(FeCl2)と、Rf=0.36(FeCl3)である
ことが確認された。
Then a similar paper chromatograph test was performed with FeCl
When carried out on a 1: 1 equivalent mixture of 2 and FeCl 3 , the development result is 2 spots, Rf = 0.095
It was confirmed that (FeCl 2 ) and Rf = 0.36 (FeCl 3 ).

上記ペーパークロマトグラフテストにより該結晶は混合
物ではなく単一化合物であることが確認された。
The above paper chromatographic test confirmed that the crystal was not a mixture but a single compound.

次いで該結晶の0.1gを蒸溜水に溶かして100mlと
し可検液を作成する。その2.5mlを50ml容メスフラ
スコにとり、0.1重量%オルソフェナントロリン水溶
液2.5ml、および酢酸ナトリウム−酢酸緩衝液(pH
4.5)2.5mlを加え、蒸溜水で標線まで充たす。3
0分間室温に静置した後510nmで吸光度を測定する。
FeCl2水溶液について同様の方法で得た標準曲線か
ら可検液の二価鉄を求めると0.019g/100mlで
あった。
Next, 0.1 g of the crystal is dissolved in distilled water to make 100 ml, and a test solution is prepared. 2.5 ml of the solution is placed in a 50 ml volumetric flask, and 2.5 ml of 0.1 wt% orthophenanthroline aqueous solution and sodium acetate-acetate buffer solution (pH
4.5) Add 2.5 ml and fill up to the marked line with distilled water. Three
After standing at room temperature for 0 minutes, the absorbance is measured at 510 nm.
The divalent iron in the test solution was calculated from the standard curve obtained by the same method for the FeCl 2 aqueous solution, and found to be 0.019 g / 100 ml.

次いで上記操作においてメスフラスコに可検液を添加し
た際、予め10重量%ヒドロキシルアミン塩酸塩水溶液
1.0mlを添加して三価鉄を二価鉄に還元する。この場
合に得られた二価鉄量は0.038/100mlであっ
た。したがって三価鉄量は0.038g/100ml−
0.019g/100ml=0.019/100mlとな
り、該結晶中には二価鉄と三価鉄とが当量含まれている
ことが判明した。
Next, when the test solution was added to the volumetric flask in the above operation, 1.0 ml of a 10 wt% hydroxylamine hydrochloride aqueous solution was added in advance to reduce ferric iron to ferrous iron. The amount of ferric iron obtained in this case was 0.038 / 100 ml. Therefore, the amount of trivalent iron is 0.038g / 100ml-
It was 0.019 g / 100 ml = 0.019 / 100 ml, and it was found that the crystals contained divalent iron and trivalent iron in equivalent amounts.

以上のテストにより該結晶はFe2Cl5・xH2Oである
ことが推定される。
From the above test, it is estimated that the crystal is Fe 2 Cl 5 .xH 2 O.

サンプリングした残りの該溶液部分に塩化亜鉛(特級)
0.1gを添加した後減圧濃縮する。
Zinc chloride (special grade) in the remaining sampled solution
After adding 0.1 g, concentrate under reduced pressure.

次にメチルアルコール10mlを加えて抽出部分を集めデ
シケータ中で乾燥する。乾燥物質を少量のピリジンを用
いて洗浄した後エチルアルコール10ml中に入れること
によって塩化亜鉛配合活性配合物結晶状でが得られる
(収量:15.2mg)。
Next, 10 ml of methyl alcohol is added and the extracted portions are collected and dried in a desiccator. The dry substance is washed with a small amount of pyridine and then put into 10 ml of ethyl alcohol to obtain a zinc chloride-containing active compound in crystalline form.
(Yield: 15.2 mg).

実施例2(各種処理用原液の調製) 実施例1によって製造された塩化亜鉛配合活性配合物1
gを蒸溜水50mlにとかし、これにあらためて塩化第二
鉄FeCl3・6H2O4gを加え、更に濃塩酸50mlを
加えて全量を100mlとする。
Example 2 (Preparation of stock solutions for various treatments) Active formulation 1 containing zinc chloride prepared according to Example 1
g is dissolved in 50 ml of distilled water, 4 g of ferric chloride FeCl 3 .6H 2 O is added thereto, and 50 ml of concentrated hydrochloric acid is further added to bring the total amount to 100 ml.

比較例1 実施例1において塩化亜鉛を入れることなく、活性物質
を得る。該活性物質の結晶1gを蒸溜水50mlにとか
し、これにあらためて塩化第二鉄FeCl3・6H2O4
gを加え、更に濃塩酸50mlを加えて全量を100mlと
し、比較処理原液を作成する。
Comparative Example 1 The active substance is obtained without adding zinc chloride in Example 1. 1 g of the crystal of the active substance was dissolved in 50 ml of distilled water, and again, ferric chloride FeCl 3 .6H 2 O 4 was added.
g, and then 50 ml of concentrated hydrochloric acid to bring the total amount to 100 ml to prepare a stock solution for comparison treatment.

実施例3(絶縁油の回生) 実施例2で得られた処理原液の106倍希釈液300ml
中に銅片(5cm×10cm)5枚を入れ、24時間後とり
出して劣化した絶縁油6に1片宛挿入し室温に10日
間静置した。10日後試験油の絶縁破壊電圧を測定した
結果は次の通りであった。
Example 3 (regeneration of insulating oil) 300 ml of a 10 6- fold diluted solution of the stock solution obtained in Example 2
Five pieces of copper pieces (5 cm × 10 cm) were put therein, and after 24 hours, they were taken out, inserted into the deteriorated insulating oil 6 and placed at room temperature for 10 days. The results of measuring the dielectric breakdown voltage of the test oil after 10 days are as follows.

劣化判定基準を基とすれば処理によって新油段階まで、
改質、改善されたことになる。しかし比較区においては
活性物質が不安定であり、若干効果が低下する。
If it is based on the deterioration criterion, it will be processed to the new oil stage,
It has been reformed and improved. However, in the comparative group, the active substance is unstable and the effect is slightly reduced.

実施例4(繊維の帯電防止) 実施例2で得られた原液の106倍希釈液1中にポリ
エステル生地100cm2を入れ、24時間後とり出して
乾燥した後摩擦帯電圧および半減期を測定した結果は次
の通りであった。
Example 4 (Antistatic of Fiber) 100 cm 2 of polyester cloth was put into 10 6 times diluted solution 1 of the stock solution obtained in Example 2, taken out after 24 hours and dried, and then frictional electrification voltage and half-life were measured. The results were as follows.

実施例5(原油の改質) 実施例2で得られた処理原液の106倍希釈液に鉄片
(5cm×10cm)を入れ、24時間後、これを取り出し
て原油1中に挿入した。2時間後処理原油の燃焼試験
を行った結果、無処理原油と比較して油煙の生成、発火
状況等明らかな改質が認められた。
Example 5 (Crude oil reforming) Iron pieces (5 cm x 10 cm) were added to the 10 6 -fold diluted solution of the treated stock solution obtained in Example 2, and after 24 hours, this was taken out and inserted into crude oil 1. As a result of conducting a combustion test on the post-treated crude oil for 2 hours, clear reforming such as generation of oily smoke and ignition situation was recognized as compared with the untreated crude oil.

該処理原油の分析結果は次の通りであった。カッコ内の
数字は比較例1の比較処理原液で処理した鉄片を用いた
場合を示す。
The analysis results of the treated crude oil were as follows. The numbers in parentheses indicate the case where the iron pieces treated with the comparative treatment stock solution of Comparative Example 1 were used.

水分(KF法)172ppm(172ppm),灰分0.01
%以下(0.01%以下),残留炭素0.23%(0.
25%),イオウ分0.03%(0.04%),窒素分
0.08%(0.10%),比重(15/4℃)0.7
805(0.7805),API度(60F)49.7
2(49.85),動粘度(30℃)1.193Cst
(1.200Cst),引火点(TAG)−39.0℃
(−39.0℃),流動点−42.5℃(−42.5
℃),発熱量11050Cal/g(11045Cal/
g) 実施例6(潤滑油の強化) 実施例2で得られた処理原液の106倍希釈液に鉄製リ
ングを入れ、24時間後取り出して潤滑油に挿入し、そ
の潤滑油の粘性摩擦抵抗試験を行った。方法の概要を述
べると、373rpmの回転軸の上、下面にT.P.軟鋼
ピースを接触させ潤滑油を供給しつつピース間に荷重を
かけ、ピースの厚みの減少を測定するものである。8時
間の回転試験を行った結果6.5kg荷重の場合、処理リ
ングを入れたときの上面のピースの(厚みの減少)×
(接触部の長さ)の値は14×10-2[mm]2で、リング
を入れない対照区潤滑油の場合の30×10-2[mm]2
対し16×10-2[mm]2(53.3%)の減少が認めら
れた。また比較例1の比較処理原液で同様に処理したリ
ングを入れた場合は16×10-2[mm]2であり、若干実
施例2の処理原液の場合より劣る結果が得られた。
Water content (KF method) 172ppm (172ppm), ash content 0.01
% Or less (0.01% or less), residual carbon 0.23% (0.
25%), sulfur content 0.03% (0.04%), nitrogen content 0.08% (0.10%), specific gravity (15/4 ° C) 0.7
805 (0.7805), API degree (60F) 49.7
2 (49.85), kinematic viscosity (30 ° C) 1.193Cst
(1.200Cst), flash point (TAG) -39.0 ° C
(-39.0 ° C), pour point -42.5 ° C (-42.5 ° C)
℃), calorific value 11050 Cal / g (11045 Cal /
g) Example 6 (Strengthening of lubricating oil) An iron ring was put into a 10 6- fold diluted solution of the stock solution for treatment obtained in Example 2, taken out after 24 hours and inserted into the lubricating oil, and the viscous friction resistance of the lubricating oil The test was conducted. The outline of the method is as follows. P. A decrease in the thickness of the piece is measured by applying a load between the pieces while bringing the mild steel pieces into contact with each other and supplying the lubricating oil. As a result of performing a rotation test for 8 hours, in the case of a load of 6.5 kg, (the reduction of thickness) of the piece on the upper surface when the processing ring was inserted ×
The value of (the length of the contact portion) is 14 × 10 -2 [mm] at 2, 30 × 10 -2 [mm ] 2 to 16 × 10 -2 [mm in the case of control group lubricant not put ring ] 2 (53.3%) was recognized. When a ring treated in the same manner as the comparative stock solution of Comparative Example 1 was added, the size was 16 × 10 -2 [mm] 2 , which was slightly inferior to that of the stock solution of Example 2.

実施例7(排水処理) 実施例2で得られた処理原液の106倍希釈液5に鉄
屑3kgを入れ、48時間後取り出して予め充填した粗砂
層[(厚さ10cm)×(面積2.3m2)]の上部に充填
し、これを処理ユニットとした。該処理ユニットを三個
直列に組合わせ、該組合わせユニットに雑排水(屎尿
水、台所廃水を含む)を1日1tの割合で連続流入し
た。流入開始3日後より処理水が澄明液に変り、以後安
定した浄化処理作用が認められた。処理開始5日後の水
質は次の通りであった。
Example 7 (wastewater treatment) 3 kg of iron scraps were placed in a 10 6- fold diluted solution 5 of the treatment stock solution obtained in Example 2, and after 48 hours, the coarse sand layer [(thickness 10 cm) x (area 2) was taken out and pre-filled. .3 m 2 )], and this was used as a processing unit. Three of the treatment units were combined in series, and gray water (including human waste water and kitchen waste water) continuously flowed into the combination unit at a rate of 1 ton per day. Three days after the start of inflow, the treated water changed to a clear liquid, and thereafter a stable purification treatment action was observed. The water quality 5 days after the start of treatment was as follows.

実施例8(防腐防カビ) 実施例2で得られた処理原液の106倍希釈液25mlの
中に0.1gの鉄粉および醤油1mlを添加、撹拌後、一
夜静置した。静置後濾紙(No.5C)で濾過し、その濾液
1mlを予め水で2倍希釈した醤油1中に添加し、マグ
ネチックスターラーで連続的に撹拌した。
Example 8 (antiseptic / antifungal) 0.1 g of iron powder and 1 ml of soy sauce were added to 25 ml of a 10 6- fold diluted stock solution obtained in Example 2, and the mixture was allowed to stand overnight after stirring. After allowing to stand, the mixture was filtered through a filter paper (No. 5C), 1 ml of the filtrate was added to soy sauce 1 which had been diluted with water twice, and the mixture was continuously stirred with a magnetic stirrer.

室温(20℃〜25℃)で3時間撹拌を続けたところ、水
で2倍希釈したままの醤油(対照区)は細菌、カビの繁殖
が烈しく腐敗状態となったのに対し処理醤油は試験期間
中細菌、カビの繁殖が起らず香味成分の生成が認められ
た。
When stirring was continued for 3 hours at room temperature (20 ° C to 25 ° C), soy sauce that had been diluted by 2 times with water (control group) was rotted due to violent growth of bacteria and mold, but treated soy sauce was tested. During the period, bacteria and fungi did not breed and the formation of flavor components was observed.

実施例9(防錆) 実施例2で得られた処理原液の106倍希釈液200ml
に0.1gの鉄粉および0.1gの炭素粉を混入し、2
4時間No.5Cの濾紙で濾過した。この濾液150ml中
に錆の付着した鉄片(5cm×10cm)を入れて24時間浸
漬処理をした。次にこの処理鉄片を海水中に30日間放
置したところ、この期間中鉄片の表面は黒色を帯びた状
態で錆の生成が進行しなかった。対照として同様の海水
浸漬を行った鉄片が著しい赤錆生成を起したことと対比
して顕著な防錆効果が認められた。
Example 9 (rust prevention) 200 ml of 10 6- fold diluted stock solution obtained in Example 2
Mix 0.1 g of iron powder and 0.1 g of carbon powder into 2
It was filtered through No. 5C filter paper for 4 hours. Iron pieces (5 cm × 10 cm) with rust attached were put into 150 ml of this filtrate and immersed for 24 hours. Next, when this treated iron piece was allowed to stand in seawater for 30 days, the surface of the iron piece was blackish and rust formation did not proceed during this period. As a control, a remarkable rust-preventing effect was observed in contrast to the case where the iron piece subjected to the same immersion in seawater caused remarkable red rust formation.

実施例10(脱臭) 4本のインピンジャーを直列に接続し、実施例2で得ら
れた処理原液の106倍希釈液を前段の3本のインピン
ジャーには350mlずつ充填し、最後段のインピンジャ
ーには150ml充填して脱臭装置を構成した。そして
インピンジャーの発泡プレートから該希釈液の液面まで
の距離を約8〜9cmとした。上記脱臭装置に、下記の被
処理ガスを夫々送通して臭気濃度を測定した。臭気濃度
とは処理ガスを空気に希釈して臭気が感じられなくなっ
た時の希釈倍率を言う。結果を第1表に示す。
Example 10 (Deodorization) Four impingers were connected in series, and the 10 6- fold diluted solution of the stock solution obtained in Example 2 was filled in each of the three impingers of the preceding stage in an amount of 350 ml, and the final stage. The impinger was filled with 150 ml to form a deodorizing device. The distance from the foam plate of the impinger to the liquid surface of the diluting liquid was set to about 8 to 9 cm. The following gases to be treated were passed through the deodorizing device to measure the odor concentration. The odor concentration is the dilution ratio when the treated gas is diluted with air and no odor is felt. The results are shown in Table 1.

第1表によれば本発明の配合物は顕著な脱臭効果を示
し、該効果は持続的なものであることが明らかになる。
Table 1 shows that the formulations according to the invention show a pronounced deodorizing effect, which is lasting.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 3/18 9059−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication H01B 3/18 9059-5G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】塩化第二鉄塩をカセイソーダ水溶液に溶解
した後塩酸で中和し、濃縮して得られた結晶をアルコー
ルまたはアルコール−水混合液に溶解し、該溶液を過
後濃縮して得られた活性物質と、亜鉛化合物とからなる
活性配合物の製造法
1. A crystal obtained by dissolving a ferric chloride salt in an aqueous solution of caustic soda, neutralizing it with hydrochloric acid and concentrating it to dissolve it in alcohol or an alcohol-water mixed solution, and then concentrating the solution to obtain a solution. For the production of an active formulation consisting of a defined active substance and a zinc compound
JP2085947A 1984-09-18 1990-03-30 Method of manufacturing active formulations Expired - Lifetime JPH0613408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085947A JPH0613408B2 (en) 1984-09-18 1990-03-30 Method of manufacturing active formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59195287A JPS6172627A (en) 1984-09-18 1984-09-18 Blend of bivalent and trivalent iron salt and its production
JP2085947A JPH0613408B2 (en) 1984-09-18 1990-03-30 Method of manufacturing active formulations

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59195287A Division JPS6172627A (en) 1984-03-06 1984-09-18 Blend of bivalent and trivalent iron salt and its production

Publications (2)

Publication Number Publication Date
JPH03205318A JPH03205318A (en) 1991-09-06
JPH0613408B2 true JPH0613408B2 (en) 1994-02-23

Family

ID=26426955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085947A Expired - Lifetime JPH0613408B2 (en) 1984-09-18 1990-03-30 Method of manufacturing active formulations

Country Status (1)

Country Link
JP (1) JPH0613408B2 (en)

Also Published As

Publication number Publication date
JPH03205318A (en) 1991-09-06

Similar Documents

Publication Publication Date Title
Smith Base exchange reactions of bentonite and salts of organic bases
Schlautman et al. Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: influence of solution chemistry
US4680127A (en) Method of scavenging hydrogen sulfide
TW466267B (en) Process for decreasing the corrosivity and acidity of petroleum crudes
DE3208284A1 (en) STABILIZATION OF SILICATES WITH SALTS OF SUBSTITUTED NITROGENIC OR SULFURIC SILICONATES
CN105327689B (en) A kind of preparation and its application of the molecular sieve gasoline desulfurizer of loading functional ionic liquid
FR2537593B1 (en) COMBINED ORGANOMETALLIC COMPOSITIONS COMPRISING ELEMENTS OF THE IRON AND LANTHANIDE GROUPS, PROCESS FOR THE PREPARATION AND APPLICATION OF THE SAME COMPOSITIONS AS ADDITIVES FOR FUELS OR FUELS
JPS6257566B2 (en)
US5567213A (en) Use of olefinic imines to scavenge sulfur species
JPS63178826A (en) Deodorant
US4151098A (en) Acidizing subterranean well formations containing deposits of metal compounds
DE3338953A1 (en) USE OF CORROSION INHIBITORS IN AQUEOUS SYSTEMS
JPH0613408B2 (en) Method of manufacturing active formulations
JP2004002382A (en) Method for producing ether carboxylic acid having low solidification point
KR920002225B1 (en) Compound containing ferric ferrovs salt and a producing method thereof
US4179396A (en) Single addition organic-inorganic blend emulsion breaking composition
JP2540115B2 (en) Composition treatment agent
JP2540114B2 (en) Composition treatment agent
EP1389192B1 (en) Ether carboxylic acids based on alkoxylated mercaptobenzothiazole and the use of the same as corrosion inhibitors
JPS63205198A (en) Deodorant
JPS58134197A (en) Cationic surfactant composition
CN111039425B (en) Composite scale and corrosion inhibitor suitable for natural pH operation and application thereof
JP2001354979A (en) Fuel modifier
US5777167A (en) Process for the removal of odor from reaction product mixtures of alkythioethanamines and their acid salts
CN117342763A (en) Gel breaker and preparation method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term