JPH06132143A - Secondary wiring of transformer for high voltage - Google Patents

Secondary wiring of transformer for high voltage

Info

Publication number
JPH06132143A
JPH06132143A JP28122392A JP28122392A JPH06132143A JP H06132143 A JPH06132143 A JP H06132143A JP 28122392 A JP28122392 A JP 28122392A JP 28122392 A JP28122392 A JP 28122392A JP H06132143 A JPH06132143 A JP H06132143A
Authority
JP
Japan
Prior art keywords
winding
voltage
coil
transformer
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28122392A
Other languages
Japanese (ja)
Other versions
JP2917081B2 (en
Inventor
Hiroshi Terai
寛 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP28122392A priority Critical patent/JP2917081B2/en
Publication of JPH06132143A publication Critical patent/JPH06132143A/en
Application granted granted Critical
Publication of JP2917081B2 publication Critical patent/JP2917081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Regulation Of General Use Transformers (AREA)

Abstract

PURPOSE:To provide a secondary winding of a transformer for ultrahigh voltage which hardly cause dielectric breakdown by making the voltage distribution (potential inclination) inside the winding uniform. CONSTITUTION:First and second metallic cylinders 11 and 12 are provided, respectively, inside and outside of a solenoid coil 10 in multilayer winding, which has an inside diameter enough larger than the outside diameter of the iron core of a transformer. The first and second cylinders are connected to the starting point of winding and terminating point of winding of a solenoid coil, respectively, and besides the length in axial direction is made larger than the length in axial direction of the solenoid coil, and besides a slit is made in axial direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超高圧用変圧器の二次巻
線に関し、特に超高圧の直流電圧を発生させるために用
いられる変圧器の二次巻線の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary winding of a transformer for ultra high voltage, and more particularly to improvement of the secondary winding of a transformer used for generating a DC voltage of ultra high voltage.

【0002】[0002]

【従来の技術】数百kV〜1MV程度の直流電圧を発生
させる装置の一例として、図12に示すようなものが知
られている。この直流超高電圧発生装置は、3相の一次
巻線101とn個、ここでは4個の二次巻線102a〜
102dとを有する変圧器100と、二次巻線102a
〜102dのそれぞれに接続された整流ブリッジ201
a〜201dとから成る。整流ブリッジ201a〜20
1dは直列接続され、整流ブリッジ201dの一端をア
ース接続し、整流ブリッジ201aの一端を出力端子D
OUT として用いる。すなわち、各整流ブリッジの出力
電圧は、201d−201c−201b−201aの順
に高くなり、出力端子DCOUT で最高圧となる。
2. Description of the Related Art As an example of an apparatus for generating a direct current voltage of about several hundred kV to 1 MV, one shown in FIG. 12 is known. This DC ultra-high voltage generator includes three-phase primary windings 101 and n pieces, here four secondary windings 102a-
A transformer 100 having 102d and a secondary winding 102a.
Rectifying bridge 201 connected to each of
a to 201d. Rectifier bridges 201a to 20
1d is connected in series, one end of the rectifying bridge 201d is grounded, and one end of the rectifying bridge 201a is an output terminal D
Used as C OUT . That is, the output voltage of each rectifying bridge increases in the order of 201d-201c-201b-201a, and becomes the highest pressure at the output terminal DC OUT .

【0003】[0003]

【発明が解決しようとする課題】ところで、この種の超
高電圧発生装置では、各段の整流ブリッジが負担する電
圧が過大とならないように、保護用のスパークギャップ
(図示せず)を設けている。しかしながら、装置の出力
端あるいはこれに接続された負荷回路の短絡事故時に、
最上段の二次巻線102aを中心として絶縁破壊を生じ
てしまうことが多いという問題点があった。このような
二次巻線の絶縁破壊は、二次巻線内部の電圧分布にアン
バランスが生じて電圧集中部ができるためと考えられて
いる。
By the way, in this type of ultra high voltage generator, a protective spark gap (not shown) is provided so that the voltage carried by the rectifying bridges at each stage does not become excessive. There is. However, in the event of a short circuit in the output of the device or the load circuit connected to it,
There is a problem that dielectric breakdown often occurs around the uppermost secondary winding 102a. It is considered that such dielectric breakdown of the secondary winding is caused by an imbalance in the voltage distribution inside the secondary winding and a voltage concentration portion is formed.

【0004】そこで、本発明の課題は、巻線内部の電圧
分布(電位傾度)が一様になるようにして絶縁破壊の生
じにくい超高圧用変圧器二次巻線を提供することにあ
る。
Therefore, an object of the present invention is to provide a secondary winding for an ultrahigh voltage transformer in which the voltage distribution (potential gradient) inside the winding is made uniform so that dielectric breakdown does not easily occur.

【0005】[0005]

【課題を解決するための手段】本発明によれば、変圧器
鉄心の外径より十分大きい内径を有する複層巻きのソレ
ノイドコイルと、該ソレノイドコイルの内径側及び外径
側にそれぞれ設けられた金属製の第1、第2の円筒状体
とを含み、該第1、第2の円筒状体はそれぞれ前記ソレ
ノイドコイルの巻き始め、巻き終りに接続され、しかも
軸方向長さが前記ソレノイドコイルの軸方向長さよりも
大きく、かつ軸方向に沿って切れ目を有していることを
特徴とする超高圧用変圧器二次巻線が得られる。
According to the present invention, a multi-layered solenoid coil having an inner diameter sufficiently larger than the outer diameter of a transformer core, and the solenoid coil is provided on the inner diameter side and the outer diameter side, respectively. A first cylindrical cylinder made of metal and a second cylindrical cylinder made of metal, the first cylindrical cylinder and the second cylindrical cylinder being connected to a winding start and a winding end of the solenoid coil, and having an axial length of the solenoid coil. A secondary winding for a transformer for ultrahigh voltage, which is characterized in that it has a length greater than the axial length and has a cut along the axial direction.

【0006】本発明によれば、また、前記ソレノイドコ
イルの内径側と前記第1の円筒状体との間及び前記ソレ
ノイドコイルの外径側と前記第2の円筒状体との間にそ
れぞれ、金属箔による第1、第2の筒状体を介在させ、
該第1、第2の筒状体はそれぞれ、前記ソレノイドコイ
ルの巻き始めあるいは巻き終りに接続し、しかも軸方向
に沿って切れ目を設けたことを特徴とする超高圧用変圧
器二次巻線が得られる。
According to the present invention, between the inner diameter side of the solenoid coil and the first cylindrical body and between the outer diameter side of the solenoid coil and the second cylindrical body, respectively, Interposing the first and second cylindrical bodies made of metal foil,
The first and second cylindrical bodies are respectively connected to a winding start or winding end of the solenoid coil, and further, a slit is provided along the axial direction, and a secondary winding for a transformer for ultrahigh voltage. Is obtained.

【0007】[0007]

【実施例】実施例を説明する前に本発明の原理について
説明する。一般的に、前に述べたような負荷短絡時、出
力端子電圧は瞬間的に零(大地電位)に落ちる。この
時、各段の電圧分担が、それまでの通常運転時から大き
くくずれ、過電圧となる段の二次巻線保護用スパークギ
ャップが動作する。これにより、この二次巻線の両端間
電圧は零となるが、これは、それまでの通常電圧に、こ
れをうち消す大きさのインパルス電圧が加わったものと
みなすことができる。前者(通常電圧)は、二次巻線各
ターン毎で同じ大きさの二次起電力であり、巻線の両端
子間にほぼ一様の電圧分布である。一方、後者(インパ
ルス電圧)は、時間とともに巻線の内部へ侵入するサー
ジ電圧である。これが仮に、巻線内部で均一な分布にで
きると仮定すれば、前者(通常電圧)の分布とほぼキャ
ンセルしあい、巻線内部の電圧はどこでも零となろう。
EXAMPLES The principle of the present invention will be described before describing examples. Generally, when the load is short-circuited as described above, the output terminal voltage instantaneously drops to zero (ground potential). At this time, the voltage sharing of each stage largely deviates from the normal operation until then, and the spark gap for protecting the secondary winding of the stage in which the overvoltage occurs is operated. As a result, the voltage across the secondary winding becomes zero, which can be regarded as the normal voltage up to that point plus an impulse voltage of a magnitude that cancels it. The former (normal voltage) is a secondary electromotive force of the same magnitude for each turn of the secondary winding, and has a substantially uniform voltage distribution between both terminals of the winding. On the other hand, the latter (impulse voltage) is a surge voltage that enters the inside of the winding over time. Assuming that this can be made a uniform distribution inside the winding, it will cancel the former (normal voltage) distribution almost, and the voltage inside the winding will be zero everywhere.

【0008】そこで、以降ではインパルス電圧印加によ
る電圧分布のみ考えることとする。特に、インパルス電
圧印加の瞬間の電圧分布が重要である。これは過渡現象
の初期値である。これが均一な分布なら、上述のよう
に、通常電圧の分布と合成した実際の電圧の初期分布は
どこでも零となり、きわめて好ましいことである。
Therefore, hereinafter, only the voltage distribution due to the impulse voltage application will be considered. In particular, the voltage distribution at the moment of applying the impulse voltage is important. This is the initial value of the transient phenomenon. If this is a uniform distribution, as described above, the initial distribution of the actual voltage combined with the distribution of the normal voltage will be zero everywhere, which is extremely preferable.

【0009】インパルス印加瞬間の電圧分布は、巻線の
電流を無視して考えることができる。巻線1ターン毎に
絶縁されているものとみなし、各ターン間の静電容量に
よるネットワーク(網目回路)電圧分担が決まる。
The voltage distribution at the instant of impulse application can be considered by ignoring the current in the winding. It is considered that the winding is insulated for each turn, and the voltage share of the network (mesh circuit) is determined by the capacitance between the turns.

【0010】電流を無視してよい理由は、初期値を考え
る際は、時間経過0(t=0)では、巻線に沿って流れ
る電流iの積分値は零であるためである。この場合は、
電圧分布は、各ターン間の静電容量によるネットワーク
で決定される。ネットワークの節点は各ターンの導体で
あり、その電荷(接続コンデンサの電荷の総和)は、零
として回路方程式をたてればよい。
The reason why the current may be ignored is that, when the initial value is considered, the integral value of the current i flowing along the winding is zero at the elapse of time 0 (t = 0). in this case,
The voltage distribution is determined in the network by the capacitance between each turn. The node of the network is a conductor of each turn, and its electric charge (sum of electric charges of the connecting capacitors) may be zero to form a circuit equation.

【0011】たとえば、巻線の等価回路が図1のよう
に、各ターン導体間及び周辺の大地との静電容量のネッ
トワーク及び巻線に沿ったインダクタンスで表されると
する。なお、この回路は一層巻きソレノイドのモデルで
あり、初期電圧分布は図2で示される。図2のP点に接
続されている3つの容量の電荷の総和を零とおくこと
で、下記の数式1に示した方程式が得られる。
For example, it is assumed that an equivalent circuit of a winding is represented by a network of electrostatic capacitance between each turn conductor and the surrounding ground and an inductance along the winding as shown in FIG. Note that this circuit is a model of a single-turn solenoid, and the initial voltage distribution is shown in FIG. By setting the sum of the charges of the three capacitors connected to the point P in FIG. 2 to zero, the equation shown in the following formula 1 can be obtained.

【0012】[0012]

【数1】 [Equation 1]

【0013】ここに、vはP点の電位、x、dx はそれ
ぞれ巻線の端子からP点までの長さ及び微小巻線長さで
ある。dx を1ターンの長さとするとき、Cdxは1ター
ンあたりの対地容量を示し、K/dx は隣り合うターン
間の静電容量を示す。また、vは下記の数式2で表され
る。
Here, v is the potential at the point P, and x and dx are the length from the terminal of the winding to the point P and the length of the minute winding, respectively. When dx is the length of one turn, Cdx represents the ground capacitance per turn and K / dx represents the capacitance between adjacent turns. Further, v is represented by the following mathematical formula 2.

【0014】[0014]

【数2】 [Equation 2]

【0015】これらの方程式より初期電圧分布は図3の
ように求まる。この例では、C/kが大きいとき、x=
0の付近で電圧傾度が大きく巻線間の電圧が過大となる
ことが示されている。これはきわめて単純なモデルであ
るが、実際の二次巻線は多層巻とするため、図1より複
雑な回路である。本発明では、この場合の静電容量のネ
ットワークについて考察し、適切な初期分布となる形状
を考え出したものである。
The initial voltage distribution is obtained from these equations as shown in FIG. In this example, when C / k is large, x =
It is shown that the voltage gradient is large near 0 and the voltage between the windings becomes excessive. This is an extremely simple model, but since the actual secondary winding is a multi-layer winding, the circuit is more complicated than that of FIG. In the present invention, the capacitance network in this case is considered, and a shape having an appropriate initial distribution is devised.

【0016】図4を参照して、本発明による二次巻線を
構成するコイル10は、変圧器の各相鉄芯脚のまわりに
それぞれ巻かれるもので、その内径L1は、鉄芯外径よ
り少なくとも50mm以上大きく、これにより高電圧の
絶縁を確保する。コイル10は鉄芯表面上から離れてい
るため、エポキシ樹脂の真空含浸等の方法で、巻線自身
で形状が固定されている。このコイル10は、また、内
側から外側に向って同芯円筒状の層が重なった多層巻構
造とし、各層はソレノイド巻きであり、巻線は一方の端
で巻き終わって次の層の巻き始めにつながる。コイルの
軸方向長さT1及びコイルの積層合計厚さ(半径方向厚
さ)T2はいずれもコイルの内径の数分の一程度しかな
い偏平な形状とする。これは、コイル内径を絶縁確保の
ため鉄芯直径より十分に大きくしているためである。
Referring to FIG. 4, a coil 10 constituting a secondary winding according to the present invention is wound around each phase iron core leg of a transformer, and its inner diameter L1 is defined by the outer diameter of the iron core. Larger by at least 50 mm or more, which ensures high-voltage insulation. Since the coil 10 is separated from the surface of the iron core, the shape of the coil itself is fixed by a method such as vacuum impregnation of epoxy resin. This coil 10 also has a multilayer winding structure in which concentric cylindrical layers are stacked from the inside to the outside, each layer is a solenoid winding, and the winding ends at one end and the beginning of the next layer starts. Leads to. The axial length T1 of the coil and the total laminated thickness (radial thickness) T2 of the coil are both flat parts which are only a few fractions of the inner diameter of the coil. This is because the coil inner diameter is made sufficiently larger than the iron core diameter to ensure insulation.

【0017】図5を参照して、本発明による二次巻線
は、コイル10の内径面及び外径面に密着して金属製の
第1、第2の円筒11,12を設ける。これらはそれぞ
れコイルの巻き始めと巻き終りに接続されいる。これら
第1、第2の円筒11,12は、また、円筒の一箇所で
軸方向に沿って切り開かれていなければならない。なぜ
なら、第1、第2の円筒11,12は、コイルと同芯円
であるため、閉じたループとすると電流がここに流れる
からである。
Referring to FIG. 5, the secondary winding according to the present invention is provided with first and second metal cylinders 11 and 12 which are in close contact with the inner diameter surface and the outer diameter surface of the coil 10. These are respectively connected to the beginning and end of winding of the coil. The first and second cylinders 11 and 12 must also be cut open along the axial direction at one location of the cylinder. This is because the first and second cylinders 11 and 12 are concentric circles with the coil, so that if a closed loop is used, current will flow there.

【0018】第1、第2の円筒11,12の軸方向の長
さは、コイル10の軸方向長さT1より長くて、コイル
10の両端よりもさらに上方および下方まで延長されて
いる。延長部分の長さは、上方、下方ともコイル10の
半径方向厚さT2以上あることが望ましいが、寸法の制
約があればこれ以下でもよい。
The axial lengths of the first and second cylinders 11 and 12 are longer than the axial length T1 of the coil 10 and extend further above and below the ends of the coil 10. The length of the extended portion is preferably not less than the thickness T2 in the radial direction of the coil 10 both above and below, but may be less than this if there are dimensional restrictions.

【0019】なお、第1、第2の円筒11,12をコイ
ル10の内径面、外径面に密着して設けることが困難で
あれば、両者の間に数ミリメートル以下のクリアランス
を設け、さらに、コイル10の内径面、外径面に薄い金
属箔を密着するように貼り付けてもよい。これらの金属
箔は、コイルの巻き始めあるいは巻き終りに接続され
る。勿論、これらの金属箔も円周の一箇所で切り開かれ
ていなければならない。また、コイル10の内径面、あ
るいは外径面に密着した金属箔は、一端をコイルの巻き
始めあるいは巻き終りに接続し、他端は外部配線へ接続
してもよい。この場合は、金属箔は配線の一部として電
流が流れる。
If it is difficult to provide the first and second cylinders 11 and 12 in close contact with the inner diameter surface and the outer diameter surface of the coil 10, a clearance of several millimeters or less is provided between them. Alternatively, a thin metal foil may be adhered to the inner diameter surface and outer diameter surface of the coil 10 so as to be in close contact with each other. These metal foils are connected to the beginning or end of winding of the coil. Of course, these metal foils must also be cut open at one place on the circumference. Further, the metal foil closely attached to the inner diameter surface or the outer diameter surface of the coil 10 may have one end connected to the start or end of winding of the coil and the other end connected to the external wiring. In this case, a current flows through the metal foil as a part of the wiring.

【0020】以上のように構成された二次巻線の機能は
以下の通りである。図4の形状のコイル10の断面は、
図6の如くであり、巻線間に形成される静電容量のネッ
トワークを形成している。このコイル10の両端にサー
ジ電圧を印加した初期電圧分布は、コイルの各ターン素
線と周辺の電極や構造部材との静電容量まで考慮しなけ
ればならない。これを考えやすいよう、第1、第2の円
筒11,12をコイル10の内径面と、外径面に密着し
て設けたものが図5である。第1、第2の円筒11,1
2(すなわち、コイル両端)にパルス電圧を印加する
と、コイル付近では、コイル10の有無にかかわらずほ
ぼ等間隔で同芯円筒面の等電位面が形成され、コイル1
0の内部で電圧集中は起こらない。
The function of the secondary winding configured as described above is as follows. The cross section of the coil 10 having the shape shown in FIG.
As shown in FIG. 6, a network of capacitances formed between the windings is formed. The initial voltage distribution in which a surge voltage is applied to both ends of the coil 10 must be taken into consideration even the capacitance between each turn wire of the coil and the surrounding electrodes and structural members. To facilitate this, FIG. 5 shows the first and second cylinders 11 and 12 provided in close contact with the inner diameter surface and the outer diameter surface of the coil 10. First and second cylinders 11, 1
When a pulse voltage is applied to 2 (that is, both ends of the coil), concentric cylindrical equipotential surfaces are formed near the coil at substantially equal intervals regardless of the presence or absence of the coil 10.
No voltage concentration occurs inside 0.

【0021】ここでもし、一方の円筒がコイル10に密
着していないと、図7のように、このクリアランスでの
静電容量が小さくなって、ここで電圧差が大きくなる。
しかしながら、巻線の端は、円筒と等電位のためこの周
辺で電圧集中がおこる。この様子を図8に示す。コイル
内部の静電容量のネットワークは、全体として一つの誘
電体とみなされ、その誘電率は、金属導体と誘電体との
配分できまる。図8のA−A′線上の電圧分布を考える
と、コイル内部は、クリアランス部より誘電率が非常に
大きいため、電圧の大部分はクリアランスで負担され
る。
Here, if one of the cylinders is not in close contact with the coil 10, the electrostatic capacity in this clearance becomes small and the voltage difference becomes large here, as shown in FIG.
However, since the end of the winding has the same potential as the cylinder, voltage concentration occurs around this end. This state is shown in FIG. The network of capacitance inside the coil is considered as one dielectric as a whole, and its permittivity can be distributed between the metal conductor and the dielectric. Considering the voltage distribution on the line AA ′ in FIG. 8, the inside of the coil has a much higher dielectric constant than the clearance portion, so most of the voltage is borne by the clearance.

【0022】一方、B−B′線上の端部が、右側の第2
の円筒12に接続されているため、この端部だけは、第
2の円筒12と同電位となり、この周辺で電位傾度が大
きくなる。この理由で、第1、第2の円筒11,12は
コイル10の内径面あるいは外径面に密着していないけ
ればならない。組立上、クリアランスが要求される場合
は、前述したように金属箔を内径面、外径面に貼ればよ
い。
On the other hand, the end portion on the line BB 'is the second portion on the right side.
Since it is connected to the second cylinder 12, only this end has the same potential as that of the second cylinder 12, and the potential gradient becomes large around this end. For this reason, the first and second cylinders 11 and 12 must be in close contact with the inner diameter surface or the outer diameter surface of the coil 10. If clearance is required for assembly, the metal foil may be attached to the inner diameter surface and the outer diameter surface as described above.

【0023】図9はコイル10の内径面と第1の円筒1
1との間及び外径面と第2の円筒12との間に、それぞ
れ円筒状の金属箔13,14を介在させた例を示す。第
1、第2の円筒11,12及び金属箔13,14にはそ
れぞれ、周方向に沿って切れ目11−1、12−1、1
3−1、14−1を設けている。
FIG. 9 shows the inner diameter surface of the coil 10 and the first cylinder 1.
1 shows an example in which cylindrical metal foils 13 and 14 are interposed between the outer peripheral surface and the second cylinder 12, respectively. The first and second cylinders 11 and 12 and the metal foils 13 and 14 have cuts 11-1, 12-1, and 1 along the circumferential direction, respectively.
3-1 and 14-1 are provided.

【0024】図10は、第2の円筒12をとり除いてコ
イル10の巻き終り端にサージ電圧を印加し、この電圧
波形と、そのすぐ内側の層におけるコイル内部電圧波形
を観測したものである。巻き終り端(38層目)より内
側の層(36層目)では、サージ電圧の侵入が遅れてお
り、サージ印加の初期値としてはこの間に大きな電位差
を生ずることとなる。
FIG. 10 is a diagram in which the second cylinder 12 is removed and a surge voltage is applied to the winding end of the coil 10, and this voltage waveform and the coil internal voltage waveform in the layer immediately inside thereof are observed. . Intrusion of the surge voltage is delayed in the layer (thirty-sixth layer) inside the end of winding (thirty-eighth layer), and a large potential difference is generated during the initial value of the surge application.

【0025】一方、図11は第2の円筒12の代わり
に、銅テープをコイル10の外径面に巻いた場合の観測
結果を示す。巻き終り端(38層目)から内側の層(3
6層目)への遅れは小さくなっており、サージ印加初期
値あるいはそれ以降も、この間の電位差V2は小さく、
電圧集中がおきないことがわかる。
On the other hand, FIG. 11 shows an observation result when a copper tape is wound around the outer diameter surface of the coil 10 instead of the second cylinder 12. The inner layer (3) from the winding end (38th layer)
The delay to the 6th layer) is small, and the potential difference V2 during this period is small even after the initial value of surge application or thereafter.
It can be seen that there is no voltage concentration.

【0026】この結果、コイル10の巻線の絶縁(エナ
メル被覆)が絶縁破壊して、層間ショートを生ずるとい
う事故を防ぐことができる。
As a result, it is possible to prevent an accident in which insulation (enamel coating) of the winding of the coil 10 is dielectrically broken down and an interlayer short circuit occurs.

【0027】[0027]

【発明の効果】以上説明してきたように本発明によれ
ば、二次巻線の内部の電圧分布を一様にすることがで
き、絶縁破壊の生じにくい超高圧用変圧器二次巻線とす
ることができるので、これを直流高電圧発生装置に使用
することでその耐用年数を長くすることができる。
As described above, according to the present invention, it is possible to make the voltage distribution inside the secondary winding uniform, and to prevent the occurrence of dielectric breakdown and the secondary winding for ultra high voltage. Therefore, the service life of the DC high voltage generator can be extended by using it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明するためにソレイノイドコ
イルの等価回路モデルを示した図である。
FIG. 1 is a diagram showing an equivalent circuit model of a solenoid coil for explaining the principle of the present invention.

【図2】図1に示した回路についてインパルス印加によ
る初期電圧分布条件を説明するための図である。
FIG. 2 is a diagram for explaining an initial voltage distribution condition by impulse application in the circuit shown in FIG.

【図3】図1、図2に示された例についてインパルス印
加による初期電圧分布の特性を示した図である。
FIG. 3 is a diagram showing characteristics of an initial voltage distribution due to impulse application for the examples shown in FIGS. 1 and 2.

【図4】本発明による変圧器二次巻線を構成するコイル
を示した図である。
FIG. 4 is a diagram showing a coil forming a secondary winding of a transformer according to the present invention.

【図5】本発明による変圧器二次巻線の一実施例を示す
断面図である。
FIG. 5 is a sectional view showing an embodiment of a secondary winding of a transformer according to the present invention.

【図6】本発明に使用されるコイルの巻線間に生ずる静
電容量の分布を説明するための図である。
FIG. 6 is a diagram for explaining a distribution of electrostatic capacitance generated between windings of a coil used in the present invention.

【図7】図5に示した変圧器二次巻線についてコイルと
第2の円筒とが離れている場合の問題点を説明するため
の図である。
FIG. 7 is a diagram for explaining a problem in the case where the coil and the second cylinder are separated from each other in the transformer secondary winding shown in FIG.

【図8】図7に示された例について電位分布を説明する
ための図である。
FIG. 8 is a diagram for explaining a potential distribution in the example shown in FIG.

【図9】本発明による変圧器二次巻線の他の実施例を示
した図である。
FIG. 9 is a diagram showing another embodiment of the transformer secondary winding according to the present invention.

【図10】図9に示された例について外側の金属箔及び
第2の円筒が無い場合のインパルス波形及び電圧波形を
示した図である。
10 is a diagram showing an impulse waveform and a voltage waveform in the case where the outer metal foil and the second cylinder are not provided in the example shown in FIG.

【図11】図9に示された例について図10の例と比較
するためのインパルス波形及び電圧波形を示した図であ
る。
11 is a diagram showing an impulse waveform and a voltage waveform for comparing the example shown in FIG. 9 with the example of FIG.

【図12】本発明が適用される直流高電圧発生装置の概
略構成を示した図である。
FIG. 12 is a diagram showing a schematic configuration of a DC high voltage generator to which the present invention is applied.

【符号の説明】[Explanation of symbols]

10 コイル 11 第1の円筒 12 第2の円筒 13,14 金属箔 101 変圧器の一次巻線 102a〜102d 変圧器の二次巻線 201a〜201d 整流ブリッジ 10 coil 11 1st cylinder 12 2nd cylinder 13 and 14 metal foil 101 primary winding 102a-102d of transformer secondary winding 201a-201d rectifier bridge

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 変圧器鉄心の外径より十分大きい内径を
有する複層巻きのソレノイドコイルと、該ソレノイドコ
イルの内径側及び外径側にそれぞれ設けられた金属製の
第1、第2の円筒状体とを含み、該第1、第2の円筒状
体はそれぞれ前記ソレノイドコイルの巻き始め、巻き終
りに接続され、しかも軸方向長さが前記ソレノイドコイ
ルの軸方向長さよりも大きく、かつ軸方向に沿って切れ
目を有していることを特徴とする超高圧用変圧器二次巻
線。
1. A multi-layered solenoid coil having an inner diameter sufficiently larger than the outer diameter of a transformer core, and metal first and second cylinders provided on the inner diameter side and the outer diameter side of the solenoid coil, respectively. The first and second cylindrical bodies are respectively connected to the winding start and the winding end of the solenoid coil, and the axial length is greater than the axial length of the solenoid coil. A secondary winding for a transformer for ultra high voltage, which has a break along the direction.
【請求項2】 請求項1記載の超高圧用変圧器二次巻線
において、前記ソレノイドコイルの内径側と前記第1の
円筒状体との間及び前記ソレノイドコイルの外径側と前
記第2の円筒状体との間にそれぞれ、金属箔による第
1、第2の筒状体を介在させ、該第1、第2の筒状体は
それぞれ、前記ソレノイドコイルの巻き始めあるいは巻
き終りに接続し、しかも軸方向に沿って切れ目を設けた
ことを特徴とする超高圧用変圧器二次巻線。
2. The transformer high-voltage secondary winding according to claim 1, wherein the inner diameter side of the solenoid coil and the first cylindrical body, and the outer diameter side of the solenoid coil and the second cylindrical body. The first and second cylindrical bodies made of metal foil are respectively interposed between the first and second cylindrical bodies, and the first and second cylindrical bodies are respectively connected to the winding start or winding end of the solenoid coil. In addition, the secondary winding of the transformer for ultra-high voltage is characterized in that it has a slit along the axial direction.
JP28122392A 1992-10-20 1992-10-20 Ultra-high voltage transformer secondary winding Expired - Lifetime JP2917081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28122392A JP2917081B2 (en) 1992-10-20 1992-10-20 Ultra-high voltage transformer secondary winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28122392A JP2917081B2 (en) 1992-10-20 1992-10-20 Ultra-high voltage transformer secondary winding

Publications (2)

Publication Number Publication Date
JPH06132143A true JPH06132143A (en) 1994-05-13
JP2917081B2 JP2917081B2 (en) 1999-07-12

Family

ID=17636086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28122392A Expired - Lifetime JP2917081B2 (en) 1992-10-20 1992-10-20 Ultra-high voltage transformer secondary winding

Country Status (1)

Country Link
JP (1) JP2917081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025957A1 (en) * 2001-09-19 2003-03-27 Metal Manufactures Limited Improved transformer winding
AU2002325092B2 (en) * 2001-09-19 2007-11-29 S C Power Systems, Inc. Improved transformer winding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025957A1 (en) * 2001-09-19 2003-03-27 Metal Manufactures Limited Improved transformer winding
US7233223B2 (en) 2001-09-19 2007-06-19 Metal Manufactures Limited Transformer winding
AU2002325092B2 (en) * 2001-09-19 2007-11-29 S C Power Systems, Inc. Improved transformer winding

Also Published As

Publication number Publication date
JP2917081B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
US10978241B2 (en) Transformers having screen layers to reduce common mode noise
US9934903B2 (en) Integrated capacitor and inductor with low parasitic inductance
JPH0296312A (en) Integrated power capacitor and inductor/transformer using insulated amorphous metal ribbon
US6275396B1 (en) Power feed for a submarine communications system
JP2917081B2 (en) Ultra-high voltage transformer secondary winding
CN110808168B (en) Dry-type high-voltage low-inductance coaxial peaking capacitor and manufacturing process thereof
JPH0350508B2 (en)
EP0951723A1 (en) A controllable inductor
JP2001509644A (en) Diode split high voltage transformer
EP0970493A1 (en) An arrangement at a conductor on high voltage potential
KR20030043652A (en) Winding for a transformer or a coil
JPH0334643B2 (en)
JPH0710175B2 (en) Multi-stage insulation transformer type high voltage generator
JPH11135335A (en) Insulating transformer
JP2545313Y2 (en) Instrument transformer
JPH07211549A (en) Electromagnetic equipment
JPH0620824A (en) Driving coil
JPS5932229Y2 (en) High voltage generator
JP2559553Y2 (en) Insulation transformer
RU2587977C1 (en) Internal combustion engine ignition coil
JPH0639442Y2 (en) Flyback transformer
JP5885180B1 (en) motor
JPH10256054A (en) Choke coil
JPH0537462Y2 (en)
JPH02187005A (en) Transformer device for high voltage generation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990324