JPH0613146B2 - Arc welding method - Google Patents

Arc welding method

Info

Publication number
JPH0613146B2
JPH0613146B2 JP61063394A JP6339486A JPH0613146B2 JP H0613146 B2 JPH0613146 B2 JP H0613146B2 JP 61063394 A JP61063394 A JP 61063394A JP 6339486 A JP6339486 A JP 6339486A JP H0613146 B2 JPH0613146 B2 JP H0613146B2
Authority
JP
Japan
Prior art keywords
welding
short
short circuit
circuit
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61063394A
Other languages
Japanese (ja)
Other versions
JPS62234663A (en
Inventor
保良 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61063394A priority Critical patent/JPH0613146B2/en
Publication of JPS62234663A publication Critical patent/JPS62234663A/en
Publication of JPH0613146B2 publication Critical patent/JPH0613146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はアーク溶接方法に関し、特に溶接母材の開先
に沿って、消耗電極を移動しながらこの開先部分に溶接
を行う方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to an arc welding method, and more particularly to a method of welding a consumable electrode along a groove of a welding base metal while moving the consumable electrode. Is.

[従来技術] 第3図はこの種の溶接方法の一例を示したものであり、
1は溶接母材であり、この開先2は位置によって幅が異
なっている。開先2の裏側にはセラミック製の裏当材3
が開先2に沿って設置されている。
[Prior Art] FIG. 3 shows an example of this type of welding method.
Reference numeral 1 is a welded base metal, and the groove 2 has a different width depending on the position. Behind the groove 2 is a ceramic backing material 3
Are installed along the groove 2.

4は溶接トーチであり、台車5に装着され開先2と同方
向に並設されたレール6上を移動しつつ、該溶接トーチ
4から繰り出される消耗電極式の溶接ワイヤ7によって
開先2にアーク溶接によるビード8が形成される。第3
図に示すような開先ギャップが一定していない突合せ溶
接を行う場合、第3図のaa’の位置ですなわち第4図
イ,ロの位置で溶接条件を調整して適切なものにして
も、溶接条件を一定にしておくと溶接が進行するに従っ
て第3図bb’の位置では第5図イ,ロのようなものとな
る。すなわち、第4図イ,ロでは溶接部の裏波は出る
が、第5図イ,ロでは裏開先が溶かされず裏波は充分出
ていない。溶接ワイヤ7の位置を見ると、第4図イ,第
5図イでは非常に異なったものとなっている。
Numeral 4 is a welding torch, which is attached to a carriage 5 and moves on a rail 6 arranged in parallel in the same direction as the groove 2 while being moved to the groove 2 by a consumable electrode type welding wire 7 fed from the welding torch 4. A bead 8 is formed by arc welding. Third
When performing butt welding in which the groove gap is not constant as shown in the figure, the welding conditions are adjusted at the position aa 'in FIG. 3, that is, the positions in FIG. If the welding conditions are kept constant, as the welding progresses, the positions shown in FIGS. That is, the backside of the welded portion appears in FIGS. 4A and 4B, but the backside is not sufficiently generated in FIGS. 5A and 5B because the back groove is not melted. The position of the welding wire 7 is very different in FIGS. 4A and 5B.

一般に、溶接ワイヤ7の溶融速度をV、溶接速度をυと
すると、開先2の単位長さに供給される溶接金属量S
は、 S=V/υ ……(1) で表わされ、溶接金属高さHは開先ギャップGに応じ
て、 H=S/G=V/(υG) ……(2) となる。溶接金属の供給量Sや開先ギャップGが変化し
て溶接金属の高さHが表面張力により支えられる高さH
を越えると、すなわち、H>Hのなると開先2の溶
接進行方向に溶接金属が流れ出す。流出した溶接金属の
高さH以下になると、再び表面張力により支えられる
のでそれ以上は流出しない。流出長さd、すなわち、溶
接金属先端から溶接ワイヤ7の先端までの距離は(流出
長さdは小さいので、この範囲で開先ギャップGはほと
んど変化しないので) d=(H−H0)/H0=(V/υGH0)−1…(3) で与えられる。d<0の場合、溶接ワイヤ7が溶接金属
より先行し溶接ワイヤ7の先端は裏当材3を突き破る。
なぜならば、裏当材3はガラス繊維あるいはセラミック
でできたものであるから溶接電流が流れなくなるからで
ある。
Generally, when the melting rate of the welding wire 7 is V and the welding rate is υ, the weld metal amount S supplied to the unit length of the groove 2 is S.
Is represented by S = V / υ (1), and the weld metal height H is H = S / G = V / (υG) (2) depending on the groove gap G. The height H of the weld metal, which is supported by the surface tension, by changing the welding metal supply amount S and the groove gap G.
When it exceeds 0 , that is, when H> H 0 , the weld metal flows out in the welding progress direction of the groove 2. When the height of the weld metal that has flowed out is less than or equal to H 0, the weld metal is supported by the surface tension again and does not flow further. The outflow length d, that is, the distance from the weld metal tip to the tip of the welding wire 7 (since the outflow length d is small, the groove gap G hardly changes in this range) d = (H−H 0 ). / H 0 = (V / υGH 0 ) −1 (3) When d <0, the welding wire 7 precedes the welding metal and the tip of the welding wire 7 breaks through the backing material 3.
This is because the backing material 3 is made of glass fibers or ceramics, so that welding current does not flow.

d>>0の場合には、溶接金属に妨げられて開先裏への
アーク熱が充分与えられず、裏波は充分出ていない。従
って、流出長さdは0≦d≦dpの適切な範囲に保つ必要
がある。ただし、dpは適正最大距離である。
In the case of d >> 0, the weld metal hindered the arc heat to the back of the groove, and the back wave was not sufficiently generated. Therefore, the outflow length d needs to be maintained in an appropriate range of 0 ≦ d ≦ dp. However, dp is the proper maximum distance.

第4図イ,ロでは、溶接条件が適切に調整されているた
めdは0≦d≦dpの範囲内にあるが、第5図イ,ロでは
溶接条件V,υは第4図イ,ロと同一であるが、開先ギ
ャップGが小さくなったため、dがd>dpとなり裏波が
充分出ない。このとき、dを0≦d≦dpの適切範囲内に
保つためには、溶接ワイヤ7の溶融速度Vを小さくする
か又は溶接速度υを大きくする必要がある。
4 (a) and (b), d is within the range of 0 ≦ d ≦ dp because the welding conditions are properly adjusted, but in FIGS. 5 (a) and 5 (b), welding conditions V and υ are shown in FIG. Same as B, but d becomes d> dp because the groove gap G becomes smaller, and back waves are not sufficiently generated. At this time, in order to keep d within the appropriate range of 0 ≦ d ≦ dp, it is necessary to reduce the melting rate V of the welding wire 7 or increase the welding rate υ.

先に出願した特願昭59−241872号(特開昭61
−119380号公報)では、開先ギャップGの変動に
対して溶接速度あるいは消耗電極の溶接速度を制御する
方法について述べている。この方法では、溶接金属の先
端から溶接ワイヤ7の先端までの距離である流出長さd
が変化すると、これに対応して単位時間内の短絡回数あ
るいは短絡時間率が変化する。このときの単位時間内の
短絡回数あるいは短絡時間率を検出して、溶接金属先端
から溶接ワイヤ7の先端までの距離dが0≦d≦dpにな
るように、溶接速度あるいは消耗電極の溶融量が制御さ
れている。
The previously filed Japanese Patent Application No. 59-241872
No. 119380), a method of controlling the welding speed or the welding speed of the consumable electrode with respect to the variation of the groove gap G is described. In this method, the outflow length d, which is the distance from the tip of the weld metal to the tip of the welding wire 7.
Is changed, the number of short circuits per unit time or the short circuit time ratio is correspondingly changed. At this time, the number of short circuits in the unit time or the short circuit time rate is detected, and the welding speed or the melting amount of the consumable electrode is adjusted so that the distance d from the weld metal tip to the tip of the welding wire 7 is 0 ≦ d ≦ dp. Is controlled.

[発明が解決しようとする問題点] 第6図は、ワイヤの直径が1.2mm、溶接電流が150
A、溶接電圧が21Vであるときの溶接金属先端・ワイ
ヤ先端間距離d対短絡回数n特性であり、溶接電流が1
50A前後の低電流域で行う場合、溶接金属が短時間で
凝固するため、溶融池の振動が小さく、従って、第6図
に示すように、溶接金属先端とワイヤ先端間距離dに対
して、短絡回数n、すなわち短絡時間率ηの変化がほと
んどなくなるということがわかる。
[Problems to be Solved by the Invention] FIG. 6 shows that the wire diameter is 1.2 mm and the welding current is 150 mm.
A, the welding metal tip / wire tip distance d vs. short circuit count n characteristics when the welding voltage is 21 V, and the welding current is 1
When performed in a low current region of around 50 A, the weld metal solidifies in a short time, so the vibration of the molten pool is small, and as shown in FIG. 6, therefore, with respect to the distance d between the weld metal tip and the wire tip, It can be seen that there is almost no change in the number of short circuits n, that is, the short circuit time ratio η.

従って、上述の従来の方法では、例えば直径1.2mmの
ワイヤを用いて溶接電流200〜300Aの範囲で行う
下向溶接の場合には適しているが、立向溶接や上向溶接
のように溶接金属の垂れ落ちを防止するために、150
A前後の溶接電流である比較的低電流域で従来の方法を
用いて行う場合、短絡回数n又は短絡時間率ηを検出
し、この検出値で溶接速度あるいは消耗電極の溶融量を
制御して、溶接金属先端とワイヤ先端間距離dを0≦d
≦dp(dpは適正最大距離)になるように制御することが
困難になるという問題点があった。
Therefore, the above-mentioned conventional method is suitable for downward welding performed with a wire having a diameter of 1.2 mm at a welding current of 200 to 300 A, but is not suitable for vertical welding or upward welding. To prevent the weld metal from dripping, 150
When the conventional method is used in a relatively low current range of the welding current around A, the number of short circuits n or the short circuit time rate η is detected, and the welding speed or the melting amount of the consumable electrode is controlled by this detected value. , The distance d between the weld metal tip and the wire tip is 0 ≦ d
There is a problem that it is difficult to control so that ≦ dp (dp is an appropriate maximum distance).

[発明の目的] 本発明の目的は以上の問題点を解決し、比較的低電流域
でも精度よく開先寸法の変動に対して良好な溶接が行う
ことができる自動化の容易な溶接方法を提供することに
ある。
[Object of the Invention] An object of the present invention is to solve the above problems and to provide a welding method which is easy to automate and can perform good welding with high accuracy even when the groove size is relatively low. To do.

[発明の概要] 第7図は、ワイヤの直径が1.2mm、溶接電流が150
A、溶接電圧が21Vのときの短絡時間Tsの分布特性
を示す図である。
[Outline of the Invention] FIG. 7 shows that the wire diameter is 1.2 mm and the welding current is 150 mm.
FIG. 9A is a diagram showing a distribution characteristic of the short circuit time Ts when the welding voltage is 21V.

第7図において、短絡時間は、表面張力により溶滴が移
行する短絡時間Tsが2[msec]未満のA型短絡と、ピン
チ力により溶滴が移行する短絡時間Tsが2[msec]以上
のB型短絡に大別される。
In FIG. 7, the short-circuit time is such that the short-circuit time Ts for transferring droplets due to surface tension is less than 2 [msec] and the short-circuit time Ts for transferring droplets due to pinch force is 2 [msec] or more. It is roughly divided into B type short circuits.

第8図(A)は、第7図と同一の溶接条件の場合の短絡柱
長L対短絡時間Ts特性を示す図である。短絡柱長L
は、第8図(B)に示すように、短絡直後における溶接ワ
イヤ7の先端からビード8までの溶滴23の長さであ
る。
FIG. 8 (A) is a diagram showing a short-circuit column length L vs. short-circuit time Ts characteristic under the same welding conditions as in FIG. 7. Shorting column length L
Is the length of the droplet 23 from the tip of the welding wire 7 to the bead 8 immediately after the short circuit, as shown in FIG. 8 (B).

第8図(A)に示すように、短絡時間Tsが概略2[msec]
未満のA型短絡では、短絡柱長Lの変化に対して短絡時
間Tsはほぼ一定であるが、短絡時間Tsが概略2[mse
c]以上のB型短絡では短絡柱長Lが短くなるにつれて、
短絡時間Tsは長くなり、従って、短絡柱長Lは短絡時
間Tsに対しておおむね反比例の関係にある。
As shown in FIG. 8 (A), the short circuit time Ts is approximately 2 [msec].
In the A type short circuit of less than, the short circuit time Ts is almost constant with respect to the change of the short circuit column length L, but the short circuit time Ts is approximately 2 [mse.
In the B type short circuit above c], as the shorting column length L becomes shorter,
The short circuit time Ts becomes long, and therefore the short circuit column length L is roughly inversely proportional to the short circuit time Ts.

第9図は、第7図と同一の溶接条件の場合であって短絡
時間が2〜4[msec]のときの経過時間t対短絡柱長Lの
関係を示す図であり、短絡柱長Lは時間tが経過するに
つれて溶融池のある変化振幅内で変化する。すなわち、
溶融池の振動は溶接ワイヤ7の非溶融部先端と溶融池間
の距離である短絡柱長Lの時間変化で表わされ、短絡柱
長Lが溶融池の変化振幅の範囲内の短絡柱長値Lにな
る単位時間内の回数Nは、溶融池の振動数νと、N=2
νなる関係がある。
FIG. 9 is a diagram showing the relationship between the elapsed time t and the shorting column length L when the shorting time is 2 to 4 [msec] under the same welding conditions as in FIG. Changes within a certain change amplitude of the weld pool over time t. That is,
The vibration of the molten pool is represented by the time variation of the short-circuit column length L, which is the distance between the tip of the non-molten portion of the welding wire 7 and the molten pool, and the short-circuit column length L is the short-circuit column length value within the range of the variation amplitude of the molten pool. The number of times N per unit time that becomes L 0 is the frequency ν of the molten pool and N = 2
There is a relationship of ν.

従って、溶融池の振動数の変化を精度よく検出するため
には、短絡柱長Lが溶融池の変化振幅の範囲内のある値
になる単位時間内の回数、すなわち、短絡時間T
がある短絡柱長値Lに対応する短絡時間Ts0を示す単
位時間内の短絡回数ntを測定すればよいことがわかる。
すなわち、短絡時間Tsがある一つの値だけでは回数が
少ないので、短絡時間Tsがある範囲のものの回数を選
べば回数が多くなるので、溶融池の振動数の変化を検出
するのに適している場合がある。なお、単位時間内の短
絡回数のかわりに短絡時間率(短絡時間/(短絡時間+
アーク発生時間))を検出しても同様に溶融池の振動を
検出できる。
Therefore, in order to detect the change in the frequency of the molten pool with high accuracy, the number of times in the unit time that the short-circuit column length L becomes a certain value L 0 within the range of the variation amplitude of the molten pool, that is, the short-circuit time T s.
It can be seen that it is sufficient to measure the number of short circuits nt within a unit time, which indicates the short circuit time Ts 0 corresponding to a certain short circuit column length value L 0 .
That is, since the number of times is short when only one value of the short circuit time Ts is present, the number of times is short if the number of short circuit times Ts within a certain range is selected, which is suitable for detecting a change in the frequency of the molten pool. There are cases. The short circuit time ratio (short circuit time / (short circuit time +
Similarly, vibration of the molten pool can be detected by detecting the arc generation time)).

第10図に示すように、溶接金属8の先端と溶接ワイヤ
7の先端間の距離dが比較的大きい場合、溶接ワイヤ7
の先端は溶融池10のほぼ中央に位置しているので、溶
融池10の振動の影響を受け溶接ワイヤ7と溶融池10
間の短絡回数は多くなり短絡時間率は増す。しかし、第
11図に示すように、溶接金属8の先端と溶接ワイヤ7
の先端間の距離dが小さい場合、溶接ワイヤ7と溶接池
10の間の短絡回数は少なくなる(短絡時間率は小にな
る)。すなわち、溶接金属8の先端と溶接ワイヤ7の先
端間の距離dと特定の時間長を有する短絡の単位時間内
の短絡回数ntあるいは短絡時間率ηtには、上記のよ
うに比較的小電流で溶融池の振動が小さい場合でも明確
な関係があることが明らかとなった。
As shown in FIG. 10, when the distance d between the tip of the weld metal 8 and the tip of the welding wire 7 is relatively large, the welding wire 7
Since the tip of the welding pool is located almost in the center of the molten pool 10, the welding wire 7 and the molten pool 10 are affected by the vibration of the molten pool 10.
The number of short circuits in between increases and the short circuit time ratio increases. However, as shown in FIG. 11, the tip of the welding metal 8 and the welding wire 7
When the distance d between the tips is small, the number of short circuits between the welding wire 7 and the weld pool 10 is small (short circuit time ratio is small). That is, the distance d between the tip of the welding metal 8 and the tip of the welding wire 7 and the number of short circuits nt or the short circuit time rate ηt in a unit time of a short circuit having a specific time length are relatively small currents as described above. It became clear that there is a clear relationship even when the vibration of the molten pool is small.

第12図及び第13図はこれを実証した測定データであ
り、短絡時間Tsが2[msec]から4[msec]までの短絡回
数nt及び短絡時間率ηtを測定したものである。
FIG. 12 and FIG. 13 are measurement data demonstrating this, in which the number of short circuits nt and the short circuit time ratio ηt when the short circuit time Ts is from 2 [msec] to 4 [msec] are measured.

いま、ある開先ギャップGで適正溶接速度の場合、溶
接金属8の先端と溶接ワイヤ7の先端間距離がdとな
り、従って第4図イ,ロのようになり裏波が良好であ
る。このときの短絡回数はnt0(短絡時間率はηt0)とな
る。ワイヤ送給速度はそのままで開先ギャップGと小
さく(G<G)なると、(3)式の関係により溶接金属
8の先端と溶接ワイヤ7の先端間の距離d1は大きく(d1
>d0)なり、適正最大距離dpを越えると第5図イ,ロの
ように裏波は充分出ず短絡回数はnt1(短絡時間率η
t1)となり、nt1>ntp>nt0(ηt1>ηtp>ηt0)(ntp,
ηtpは、それぞれ適正最大距離dpのときの短絡回数及び
短絡時間率)となる。
Now, in the case of a certain groove gap G 0 and an appropriate welding speed, the distance between the tip of the weld metal 8 and the tip of the welding wire 7 becomes d 0 , and as shown in FIGS. . At this time, the number of short circuits is nt 0 (short circuit time ratio is ηt 0 ). When the wire feeding speed is kept as it is and the groove gap G 1 becomes small (G 1 <G 0 ), the distance d 1 between the tip of the welding metal 8 and the tip of the welding wire 7 becomes large (d 1
> D 0 ), and when the appropriate maximum distance dp is exceeded, backwater is not sufficiently generated as shown in Figs. 5A and 5B, and the number of short circuits is nt 1 (short circuit time ratio η
t 1 ), and nt 1 > ntp > nt 0 (ηt 1 > ηtp > ηt 0 ) (ntp,
ηtp is the number of short circuits and the short circuit time ratio) at the proper maximum distance dp.

次に、溶接速度υを増すと(3)式の関係により、dは小
さくなりd0に近づきntはnt0(ηtはηt0)に近づく。従っ
て、第4図イ,ロのようになり裏波は良好になる。開先
ギャップが広くなった場合は上記と逆の現象が生じ、溶
接速度υを遅くすることによりnt(ηt)をnt0(ηt0)に近
づけることができる。
Next, when the welding speed υ is increased, d becomes smaller due to the relationship of the equation (3), approaches d 0, and approaches nt 0 (ηt is ηt 0 ). Therefore, as shown in FIGS. 4A and 4B, the back wave becomes good. When the groove gap becomes wider, a phenomenon opposite to the above occurs, and nt (ηt) can be brought close to nt 0 (ηt 0 ) by decreasing the welding speed υ.

[発明の構成] この発明の溶接方法は上述の知見に基づいてなされたも
のであり、開先ギャップが変化する開先の形成された開
先形成部材間に間隔を有する溶接継手の開先裏側に裏当
材を設け、消耗電極をその開先に沿って低電流域でアー
ク溶接を行い、前記消耗電極と溶接母材との間で発生す
る短絡のうち、ピンチ力による溶滴移行によって生ずる
時間長の短絡を選択し、上記選択した短絡を単位時間当
たりの短絡回路又は短絡時間率として検出し、この検出
値を常に設定値に保つように溶接速度を制御することを
特徴とする。
[Structure of the Invention] The welding method of the present invention is made based on the above-mentioned findings, and the groove back side of the welded joint having the gap between the groove forming members having the groove with the groove gap changing. A backing material is provided on the consumable electrode, arc welding is performed in the low current region along the groove of the consumable electrode, and a short circuit generated between the consumable electrode and the welding base material is caused by transfer of droplets due to pinch force. It is characterized in that a short circuit of a time length is selected, the selected short circuit is detected as a short circuit or a short circuit time ratio per unit time, and the welding speed is controlled so that the detected value is always kept at a set value.

このように短絡回数nt(短絡時間率ηt)を検出し、この
検出値を適切な設定値nt0(ηt0)に保持するように溶接
速度υを制御することにより、溶接金属先端と溶接ワイ
ヤ先端間距離dを裏波の良好な範囲に保持することがで
きる。
In this way, the number of short circuits nt (short circuit time ratio ηt) is detected, and the welding speed υ is controlled so as to maintain this detected value at an appropriate set value nt 0 (ηt 0 ). It is possible to maintain the distance d between the tips in the range of favorable back waves.

[実施例] 以下にこの発明の一実施例について説明する。[Embodiment] An embodiment of the present invention will be described below.

第1図に短絡回数を検出して、溶接台車の速度を制御す
る装置の一実施例を示す。同図において溶接電極10の
出力側は溶接トーチ4と被溶接材1に接続されている。
11は溶接トーチ4と被溶接材1との間に接続された短
絡検出回路であり、溶接ワイヤ7と被溶接材1との間が
短絡したとき所定レベルの信号電圧をパルス発生回路1
3に出力する。短絡検出回路11には溶接ケーブルに分
流器12を設けて溶接電流を入力として加えてもよい。
FIG. 1 shows an embodiment of an apparatus for detecting the number of short circuits and controlling the speed of the welding carriage. In the figure, the output side of the welding electrode 10 is connected to the welding torch 4 and the material 1 to be welded.
Reference numeral 11 denotes a short-circuit detection circuit connected between the welding torch 4 and the material 1 to be welded. When the welding wire 7 and the material 1 to be welded are short-circuited, a signal voltage of a predetermined level is generated by the pulse generation circuit 1.
Output to 3. The short circuit detection circuit 11 may be provided with a shunt 12 on the welding cable and a welding current may be applied as an input.

パルス発生回路13に入力された信号電圧は波形整形さ
れ所定のハイレベルのパルス電圧とされた後、パルス幅
弁別回路14に出力され、パルス幅弁別回路14におい
て、2〜4[msec]の時間の間ハイレベルであるパルス電
圧のみを回数検出回路15に出力する。一方、ハイレベ
ルが2〜4[msec]の時間以外のパルスでは回数検出回路
15に出力されない。このパルス幅弁別回路14におい
て、弁別を行う上述の動作によって、短絡時間が2ない
し4[msec]の溶接ワイヤ7と母材1間の短絡のみが検出
され、2ないし4[msec]の短絡が生じた単位時間当たり
の回数が検出される。上記パルス幅は上述の短絡時間T
sに対応し、この回路14において、他のパルス幅弁別
時間を設定してもよい。
The signal voltage input to the pulse generation circuit 13 is shaped into a predetermined high-level pulse voltage and then output to the pulse width discrimination circuit 14, and the pulse width discrimination circuit 14 outputs the signal voltage for a time of 2 to 4 [msec]. Only the pulse voltage that is at the high level during the period is output to the number-of-times detection circuit 15. On the other hand, a pulse other than the time when the high level is 2 to 4 [msec] is not output to the frequency detection circuit 15. In the pulse width discrimination circuit 14, only the short circuit between the welding wire 7 and the base metal 1 having the short circuit time of 2 to 4 [msec] is detected by the above-described operation of the discrimination, and the short circuit of 2 to 4 [msec] occurs. The number of occurrences per unit time is detected. The pulse width is the short circuit time T
Corresponding to s, another pulse width discrimination time may be set in this circuit 14.

回数検出回路15は入力されたパルス電圧の回数を検出
し、単位時間当たりの短絡回数に対応した信号電圧をス
イッチ16のa端子を介して比較器20に出力するとと
もに、サンプリング回路17に出力する。
The number-of-times detection circuit 15 detects the number of times of the input pulse voltage, and outputs a signal voltage corresponding to the number of short circuits per unit time to the comparator 20 via the terminal a of the switch 16 and also to the sampling circuit 17. .

18a、18bおよび18cはそれぞれウィービング左端
検出回路、ウィービング中央検出回路及びウィービング
右端検出回路であり、各回路18a、18b及び18cは
それぞれウィービングの左端、中央部及び右端又はそれ
らの近傍で短絡が生じたときハイレベル信号をサンプリ
ング回路17に出力する。
Reference numerals 18a, 18b and 18c are a weaving left end detection circuit, a weaving center detection circuit and a weaving right end detection circuit, respectively. Each of the circuits 18a, 18b and 18c has a short circuit at or near the left end, center portion and right end of the weaving. At this time, a high level signal is output to the sampling circuit 17.

サンプリング回路17は、ウィービング左端検出回路1
8a、ウィービング中央検出回路18b及びウィービング
右端検出回路18cからのハイレベル信号に応答して、
入力された信号電圧を所定の周期でサンプリングを行
い、サンプリングされた信号を保持回路19に出力す
る。サンプリング回路17においては、上記各回路18
a、18b及び18cから出力されるハイレベル信号のい
ずれかを操作者の設定により選択して上記所望の動作を
行う。
The sampling circuit 17 is the weaving left end detection circuit 1
8a, in response to high level signals from the weaving center detection circuit 18b and the weaving right end detection circuit 18c,
The input signal voltage is sampled at a predetermined cycle, and the sampled signal is output to the holding circuit 19. In the sampling circuit 17, each of the above circuits 18
One of the high level signals output from a, 18b and 18c is selected by the operator to perform the desired operation.

保持回路19は入力されたサンプリング信号のレベルを
次のサンプリング信号が入力されるまで一時的に保持
し、その保持された信号をスイッチ16のb端子を介し
て比較器20に出力する。
The holding circuit 19 temporarily holds the level of the input sampling signal until the next sampling signal is input, and outputs the held signal to the comparator 20 via the b terminal of the switch 16.

スイッチ16は、短絡回路の検出をウィービングの中央
部又は端部で行うか否かを切り換える切換スイッチであ
り、短絡回数の検出をウィービングの中央部又は端部で
行う場合スイッチ16をb側に切り換え、一方短絡回数
の検出をウィービング位置にかかわらず行う場合スイッ
チ16をa側に切り換える。
The switch 16 is a switch for switching whether to detect the short circuit at the central portion or the end portion of the weaving. When detecting the number of short circuits at the central portion or the end portion of the weaving, the switch 16 is switched to the b side. On the other hand, when detecting the number of short circuits regardless of the weaving position, the switch 16 is switched to the a side.

21は予め設定される基準短絡回路nt0に対応する基準
電圧発生装置で、この基準電圧は比較回路20で回数検
出回路15又は保持回路19からの信号電圧と比較され
て、その差電圧を溶接台車モータ制御装置22に入力と
して加える。溶接台車モータ制御装置22の出力は溶接
台車モータ5aに加えられて溶接台車5の走行速度を調
整する。
Reference numeral 21 is a reference voltage generator corresponding to a preset reference short circuit nt 0. This reference voltage is compared with the signal voltage from the frequency detection circuit 15 or the holding circuit 19 by the comparison circuit 20, and the difference voltage is welded. It is added as an input to the truck motor control device 22. The output of the welding carriage motor controller 22 is applied to the welding carriage motor 5a to adjust the traveling speed of the welding carriage 5.

以下、スイッチ16をa側に切り換え、下向き突合わせ
溶接のI形開先の場合について説明すると、この場合、
溶接台車モータ制御装置22は、入力信号すなわち回数
検出回路15又は保持回路19の出力と基準電圧との差
が正のときは、この差電圧を無くするように溶接台車モ
ータ5aの速度を制御して台車速度を上げるように動作
する。すなわち、短絡回数ntが第2図に示す基準値M点
より高いN点にある場合は、溶接台車モータ制御装置2
2に正の値の入力信号が印加されて溶接台車モータ5a
の回転数をあげ、台車速度を上昇せしめる。溶接速度が
上昇すると第2図のように短絡回数ntの値は減少してゆ
き、基準値(M点)に達してその差が無くなり、溶接台車
モータ制御装置22の入力信号は零となって台車速度の
上昇が停止する。短絡回路ntが基準値Mより低いL点の
場合は、上記と逆の動作を行い、溶接速度が低下し短絡
回数ntの値は増加してゆき、基準値(M点)に達すると台
車速度の低下は停止する。従って、溶接台車速度は常に
短絡回数ntが基準値と合致するように調整されるため、
裏波の状態を常に良好に保つことができる。ある一定の
開先ギャップでの溶接速度υと短絡回数ntの関係を示す
と第2図のようになるので、この図から開先ギャップで
は溶接速度をυにすれば短絡回数が設定値nt0にな
り、溶接速度がυより遅れれば短絡回数が増し、溶接
速度がυより速ければ短絡回数は減ずることがわか
る。それ故、上述の制御により、溶接速度υと短絡回数
ntとを第2図の適正溶接速度域に保てば良好な裏波のあ
る溶接をすることができる。前記実施例は短絡回数ntで
溶接速度を調整する場合を示したが、短絡時間とアーク
発生時間を検出し両者の比、すなわち短絡時間率ηtで
溶接速度を調整するように構成してもよい。
Hereinafter, the case where the switch 16 is switched to the a side and the I-shaped groove of downward butt welding is described. In this case,
When the difference between the input signal, that is, the output of the frequency detection circuit 15 or the holding circuit 19 and the reference voltage is positive, the welding carriage motor control device 22 controls the speed of the welding carriage motor 5a so as to eliminate this difference voltage. It operates to increase the trolley speed. That is, when the number of short circuits nt is at the N point higher than the reference value M point shown in FIG. 2, the welding carriage motor control device 2
2 is applied with a positive input signal, and the welding carriage motor 5a
Increase the number of rotations to increase the trolley speed. When the welding speed increases, the value of the number of short circuits nt decreases as shown in FIG. 2, reaches the reference value (point M) and the difference disappears, and the input signal of the welding carriage motor control device 22 becomes zero. The bogie speed stops increasing. When the short circuit nt is at the L point, which is lower than the reference value M, the operation reverse to the above is performed, the welding speed decreases, the value of the number of short circuits nt increases, and when the reference value (M point) is reached, the truck speed is reached. The drop of the stops. Therefore, the welding carriage speed is constantly adjusted so that the number of short circuits nt matches the reference value.
It is possible to always maintain a good state of the back wave. The relationship between the welding speed υ and the number of short circuits nt in a certain groove gap is shown in Fig. 2. From this figure, if the welding speed is υ 0 in the groove gap, the number of short circuits will be the set value nt. It becomes 0 , and it can be seen that if the welding speed is delayed from υ 0 , the number of short circuits increases, and if the welding speed is faster than υ 0 , the number of short circuits decreases. Therefore, by the above control, the welding speed υ and the number of short circuits
If nt is kept in the proper welding speed range shown in FIG. 2, good backside welding can be performed. In the above embodiment, the welding speed is adjusted by the number of short circuits nt, but the welding speed may be adjusted by detecting the short circuit time and the arc generation time and by the ratio of both, that is, the short circuit time ratio ηt. .

以上の実施例では短絡時間が2[msec]から4[msec]まで
の短絡の回数あるいは短絡時間率について説明したが、
最適な短絡時間はワイヤ径、ワイヤ成分、溶接電流、溶
接電圧及び突出し長さ等によって異なるので、それぞれ
の場合に応じて決める必要がある。
Although the number of short circuits or the short circuit time ratio of the short circuit time from 2 [msec] to 4 [msec] has been described in the above embodiment,
The optimum short-circuit time varies depending on the wire diameter, wire component, welding current, welding voltage, protruding length, etc., so it must be determined according to each case.

本発明の実施例は下向突合せ溶接のI形開先の場合につ
いて説明したが、V形開先でウィービングを行う場合
は、スイッチ16をb側に切り換え、サンプリング回路
17においてウィービング中央検出回路18bからのハ
イレベル信号のみに応答してサンプリングを行うように
し、短絡回数ntあるいは短絡時間率ηtの検出を、ウィ
ービングの中央部もしくはその近傍で断続的に行う方法
が好ましい。
Although the embodiment of the present invention has been described for the case of the I-shaped groove of the downward butt welding, when weaving is performed with the V-shaped groove, the switch 16 is switched to the b side and the weaving center detection circuit 18b is used in the sampling circuit 17. It is preferable that sampling is performed only in response to the high level signal from the above, and the number of short circuits nt or the short circuit time ratio ηt is intermittently detected at or near the center of the weaving.

また、横向姿勢溶接の場合、溶接線に対して斜め上下方
向にウィービングするが、その溶接金属が重力の影響で
下に垂れ下がり厚みが上下不均一になる。従って、スイ
ッチ16をb側に切り換え、サンプリング回路17にお
いてウィービング左端検出回路18a又はウィービング
右端検出回路18cからのハイレベル信号のみに応答し
てサンプリングを行うようにし、短絡回数nt又は短絡時
間率ηtの検出をウィービングの上端又は下端のいずれ
かの端部もしくはその近傍で断続的に行う方法が好まし
い。
Further, in the case of horizontal posture welding, weaving is performed diagonally to the welding line in the vertical direction, but the weld metal hangs downward due to the effect of gravity, and the thickness becomes uneven in the vertical direction. Therefore, the switch 16 is switched to the b side so that the sampling circuit 17 performs sampling in response to only the high level signal from the weaving left end detection circuit 18a or the weaving right end detection circuit 18c. A method in which detection is performed intermittently at either the upper end or the lower end of the weaving or in the vicinity thereof is preferable.

さらに、本発明は下向姿勢に限らず、立向姿勢、上向姿
勢にも適用できることは云うまでもない。
Further, it goes without saying that the present invention is applicable not only to the downward posture but also to the vertical posture and the upward posture.

その他、溶接金属先端とワイヤ先端の距離が常に一定し
ているので、下方へ与えられるアーク熱は一定となり、
下層への溶込みが一定となる。従って、多層溶接での2
層目以降の溶込みの安定化(制御)や薄板での溶落防止
にも使用できる。
In addition, since the distance between the weld metal tip and the wire tip is always constant, the arc heat applied downward is constant,
Penetration into the lower layer becomes constant. Therefore, 2 in multi-layer welding
It can also be used for stabilizing (controlling) penetration after the first layer and preventing burn-through in thin plates.

[発明の効果] 以上のように本発明によれば、ピンチ力による溶滴移行
によって生ずる時間長の短絡を選択し、上記選択した短
絡を単位時間当たりの短絡回数又は短絡時間率として検
出し、この検出値を常に設定値に保つように溶接速度を
制御するので、短絡柱長すなわち溶接池の状態に応じた
溶接ができ、開先寸法が変化する溶接の場合でも良好な
溶接が可能となる。そして、各種溶接姿勢での片面裏波
溶接にて開先ギャップの変動に対応して安定した溶け込
みのある表・裏波溶接ビードを完全無人化で得ることが
できる。
[Effects of the Invention] According to the present invention as described above, a short circuit having a time length caused by droplet transfer due to a pinch force is selected, and the selected short circuit is detected as the number of short circuits per unit time or the short circuit time ratio, Since the welding speed is controlled so that this detected value is always kept at the set value, welding can be performed according to the length of the short-circuiting column, that is, the state of the weld pool, and good welding is possible even in the case where the groove dimension changes. . Then, in single-sided backside welding in various welding positions, it is possible to completely and unmanned obtain a front / backside welding bead having a stable penetration corresponding to the change in the groove gap.

【図面の簡単な説明】 第1図はこの発明の溶接方法に適用される制御装置の一
実施例を示すブロック図、第2図は溶接速度と短絡回数
の関係を示すグラフ、第3図は従来の溶接方法を説明す
るための斜視図、第4図イは第3図のc−c’線断面
図、第4図ロは第3図のa−a’線断面図、第5図イは
第3図のc−c’線断面図、第5図ロは第3図のb−
b’線断面図、第6図は低電流域における溶接金属先端
とワイヤ先端間の距離と短絡回数の関係を説明するため
の図、第7図は低電流域における短絡時間の分布を示す
図、第8図(A)は短絡柱長Lと短絡時間Tsの関係を示
す図、第8図(B)は短絡柱長Lを示す図、第9図は時間
t対短絡柱長Lの関係を示す図、第10図と第11図は
溶接条件と溶融池の関係を示す側断面図、第12図と第
13図は溶接金属先端と溶接ワイヤ先端間の距離と特定
の短絡時間を有する短絡回数あるいは短絡時間率の関係
を示すグラフ図である。 1……溶接母材、2……開先、3……裏当材、4……溶
接トーチ、5……台車、6……レール、7……溶接ワイ
ヤ、8……溶接金属、10……溶接電源、11……短絡
検出回路、13……パルス発生回路、14……パルス幅
弁別回路、15……回数検出回路、16……切換スイッ
チ、17……サンプリング回路、18a……ウィービン
グ左端検出回路、18b……ウィービング中央検出回
路、18c……ウィービング右端検出回路、19……保
持回路、20……比較器、21……基準電圧発生装置、
22……台車モータ制御装置、23……溶滴。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of a control device applied to the welding method of the present invention, FIG. 2 is a graph showing the relationship between welding speed and the number of short circuits, and FIG. FIG. 4A is a sectional view taken along the line cc ′ of FIG. 3, FIG. 4B is a sectional view taken along the line aa ′ of FIG. 3, and FIG. Is a sectional view taken along the line cc 'of FIG. 3, and FIG.
b'line sectional view, FIG. 6 is a diagram for explaining the relationship between the distance between the weld metal tip and the wire tip in the low current region and the number of short circuits, and FIG. 7 is a diagram showing the distribution of the short circuit time in the low current region. FIG. 8 (A) is a diagram showing the relationship between the short-circuit column length L and the short-circuit time Ts, FIG. 8 (B) is a diagram showing the short-circuit column length L, and FIG. 9 is the relationship between the time t and the short-circuit column length L. FIG. 10, FIG. 10 and FIG. 11 are side sectional views showing the relationship between welding conditions and molten pool, and FIGS. 12 and 13 have the distance between the weld metal tip and the welding wire tip and a specific short-circuit time. It is a graph which shows the relationship of the number of short circuits or a short circuit time rate. 1 ... Welding base metal, 2 ... Groove, 3 ... Backing material, 4 ... Welding torch, 5 ... Truck, 6 ... Rail, 7 ... Welding wire, 8 ... Welding metal, 10 ... ... welding power source, 11 ... short circuit detection circuit, 13 ... pulse generation circuit, 14 ... pulse width discrimination circuit, 15 ... number detection circuit, 16 ... changeover switch, 17 ... sampling circuit, 18a ... weaving left end Detection circuit, 18b ... Weaving center detection circuit, 18c ... Weaving right end detection circuit, 19 ... Holding circuit, 20 ... Comparator, 21 ... Reference voltage generator,
22: Cart motor control device, 23: Droplet.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】開先ギャップが変化する開先の形成された
開先形成部材間に間隔を有する溶接継手の開先裏側に裏
当材を設け、消耗電極をその開先に沿って低電流域でア
ーク溶接を行い、前記消耗電極と溶接母材との間で発生
する短絡のうち、ピンチ力による溶滴移行によって生ず
る時間長の短絡を選択し、上記選択した短絡を単位時間
当たりの短絡回数又は短絡時間率として検出し、この検
出値を常に設定値に保つように溶接速度を制御すること
を特徴とするアーク溶接方法。
1. A backing material is provided on the back side of a groove of a welded joint having a gap between groove forming members having a groove gap changing, and a consumable electrode is provided with a low electric charge along the groove. Perform arc welding in the basin, select a short circuit of a time length caused by droplet transfer due to pinch force from among the short circuits generated between the consumable electrode and the welding base metal, and select the selected short circuit per unit time. An arc welding method characterized by detecting the number of times or a short circuit time rate, and controlling the welding speed so that the detected value is always kept at a set value.
【請求項2】上記短絡回数あるいは上記短絡時間率の検
出をウィービングの中央部もしくはその近傍で断続的に
行うことを特徴とする特許請求の範囲第1項記載のアー
ク溶接方法。
2. The arc welding method according to claim 1, wherein the number of short circuits or the short circuit duration is detected intermittently at or near the center of the weaving.
【請求項3】上記短絡回数あるいは上記短絡時間率の検
出をウィービングの端部もしくはその近傍で断続的に行
なうことを特徴とする特許請求の範囲第1項記載のアー
ク溶接方法。
3. The arc welding method according to claim 1, wherein the number of short circuits or the short circuit time ratio is detected intermittently at or near the end of the weaving.
JP61063394A 1986-03-19 1986-03-19 Arc welding method Expired - Lifetime JPH0613146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61063394A JPH0613146B2 (en) 1986-03-19 1986-03-19 Arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61063394A JPH0613146B2 (en) 1986-03-19 1986-03-19 Arc welding method

Publications (2)

Publication Number Publication Date
JPS62234663A JPS62234663A (en) 1987-10-14
JPH0613146B2 true JPH0613146B2 (en) 1994-02-23

Family

ID=13228046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61063394A Expired - Lifetime JPH0613146B2 (en) 1986-03-19 1986-03-19 Arc welding method

Country Status (1)

Country Link
JP (1) JPH0613146B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270516A (en) * 1991-04-01 1993-12-14 Matsushita Electric Industrial Co., Ltd. Arc welding machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501051A (en) * 1973-05-09 1975-01-08
JPS5823402B2 (en) * 1975-07-16 1983-05-14 住友化学工業株式会社 Sakusan vinyl - Ethylene material
JPS61119380A (en) * 1984-11-15 1986-06-06 Kobe Steel Ltd Arc welding method

Also Published As

Publication number Publication date
JPS62234663A (en) 1987-10-14

Similar Documents

Publication Publication Date Title
KR101642548B1 (en) Short arc welding system
US4877941A (en) Power supply system for consumable electrode arc welding and method of controlling the same
JPS6325868B2 (en)
CN100509242C (en) Consumable electrode gas protection arc welding method with constant current performance
CN108555421A (en) A kind of droplet transfer control device and its control method based on pulse matching electrode TIG
EP0873810A1 (en) Consumable electrode type pulsed arc welder and controlling method for the same
US2997571A (en) Electric arc welding
JPH0694074B2 (en) Hot wire TIG welding method and welding apparatus
JP2000079479A (en) Method for controlling current waveform in consumable electrode gas shielded arc welding and its welding equipment
JP2973714B2 (en) Pulse arc welding equipment
JPH0613146B2 (en) Arc welding method
JPH05200548A (en) Nonconsumable arc welding method and equipment
JPS60255276A (en) Consumable electrode type arc welding method
JPH06218546A (en) Consumable electrode type pulse arc welding equipment
JPS6250221B2 (en)
JP3195513B2 (en) Power control method of power supply for consumable electrode type gas shield pulse arc welding
JPH08267239A (en) Output control method of power source for consumable electrode type gas shielded pulsed arc welding
JPH06142927A (en) Consumable electrode pulse arc welding method
JPH0839252A (en) Control method of welding wire position and device therefor
JPH034310B2 (en)
EP1583631B1 (en) Welding quality control
JP2697955B2 (en) Pulse welding equipment
JPS61119380A (en) Arc welding method
JP2001259840A (en) Arc length controller
JPH069741B2 (en) Short-circuit transfer welding power source control method and apparatus