JPH0613200A - High frequency accelerating cavity for charged particle accelerator - Google Patents

High frequency accelerating cavity for charged particle accelerator

Info

Publication number
JPH0613200A
JPH0613200A JP17078092A JP17078092A JPH0613200A JP H0613200 A JPH0613200 A JP H0613200A JP 17078092 A JP17078092 A JP 17078092A JP 17078092 A JP17078092 A JP 17078092A JP H0613200 A JPH0613200 A JP H0613200A
Authority
JP
Japan
Prior art keywords
cavity
frequency
charged particle
accelerating
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17078092A
Other languages
Japanese (ja)
Inventor
Masahiro Hara
雅弘 原
Takuya Kusaka
卓也 日下
Koji Inoue
浩司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Kobe Steel Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Kobe Steel Ltd
Priority to JP17078092A priority Critical patent/JPH0613200A/en
Publication of JPH0613200A publication Critical patent/JPH0613200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To improve the instability of a beam in a higher-order resonance mode by setting the sum total of cylindrical part length in an equator position on the inside surface of an accelerating cavity and a radius of curvature of an adjacent spherical surface constant, and making a ratio of the length to the radius of curvature differ from each other, and changing a cavity shape. CONSTITUTION:In a high frequency accelerating cavity 1, an inside surface shape is formed in an approximately spherical shape so as to be axially symmetrical with the charged particle beam axis 2 as its center. An input coupler installation hole 3 to supply acceleration energy to an equator position and a tuner installation hole 4 to adjust resonance frequency of the cavity are provided. When cavity length is 2XL1, straight line length in the equator position is L2, a radius of the cavity is R and a beam pipe diameter is R3, and when R1 and R2+L2 among these parameters are fixed, the resonance frequency in a higher-order resonance mode can be changed without changing an impedance value largely in a main higher-order resonance mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,電子等の荷電粒子を加
速する荷電粒子加速装置に用いられる高周波加速空洞に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency accelerating cavity used in a charged particle accelerator for accelerating charged particles such as electrons.

【0002】[0002]

【従来の技術】電子等の荷電粒子ビームを周回軌道上で
高エネルギーに加速して,シンクロトロン放射による放
射光を得る等の目的に使用される荷電粒子加速装置の加
速手段として高周波加速空洞が用いられる。高周波加速
空洞は,加速し蓄積する荷電粒子のエネルギーがGeV
級の荷電粒子加速装置になると,放電による加速電圧の
制限から1基の加速装置に複数台の高周波加速空洞が必
要になる。この複数台が設置される各高周波加速空洞は
全て同一の共振周波数による加速モードで励振される
が,高周波加速空洞には加速モードと共に高次共振モー
ドが存在する。高次共振モードは加速すべき荷電粒子を
減速させたり,進行方向に垂直な力を与える等の影響を
及ぼしビーム不安定の要因となり,高エネルギービーム
を高安定度で加速蓄積する加速装置にとっては深刻な問
題となる。特に前記のように複数台の加速空洞を使用す
るとき,同一仕様の加速空洞が配置されていると,それ
ぞれの高次共振モードの周波数が一致するため,悪影響
を及ぼす力のタイミングが荷電粒子の周回と同期して,
荷電粒子に与える影響が最大となる可能性が生じる。上
記高次共振モードによるビーム不安定を改善するために
なされる従来手段として,高周波加速空洞内に開口させ
たポートを塞ぐメクラ蓋の長さを調節することが行われ
る。例えば,1988年9月の高エネルギー物理学研究
所の報告資料によれば,同所における放射光実験施設の
2.5GeV電子蓄積リングのビーム不安定を,同施設
に用いられた4台の高周波加速空洞にメクラ蓋を装着し
て,その長さを調整することによって大幅に改善された
と報告されている。同資料によれば,図4に示すように
高周波加速空洞20にメクラ蓋26,27が装着され
る。同図は高周波加速空洞20のビーム下流側から見た
断面を示し,高周波加速空洞20の中央円はビームホー
ル25を示し,赤道位置に加速電力を供給する入力部2
1と,加速空洞20内の形状を変化させて高周波加速空
洞の共振周波数を調整するチューナ部22と共に,ポー
ト23,24が設けられており,このポート23,24
にメクラ蓋26,27が装着されている。メクラ蓋2
6,27は加速空洞20の一部を形成しているため,こ
の長さを調整することによって高次共振モードの共鳴周
波数を調整し,加速空洞に起因するビーム不安定が改善
されたと説明されている。
2. Description of the Related Art A high-frequency accelerating cavity is used as an accelerating means of a charged particle accelerator used for the purpose of accelerating a charged particle beam of electrons or the like to a high energy on an orbit to obtain synchrotron radiation. Used. In the high-frequency acceleration cavity, the energy of the charged particles that accelerate and accumulate is GeV.
In the case of a charged particle accelerator of a class, a plurality of high-frequency accelerating cavities are required in one accelerator due to the limitation of the acceleration voltage due to discharge. All of the high-frequency accelerating cavities in which the multiple units are installed are excited in the acceleration mode with the same resonance frequency, but the high-frequency accelerating cavities have a higher-order resonance mode together with the acceleration mode. The high-order resonance mode causes destabilization of charged particles to be accelerated, exerts a force perpendicular to the traveling direction, and causes beam instability, and is not suitable for an accelerator that accelerates and accumulates a high-energy beam. It becomes a serious problem. In particular, when using a plurality of accelerating cavities as described above, if accelerating cavities with the same specifications are arranged, the frequencies of the higher-order resonance modes match, so that the timing of the adversely affecting force is In synchronization with the lap,
There is a possibility that the influence on the charged particles will be maximized. As a conventional means for improving the beam instability due to the higher-order resonance mode, the length of the blind cover that closes the port opened in the high-frequency acceleration cavity is adjusted. For example, according to a report by the Institute for High Energy Physics in September 1988, the beam instability of the 2.5 GeV electron storage ring at the synchrotron radiation experimental facility at the same site was determined by the four high-frequency waves used at the facility. It is reported that it was significantly improved by attaching a blind cover to the acceleration cavity and adjusting the length. According to the same document, the blind cover 26, 27 is attached to the high-frequency acceleration cavity 20 as shown in FIG. This figure shows a cross section of the high-frequency acceleration cavity 20 as seen from the beam downstream side. The center circle of the high-frequency acceleration cavity 20 shows a beam hole 25, and the input section 2 for supplying acceleration power to the equator position.
1 and a tuner unit 22 that adjusts the resonance frequency of the high-frequency acceleration cavity by changing the shape of the acceleration cavity 20. Ports 23 and 24 are provided.
A blind cover 26, 27 is attached to the. Blind cover 2
6 and 27 form a part of the accelerating cavity 20, it is explained that by adjusting this length, the resonance frequency of the higher-order resonance mode is adjusted and the beam instability due to the accelerating cavity is improved. ing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,上記従
来例手段によるメクラ蓋は,加速空洞の赤道位置に開口
されたポートから挿入されてポート開口を塞ぐ円柱形状
の封止部材であり,加速空洞の周方向に対する一部分を
形成しているので,下記のごとき問題点がある。 (1)各高次共振モードに対しての共振周波数の変化率
が異なるため,特に変化率の小さいモードに対してはメ
クラ蓋の長さが大きくなり,加速空洞の加速電力効率の
低下を引き起こす。 (2)メクラ蓋の長さの設定は,定常運転中の高次共振
モードの共鳴周波数の推測により決定されているため,
大電力を入力した状態における高次共振モードの共鳴周
波数を推測することが難しいため,メクラ蓋の設計が困
難である。本発明は上記問題点に鑑みて創案されたもの
で,メクラ蓋を用いることなく加速空洞の形状変化によ
り高次共振モードによるビーム不安定を改善させる荷電
粒子加速装置の高周波加速空洞を提供することを目的と
する。
However, the blind cover by the above-mentioned conventional means is a cylindrical sealing member that is inserted from a port opened at the equator position of the acceleration cavity to close the port opening. Since it forms a part in the circumferential direction, it has the following problems. (1) Since the rate of change of the resonance frequency is different for each higher-order resonance mode, the length of the blind cover becomes large, especially for modes with a small rate of change, which causes a reduction in the acceleration power efficiency of the accelerating cavity. . (2) Since the setting of the blind cover length is determined by estimating the resonance frequency of the higher-order resonance mode during steady operation,
Designing a blind cover is difficult because it is difficult to estimate the resonance frequency of the higher-order resonance mode when a large amount of power is input. The present invention has been made in view of the above problems, and provides a high-frequency accelerating cavity of a charged particle accelerator for improving beam instability due to a higher-order resonance mode due to a shape change of the accelerating cavity without using a blind cover. With the goal.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,荷電粒子加速装置内に同一
共振周波数で励振される複数台の高周波加速空洞が配置
され,赤道位置に円筒部を含む略球面に形成された空洞
内に高周波エネルギーを供給するための入力部を備え,
該空洞内を通過する荷電粒子に高周波エネルギーを与え
て加速する荷電粒子加速装置の高周波加速空洞におい
て,前記複数の高周波加速空洞の空洞内面の赤道位置の
円筒部の長さと,該円筒部に隣接する球面の曲率半径と
の総和を一定にして,前記円筒部の長さと前記球面の曲
率半径との比率がそれぞれ異ならせたことを特徴とする
荷電粒子加速装置の高周波加速空洞として構成される。
In order to achieve the above-mentioned object, the means adopted by the present invention is that a plurality of high-frequency accelerating cavities excited at the same resonance frequency are arranged in a charged particle accelerating device, and are placed at the equator position. An input part for supplying high frequency energy is provided in a cavity formed in a substantially spherical surface including a cylindrical part,
In a high-frequency acceleration cavity of a charged particle accelerator for accelerating charged particles passing through the cavity by applying high-frequency energy, the length of the cylindrical portion at the equator position on the inner surfaces of the plurality of high-frequency acceleration cavities and the length of the cylindrical portion adjacent to the cylindrical portion. The ratio of the length of the cylindrical portion to the radius of curvature of the spherical surface is made different by making the total sum of the radius of curvature of the spherical surface constant and the radius of curvature of the spherical surface different from each other.

【0005】[0005]

【作用】本発明によれば,荷電粒子加速装置に複数台設
けられる高周波加速空洞の内面形状を決定する形状パラ
メータを所定の変化基準に基づき変化させ,加速モード
の共振周波数を同一に保ちつつ,高次共振モードの共振
周波数を個別に変化させることができるので,複数台の
高周波加速空洞それぞれの高次共振モードの共振周波数
を異なるものとすることができる。複数台設けられる高
周波加速空洞の高次共振モードの共振周波数が一致して
いると,高次共振モードが荷電粒子ビームに悪影響を及
ぼす力のタイミングが荷電粒子の周回と同期して,荷電
粒子に与える影響が最大になる問題点が生じるが,本発
明の場合には高次共振モードの共振周波数が異なってい
るので,その影響は軽減される。空洞内面の形状の変化
は,空洞内面の赤道位置の円筒部の長さと,該円筒部に
隣接する球面の曲率半径との総和を一定にして,前記円
筒部の長さと前記球面の曲率半径との比率をそれぞれ異
ならせることにより実現される。このように空洞内面の
形状パラメータの変化に対する容積の変化が大きいの
で,高次共振モードの共振周波数の変化が従来技術に比
べて大きく調整が容易となる。また,軸対称の変化構造
であるため,複数台の加速空洞の設計が容易であり,加
速ビームの安定性にも優れている。
According to the present invention, the shape parameters for determining the inner surface shape of the high-frequency accelerating cavities provided in a plurality of charged particle accelerators are changed based on a predetermined change criterion, and the resonance frequency of the acceleration mode is kept the same, Since the resonance frequency of the higher-order resonance mode can be changed individually, the resonance frequency of the higher-order resonance mode can be different for each of the plurality of high-frequency acceleration cavities. When the resonance frequencies of the higher-order resonance modes of the multiple high-frequency acceleration cavities are the same, the timing of the force that the higher-order resonance modes adversely affect the charged particle beam is synchronized with the orbit of the charged particles and Although the problem that the influence is maximized occurs, in the case of the present invention, the influence is reduced because the resonance frequencies of the higher-order resonance modes are different. The change of the shape of the inner surface of the cavity is performed by making the sum of the length of the cylindrical portion at the equator position on the inner surface of the cavity and the radius of curvature of the spherical surface adjacent to the cylindrical portion constant, and the length of the cylindrical portion and the radius of curvature of the spherical surface. It is realized by making the ratio of each different. As described above, since the change in the volume with respect to the change in the shape parameter of the inner surface of the cavity is large, the change in the resonance frequency of the higher-order resonance mode is larger than that in the conventional technique, and the adjustment is easy. In addition, since the structure is axisymmetric, it is easy to design multiple accelerating cavities and the stability of the accelerating beam is excellent.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の実施例に係る高周波加速空洞の断面図,図2は
図1に示す断面図における内面形状の1/4を形状パラ
メータと共に示す内面形状変化のパターン図,図3は加
速モードと主要な高次共振モードのインピーダンス値の
空洞内面形状に対する依存度を示すグラフである。図1
において,高周波加速空洞1は,荷電粒子ビーム軸2を
中心軸として軸対称に内面形状が略球形に形成されてお
り,赤道位置に加速エネルギーを供給するための入力カ
プラを設置するための入力カプラ設置用穴3と,空洞の
共振周波数を調整するチューナを設置するためのチュー
ナ設置用穴4とが開口されている。このような形状を有
する加速空洞は内面表面の最大電界値を軽減できるの
で,超電導材料を用いた高周波加速空洞として広く採用
されているものである。また,本加速空洞はリエントラ
ントなノーズコーンを有する加速空洞に比べて,高次共
振モードのインピーダンス値を軽減できる特徴を有する
ものでもある。本実施例における高周波加速空洞1が実
現しようとするところは,高周波加速空洞1に固有の高
次共振モードが荷電粒子に与える悪影響となる結合イン
ピーダンスを広い周波数上に分布させ,荷電粒子加速装
置に複数台が設置される場合に,各高周波加速空洞1の
内面形状を決定するパラメータを所定の変化基準によっ
て変えることにより,高次共振モードの共振周波数を変
化させる。さすれば,複数台が設置される各高周波加速
空洞1のそれぞれの高次共振モードの共振周波数は異な
るため,高次共振モードの周波数の一致による荷電粒子
に悪影響を与える力のタイミングが荷電粒子の軌道周回
と同期することがなく,高次共振モードによる悪影響が
軽減される。このとき,高周波加速空洞1の内面形状は
共振モードのインピーダンス値の大きさを決定するの
で,高次共振モードのインピーダンス値を増加させずに
共振周波数のみを変化させることが必要である。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. 1 is a cross-sectional view of a high-frequency acceleration cavity according to an embodiment of the present invention, FIG. 2 is a pattern diagram of inner surface shape change showing 1/4 of the inner surface shape in the cross-sectional view shown in FIG. 1 together with shape parameters, and FIG. FIG. 4 is a graph showing the dependence of the impedance values of the acceleration mode and the main higher-order resonance modes on the cavity inner surface shape. Figure 1
In the high frequency acceleration cavity 1, the inner surface is formed in a substantially spherical shape in axial symmetry about the charged particle beam axis 2 as a central axis, and an input coupler for installing an input coupler for supplying acceleration energy to the equator position is used. An installation hole 3 and a tuner installation hole 4 for installing a tuner for adjusting the resonance frequency of the cavity are opened. Since the acceleration cavity having such a shape can reduce the maximum electric field value on the inner surface, it is widely adopted as a high-frequency acceleration cavity using a superconducting material. In addition, this accelerating cavity has a feature that the impedance value of the higher-order resonance mode can be reduced compared to the accelerating cavity having a reentrant nose cone. The purpose of realizing the high-frequency acceleration cavity 1 in the present embodiment is to distribute the coupling impedance, which is an adverse effect of the higher-order resonance mode peculiar to the high-frequency acceleration cavity 1 on charged particles, over a wide frequency range, and to realize the charged particle accelerator. When a plurality of units are installed, the resonance frequency of the higher-order resonance mode is changed by changing the parameter that determines the inner surface shape of each high-frequency acceleration cavity 1 according to a predetermined change criterion. By the way, since the resonance frequencies of the higher-order resonance modes of the respective high-frequency acceleration cavities 1 in which a plurality of units are installed are different, the timing of the force that adversely affects the charged particles due to the coincidence of the frequencies of the higher-order resonance modes is the charged particle. It is not synchronized with the orbit of the, and the adverse effects of higher-order resonance modes are reduced. At this time, since the shape of the inner surface of the high-frequency acceleration cavity 1 determines the magnitude of the impedance value of the resonance mode, it is necessary to change only the resonance frequency without increasing the impedance value of the higher-order resonance mode.

【0007】この高周波加速空洞1の内面形状を変化さ
せる具体的な実施例について以下に説明する。図2は図
1に示した高周波加速空洞1の1/4部分の内面形状パ
ターンで,内面形状を決定する各パラメータと共に示さ
れている。図2において,空洞内面は外半径R1と内半
径R2の円弧と,各円弧半径R1,R2をつなぐ直線で
形成されている。また,空洞長さを2*L1,空洞赤道
位置の直線部長さをL2,空洞半径をR,ビームパイプ
径をR3とする。これら6種類の形状パラメータのう
ち,1つを変えることにより空洞固有の共振周波数は変
化する。各形状パラメータの変化が本形状の空洞インピ
ーダンスに与える影響は,図3に示す傾向にあることは
既にわかっている。即ち,代表的な共振モードに対して
形状パラメータR1及び(R2+L2)の依存度が高
い。従って,形状パラメータR1及び(R2+L2)を
固定すれば,主要な高次共振モードのインピーダンス値
を大きく変化させることなく,高次共振モードの共振周
波数を変化させることが可能となる。尚,図3におい
て,同図(a)は加速モードであるTM010 モード,
(b)(c)(d)は高次共振モードであるTM011
TM110 ,TM111 各モードのインピーダンス値の形状
パラメータ依存度を示している。上記空洞内面の形状パ
ラメータに対する各高次共振モードの変化データを用い
て,荷電粒子加速装置に複数台設置される高周波加速空
洞1のそれぞれの加速モードの共振周波数を同一に設定
すると共に,それぞれの高次共振モードの共振周波数を
異ならせる上記形状パラメータの設定の計算例を次に示
す。以下の計算は500MHz帯の高周波加速空洞1に
ついての設定例である。図2におけるR1=3cm,L1
=15cm,R3=5cmを固定とした。空洞径であるR
は,加速モードであるTM010 モードの共振周波数が5
00MHzとなるように調整した。そのうえで,R2と
L2との和を11cmに固定して,R2を8cmと10cmと
に変化させたときの主要な高次共振モードの特性を調べ
た。この結果は,表1に示すようにインピーダンス値が
高い3つの高次共振モードに対して,インピーダンス値
をほとんど変化させることなく,共振周波数を5MHz
以上変化させることができた。
A specific embodiment for changing the shape of the inner surface of the high frequency acceleration cavity 1 will be described below. FIG. 2 shows an inner surface shape pattern of a quarter portion of the high frequency acceleration cavity 1 shown in FIG. 1 and is shown together with each parameter for determining the inner surface shape. In FIG. 2, the inner surface of the cavity is formed by an arc having an outer radius R1 and an inner radius R2, and a straight line connecting the arc radii R1 and R2. Further, the cavity length is 2 * L1, the straight line length at the cavity equator is L2, the cavity radius is R, and the beam pipe diameter is R3. By changing one of these six types of shape parameters, the resonance frequency peculiar to the cavity changes. It is already known that the influence of changes in each shape parameter on the cavity impedance of this shape tends to be as shown in FIG. That is, the dependence of the shape parameters R1 and (R2 + L2) on the typical resonance mode is high. Therefore, if the shape parameters R1 and (R2 + L2) are fixed, it is possible to change the resonance frequency of the higher-order resonance mode without significantly changing the impedance value of the main higher-order resonance mode. Incidentally, in FIG. 3, (a) in FIG. 3 is a TM 010 mode which is an acceleration mode,
(B), (c), and (d) are high-order resonance modes TM 011 ,
It shows the shape parameter dependence of the impedance value in each of TM 110 and TM 111 modes. Using the change data of each higher-order resonance mode with respect to the shape parameter of the inner surface of the cavity, the resonance frequencies of the respective acceleration modes of the high-frequency acceleration cavities 1 to be installed in the charged particle accelerator are set to be the same, and A calculation example of setting the above-mentioned shape parameter that makes the resonance frequencies of the higher-order resonance modes different is shown below. The following calculation is a setting example for the high frequency acceleration cavity 1 in the 500 MHz band. R1 = 3 cm, L1 in FIG.
= 15 cm and R3 = 5 cm were fixed. R which is the cavity diameter
Has a resonance frequency of 5 in the TM 010 mode, which is the acceleration mode.
It was adjusted to be 00 MHz. Then, the characteristics of the main higher-order resonance modes were investigated when the sum of R2 and L2 was fixed at 11 cm and R2 was changed to 8 cm and 10 cm. As shown in Table 1, the results show that the resonance frequency is 5 MHz for three high-order resonance modes with high impedance values, with almost no change in impedance value.
I was able to change it.

【表1】 例えば,2台の高周波加速空洞が必要な荷電粒子加速装
置に,本実施例になる高周波加速空洞1を用いるとき,
2台の高周波加速空洞1の加速モードの共振周波数は同
一にして,1台はR2=8cm,L2=3cmの内面形状,
他の1台はR2=10cm,L2=1cmの内面形状とすれ
ば,加速する荷電粒子ビームを不安定にさせる高次共振
モードの共振周波数はそれぞれに異なっているので,各
高次共振モードがビームに与える悪影響が軽減される。
[Table 1] For example, when the high-frequency acceleration cavity 1 according to the present embodiment is used in a charged particle accelerator that requires two high-frequency acceleration cavities,
The resonance frequencies of the acceleration modes of the two high-frequency acceleration cavities 1 are the same, and one has an inner surface shape of R2 = 8 cm, L2 = 3 cm,
If the other one has an inner surface shape of R2 = 10 cm and L2 = 1 cm, the resonance frequencies of the higher-order resonance modes that make the accelerated charged particle beam unstable are different from each other. The adverse effect on the beam is reduced.

【0008】[0008]

【発明の効果】以上の説明の通り本発明によれば,荷電
粒子加速装置に複数台設けられる高周波加速空洞の内面
形状を決定する形状パラメータを所定の変化基準に基づ
き変化させ,加速モードの共振周波数を同一に保ちつ
つ,高次共振モードの共振周波数を個別に変化させるこ
とができるので,複数台の高周波加速空洞それぞれの高
次共振モードの共振周波数を異なるものとすることがで
きる。複数台設けられる高周波加速空洞の高次共振モー
ドの共振周波数が一致していると,高次共振モードが荷
電粒子ビームに悪影響を及ぼす力のタイミングが荷電粒
子の周回と同期して,荷電粒子に与える影響が最大にな
る問題点が生じるが,本発明の場合には高次共振モード
の共振周波数が異なっているので,その影響は軽減され
る。空洞内面の形状を変化は,空洞内面の赤道位置の円
筒部の長さと,該円筒部に隣接する球面の曲率半径との
総和を一定にして,前記円筒部の長さと前記球面の曲率
半径との比率がそれぞれ異ならせることにより実現され
る。このように空洞内面の形状パラメータの変化に対す
る容積の変化が大きいので,高次共振モードの共振周波
数の変化が従来技術に比べて大きく調整が容易となる。
また,軸対称の変化構造であるため,複数台の加速空洞
の設計が容易であり,加速ビームの安定性にも優れてい
る。特に中型や大型の荷電粒子加速装置において荷電粒
子ビームを安定に加速でき,エミッタンスが低く大電流
を蓄積することができる。
As described above, according to the present invention, the shape parameter that determines the inner surface shape of the high-frequency accelerating cavities provided in the charged particle accelerating apparatus is changed based on a predetermined change criterion, and resonance of the acceleration mode is achieved. Since the resonance frequencies of the higher-order resonance modes can be individually changed while keeping the frequencies the same, the resonance frequencies of the higher-order resonance modes of the plurality of high-frequency acceleration cavities can be made different. When the resonance frequencies of the higher-order resonance modes of the multiple high-frequency acceleration cavities are the same, the timing of the force that the higher-order resonance modes adversely affect the charged particle beam is synchronized with the orbit of the charged particles and Although the problem that the influence is maximized occurs, in the case of the present invention, the influence is reduced because the resonance frequencies of the higher-order resonance modes are different. The shape of the inner surface of the cavity is changed by making the sum of the length of the cylindrical portion at the equator position on the inner surface of the cavity and the radius of curvature of the spherical surface adjacent to the cylindrical portion constant, and by changing the length of the cylindrical portion and the radius of curvature of the spherical surface. It is realized by making the ratio of each different. As described above, since the change in the volume with respect to the change in the shape parameter of the inner surface of the cavity is large, the change in the resonance frequency of the higher-order resonance mode is larger than that in the conventional technique, and the adjustment is easy.
In addition, since the structure is axisymmetric, it is easy to design multiple accelerating cavities and the stability of the accelerating beam is excellent. Particularly in a medium- or large-sized charged particle accelerator, the charged particle beam can be stably accelerated, and the emittance is low and a large current can be accumulated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係る高周波加速空洞の断面
図。
FIG. 1 is a sectional view of a high-frequency acceleration cavity according to an embodiment of the present invention.

【図2】 図1の1/4に相当する部分の空洞内面形状
のパターン図。
FIG. 2 is a pattern diagram of a cavity inner surface shape of a portion corresponding to ¼ of FIG.

【図3】 加速モードと主要な高次共振モードのインピ
ーダンス値の空洞内面形状に対する 依存度を示すグラ
フ。
FIG. 3 is a graph showing the dependence of the impedance values of the acceleration mode and the main higher-order resonance modes on the cavity inner surface shape.

【図4】 従来例に係る高周波加速空洞の断面図。FIG. 4 is a sectional view of a high-frequency acceleration cavity according to a conventional example.

【符号の説明】[Explanation of symbols]

1…高周波加速空洞 3…入力カプラ設置用穴 L2…円筒部の長さの1/2 R2…球面の曲率半径 1 ... High-frequency accelerating cavity 3 ... Hole for installing input coupler L2 ... 1/2 of cylindrical length R2 ... Radius of curvature of spherical surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】荷電粒子加速装置内に同一共振周波数で励
振される複数台の高周波加速空洞が配置され,赤道位置
に円筒部を含む略球面に形成された空洞内に高周波エネ
ルギーを供給するための入力部を備え,該空洞内を通過
する荷電粒子に高周波エネルギーを与えて加速する荷電
粒子加速装置の高周波加速空洞において, 前記複数の高周波加速空洞の空洞内面の赤道位置の円筒
部の長さと,該円筒部に隣接する球面の曲率半径との総
和を一定にして,前記円筒部の長さと前記球面の曲率半
径との比率がそれぞれ異ならせたことを特徴とする荷電
粒子加速装置の高周波加速空洞。
1. A plurality of high-frequency accelerating cavities excited at the same resonance frequency are arranged in a charged particle accelerator, and high-frequency energy is supplied to the cavities formed in a substantially spherical surface including a cylindrical portion at an equator position. In a high frequency accelerating cavity of a charged particle accelerating device which is provided with an input part of ## EQU1 ## and accelerates charged particles passing through the cavity by applying high frequency energy, A high-frequency acceleration of a charged particle accelerator, characterized in that the ratio of the length of the cylindrical portion to the radius of curvature of the spherical surface is made different by keeping the sum of the radius of curvature of the spherical surface adjacent to the cylindrical portion constant. cavity.
JP17078092A 1992-06-29 1992-06-29 High frequency accelerating cavity for charged particle accelerator Pending JPH0613200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17078092A JPH0613200A (en) 1992-06-29 1992-06-29 High frequency accelerating cavity for charged particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17078092A JPH0613200A (en) 1992-06-29 1992-06-29 High frequency accelerating cavity for charged particle accelerator

Publications (1)

Publication Number Publication Date
JPH0613200A true JPH0613200A (en) 1994-01-21

Family

ID=15911240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17078092A Pending JPH0613200A (en) 1992-06-29 1992-06-29 High frequency accelerating cavity for charged particle accelerator

Country Status (1)

Country Link
JP (1) JPH0613200A (en)

Similar Documents

Publication Publication Date Title
US4118653A (en) Variable energy highly efficient linear accelerator
WO2006047439A1 (en) Enhanced rf window for waveguide used with particle accelerator
JP2546405B2 (en) Plasma processing apparatus and operating method thereof
Alesini et al. The C-Band accelerating structures for SPARC photoinjector energy upgrade
JPH0613200A (en) High frequency accelerating cavity for charged particle accelerator
JPS61213377A (en) Method and apparatus for plasma deposition
US20100060208A1 (en) Quarter-Wave-Stub Resonant Coupler
US11355317B2 (en) Methods and apparatus for dynamical control of radial uniformity in microwave chambers
US20040163952A1 (en) Magnetron with adjustable target positioning
EP4266348A1 (en) Ion source device with adjustable plasma density
Beuscher Superconducting 14‐GHz ECRIS at Jülich
FI79924C (en) HOEG FREQUENCY IONACCELERATOR.
JPH0240900A (en) Antenna for high frequency accelerating cavity
Baskaran et al. ECR ion source using slow wave structures
JPH07263348A (en) Plasma treating device
JP2001338799A (en) Radio-frequency acceleration cavity and circular accelerator
JP2983272B2 (en) High frequency cavity type electron gun
JP2000299070A (en) Magnetron
JPH09219300A (en) High frequency accelerator and its control method, and annular accelerator
JPH03283399A (en) Linear accelerator
JPH06168800A (en) Particle accelerator
Facco et al. The non-rfq resonators of the PIAVE linac
Izawa et al. Beam test of an RF damped cavity at the Photon Factory storage ring
Boussard Impact of superconducting cavities on LEP2 design
JPH05114499A (en) High frequency accelerating cavity