JPH06131065A - Solar power generator system - Google Patents

Solar power generator system

Info

Publication number
JPH06131065A
JPH06131065A JP4282571A JP28257192A JPH06131065A JP H06131065 A JPH06131065 A JP H06131065A JP 4282571 A JP4282571 A JP 4282571A JP 28257192 A JP28257192 A JP 28257192A JP H06131065 A JPH06131065 A JP H06131065A
Authority
JP
Japan
Prior art keywords
current
section
solar cell
current value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4282571A
Other languages
Japanese (ja)
Inventor
Toru Yoshioka
徹 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sawafuji Electric Co Ltd
Original Assignee
Sawafuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sawafuji Electric Co Ltd filed Critical Sawafuji Electric Co Ltd
Priority to JP4282571A priority Critical patent/JPH06131065A/en
Publication of JPH06131065A publication Critical patent/JPH06131065A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To make a device simple with a rapid control response on the solar power generator system equipped with solar cells and a voltage conversion section and controlling the operation point so as to provide the maximum power. CONSTITUTION:The system is provided with a 1st current measurement section 3 measuring the current value of a solar cell 1, a solar cell 4 for sensor, a 2nd current measurement section 5 measuring the short current value of the solar cell 4, a current conversion section 6 multiplying the short current value measured by the section 5 by constant to output, and a comparison section 7 comparing the current value measured by the 1st current measurement section 3 with the current value outputted by the section 6 and outputting a control signal to the section 2 based on the ratio of two current values. By adjusting the voltage conversion ratio in the section 2 by means of the control signal, the current value measured by the section 3 and the current value outputted by the section 6 are controlled to be made closer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池と該太陽電池
の電圧を変換して出力する電圧変換部とを少なくとも備
える太陽光発電システムに関し、特に、最大電力を得ら
れるように太陽電池の動作点を制御する太陽光発電シス
テムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar power generation system including at least a solar cell and a voltage conversion unit for converting and outputting the voltage of the solar cell, and more particularly to a solar power generation system for obtaining maximum power. The present invention relates to a solar power generation system that controls an operating point.

【0002】太陽電池の出力特性は日射量、温度等の変
化により大幅に変動する。よって、効率良く太陽エネル
ギーを取り出すために最大出力制御が必要である。
The output characteristics of solar cells fluctuate significantly depending on changes in the amount of solar radiation, temperature, and the like. Therefore, maximum output control is required to efficiently extract solar energy.

【0003】[0003]

【従来の技術】図4は、従来の構成例を示す。図4にお
いて、1は太陽電池、2は電圧変換部、10は負荷、1
1は電力演算部、12は電力増減識別及び動作点制御
部、Viは太陽電池の電圧、Ii は太陽電池の電流、V
o は電圧変換部の出力電圧、Ioは電圧変換部の出力電
流を表わす。
2. Description of the Related Art FIG. 4 shows a conventional configuration example. In FIG. 4, 1 is a solar cell, 2 is a voltage conversion unit, 10 is a load, 1
1 is a power calculation unit, 12 is a power increase / decrease identification and operating point control unit, V i is the voltage of the solar cell, I i is the current of the solar cell, V i
o represents the output voltage of the voltage converter, and Io represents the output current of the voltage converter.

【0004】電圧変換部2は、昇圧型チョッパ又は降圧
型チョッパ若しくは両チョッパから成り、電圧を変換す
る。電力演算部11は、太陽電池の出力電圧Vi と出力
電流Ii とを測定し、ViとIi との積を求める。
The voltage converter 2 is composed of a step-up chopper, a step-down chopper, or both choppers, and converts the voltage. The power calculator 11 measures the output voltage V i and the output current I i of the solar cell, and obtains the product of V i and I i .

【0005】電力増減識別及び動作点制御部12は、電
力の増減を識別しつつ、動作点を移動させる制御信号を
電圧変換部2へ出力する。図5は、太陽電池の電流−電
圧、電力特性を示す。図5において、曲線pは電圧、曲
線qは電力の特性を示す。
The power increase / decrease identification and operating point control unit 12 outputs a control signal for moving the operating point to the voltage conversion unit 2 while identifying the increase / decrease in power. FIG. 5 shows current-voltage and power characteristics of the solar cell. In FIG. 5, the curve p shows the voltage and the curve q shows the electric power.

【0006】太陽電池を有効に使用するためには、最大
電力が得られる動作点Pmaxで動作させることが必要
である。ところで、電圧変換部2により、太陽電池の電
圧Vi をn倍して、出力電圧V o を出力すると、電圧変
換部の出力電流Io は太陽電池の電流Ii の1/n倍に
なる。負荷抵抗Ro をVo /Io とすると、太陽電池か
ら見た負荷抵抗Ri は、
In order to use the solar cell effectively, the maximum
It is necessary to operate at the operating point Pmax at which electric power can be obtained
Is. By the way, the voltage conversion unit 2 is used to
Pressure ViN times the output voltage V oIs output, the voltage change
Output current I of converteroIs the current I of the solar celli1 / n times
Become. Load resistance RoTo Vo/ IoIf so, is it a solar cell?
Load resistance RiIs

【0007】[0007]

【数1】 [Equation 1]

【0008】となる。このように電圧比nを変えること
により、太陽電池から見た負荷を任意に変えることがで
きる。従って、実際の負荷Ro を固定したまま、太陽電
池の動作点を移動させることができる。
[0008] By changing the voltage ratio n in this way, the load viewed from the solar cell can be arbitrarily changed. Therefore, the operating point of the solar cell can be moved while the actual load Ro is fixed.

【0009】図6は、従来の制御フローチャートを示
す。ステップ30では、電力演算部11が電力を演算す
る。ステップ31では、動作点移動方向をa方向へ、即
ち、電圧変換比nを増大させて、電流Ii を増大させる
方向に設定する。
FIG. 6 shows a conventional control flowchart. In step 30, the power calculator 11 calculates power. In step 31, the operating point movement direction is set in the a direction, that is, in the direction in which the voltage conversion ratio n is increased and the current I i is increased.

【0010】ステップ32では、動作点を設定方向へ移
動させる。ステップ33では、電力演算部11が電力を
演算する。ステップ34では、今回の電力演算結果を前
回の電力演算結果と比較し、電力が増加したか否かを識
別し、増加した場合には、ステップ32へ、増加しなか
った場合には、ステップ35へ進む。
In step 32, the operating point is moved in the set direction. In step 33, the power calculator 11 calculates power. In step 34, the current power calculation result is compared with the previous power calculation result to identify whether or not the power has increased. If the power has increased, the process proceeds to step 32. If the power has not increased, the process proceeds to step 35. Go to.

【0011】ステップ35では、動作点の移動方向をそ
れまで設定されていた方向とは逆の方向に設定する。即
ち、それまでa方向に設定されていた時には、b方向
へ、b方向に設定されていた時には、a方向へ設定す
る。
In step 35, the moving direction of the operating point is set to the opposite direction to the direction set up to that point. That is, when the direction a has been set so far, the direction b is set, and when the direction b has been set, the direction a is set.

【0012】上記ステップ30ないし32及びステップ
34,35は電力増減識別及び動作点制御部12が実行
する。
The above steps 30 to 32 and steps 34 and 35 are executed by the power increase / decrease identification and operating point controller 12.

【0013】[0013]

【発明が解決しようとする課題】上述の如く、従来の技
術によれば、電力を演算し、増減を調べ、その結果によ
り動作点の移動方向を変えるという操作をしなければな
らないので装置が複雑になる。また、動作点を操作した
後、電力が変化するのを待たなければならないので応答
が遅くなる。動作点を徐々に最大電力点へ近づけるの
で、現時点の動作点と最大電力点が大幅に離れている
と、最大電力点までの移動に時間がかかる。応答を速く
するために動作点の移動速度を速くすると、太陽電池に
おいて、入射光や負荷量の変化に対する出力の変化が追
いつけず、出力が安定する前に動作点が移動してしまい
制御不能になる恐れがある。
As described above, according to the conventional technique, it is necessary to calculate the electric power, check the increase and decrease, and change the moving direction of the operating point according to the result, so that the device is complicated. become. In addition, after operating the operating point, it is necessary to wait for the power to change, so the response becomes slow. Since the operating point is gradually approached to the maximum power point, it takes time to move to the maximum power point if the operating point at the present time and the maximum power point are significantly apart from each other. If the moving speed of the operating point is increased in order to speed up the response, the output changes due to changes in incident light and load amount cannot be caught up in the solar cell, and the operating point moves before the output stabilizes, making it uncontrollable. There is a risk of becoming.

【0014】本発明は、装置を簡単化し、入射光や負荷
量の変化に対する応答を速くすることを目的とする。
An object of the present invention is to simplify the device and to speed up the response to changes in incident light and load amount.

【0015】[0015]

【課題を解決するための手段】図1は、本発明の原理構
成図を示す。図1において、1は太陽電池、2は電圧変
換部、3は第1の電流測定部、4はセンサ用太陽電池、
5は第2の電流測定部、6は電流換算部、7は比較部を
表す。
FIG. 1 is a block diagram showing the principle of the present invention. In FIG. 1, 1 is a solar cell, 2 is a voltage conversion unit, 3 is a first current measuring unit, 4 is a sensor solar cell,
Reference numeral 5 is a second current measuring unit, 6 is a current converting unit, and 7 is a comparing unit.

【0016】電圧変換部2は太陽電池1の電圧を変換し
て出力する。第1の電流測定部3は上記太陽電池1の電
流値を測定する。第2の電流測定部5はセンサ用太陽電
池4の短絡電流値を測定する。
The voltage converter 2 converts the voltage of the solar cell 1 and outputs it. The first current measuring unit 3 measures the current value of the solar cell 1. The 2nd electric current measurement part 5 measures the short circuit current value of the solar cell 4 for sensors.

【0017】電流換算部6は上記第2の電流測定部5が
測定した短絡電流値を予め決められた定数倍して出力す
る。比較部7は上記第1の電流測定部3が測定した電流
値と上記電流換算部6が出力する電流値とを比較して、
該2つの電流値の比に基づいて、制御信号を電圧変換部
2へ出力する。
The current conversion unit 6 multiplies the short circuit current value measured by the second current measurement unit 5 by a predetermined constant and outputs the result. The comparing unit 7 compares the current value measured by the first current measuring unit 3 with the current value output by the current converting unit 6,
A control signal is output to the voltage conversion unit 2 based on the ratio of the two current values.

【0018】[0018]

【作用】比較部7は、上記制御信号により、電圧変換部
2における電圧変換比を調整して太陽電池の動作点を移
動させることにより、上記第1の電流測定部3が測定し
た電流値と上記電流換算部6が出力する電流値とを近づ
けるように制御する。ここで、上記第1の電流測定部3
が測定した電流値と上記電流換算部6が出力する電流値
との比の大きさにより、現時点の動作点と最大電力動作
点との距離を知ることができる。従って、当該距離に応
じて動作点を動作させることにより、動作点を最大電力
動作点に急速に近づけることが出来る。
The comparator 7 moves the operating point of the solar cell by adjusting the voltage conversion ratio in the voltage converter 2 according to the control signal, so that the current value measured by the first current measuring unit 3 is The current value output by the current conversion unit 6 is controlled to be close to each other. Here, the first current measuring unit 3
The distance between the current operating point and the maximum power operating point can be known from the magnitude of the ratio between the current value measured by and the current value output by the current conversion unit 6. Therefore, by operating the operating point according to the distance, the operating point can be brought close to the maximum power operating point rapidly.

【0019】[0019]

【実施例】図2は単結晶Siの太陽電池の電流−電力特
性の一例を示す。図2において、曲線r1は光量(単位
はmW/sq.cmとする)が20の時の、曲線r2は
光量が50の時の、曲線r3は光量が80の時の、曲線
r4は光量が100の時の電流−電力特性を示す。曲線
r1ないしr4から、夫々の光量の時の、短絡電流及び
最大電力時の電流は表1に示すように読み取ることがで
きる。また、短絡電流と最大電力時の電流との比は、光
量によらずほぼ0.82前後であることがわかる。
EXAMPLE FIG. 2 shows an example of current-power characteristics of a single crystal Si solar cell. In FIG. 2, the curve r1 is when the light quantity (unit is mW / sq.cm) is 20, the curve r2 is when the light quantity is 50, the curve r3 is when the light quantity is 80, and the curve r4 is the light quantity. The current-power characteristic at 100 is shown. From the curves r1 to r4, the short-circuit current and the current at the maximum power can be read as shown in Table 1 at each light amount. Further, it can be seen that the ratio between the short-circuit current and the current at the maximum power is about 0.82 regardless of the light amount.

【0020】[0020]

【表1】 [Table 1]

【0021】図3はアモルファスSi太陽電池の電流−
電力特性の一例を示す。図3において、曲線S1ないし
S5は、夫々、光量が20,40,60,80,100
の時の電流電力特性を示す。曲線S1ないしS5から、
夫々の光量の時の、短絡電流及び最大電力時の電流は表
2に示すように読み取られる。また、短絡電流と最大電
力時の電流との比は、光量によらずほぼ0.74前後で
あることがわかる。
FIG. 3 shows the current of an amorphous Si solar cell--
An example of power characteristics is shown. In FIG. 3, curves S1 to S5 indicate that the light intensity is 20, 40, 60, 80, 100, respectively.
The current power characteristics at the time of are shown. From the curves S1 to S5,
The short-circuit current and the current at the maximum power at each light amount are read as shown in Table 2. Further, it can be seen that the ratio between the short-circuit current and the current at the maximum power is about 0.74 regardless of the light amount.

【0022】[0022]

【表2】 [Table 2]

【0023】従って、短絡電流を知ることができれば、
最大電力時の電流は、その太陽電池に対応する係数を短
絡電流に掛けることにより、知ることができる。図1
は、本発明の原理構成図である。概略については、既に
記述したので、各部について、詳述する。
Therefore, if the short-circuit current can be known,
The current at the maximum power can be known by multiplying the short circuit current by a coefficient corresponding to the solar cell. Figure 1
FIG. 3 is a principle configuration diagram of the present invention. Since the outline has already been described, each part will be described in detail.

【0024】センサ用太陽電池4はメインの太陽電池1
の短絡電流を推定するために設けられている。センサ用
太陽電池4はメインの太陽電池1に照射される光量と同
じ光量を得られるようにメインの太陽電池1の近傍に、
かつ、平行に設置されるとともに、メインの太陽電池1
と同じ材質のものが用いられる。また、センサ用太陽電
池4はメインの太陽電池1よりも規模が小さいことは言
うまでもない。上記の如くセンサ用太陽電池4を設けれ
ば、センサ用太陽電池4の短絡電流とメインの太陽電池
1の短絡電流との比は当該2つの電池の面積比に等しく
なる。従って、電流換算部6は、センサ用太陽電池4の
短絡電流に上記面積比を掛けて、メインの太陽電池1の
短絡電流を計算する。さらに、電流換算部6は、メイン
の太陽電池1の最大電力時の電流を求めるために、メイ
ンの太陽電池1の短絡電流に、表1及び表2で説明した
短絡電流と最大電力時の電流との電流比を掛けて、最大
電力時の電流を求める。例えば、当該2つの太陽電池が
単結晶Siの場合には、0.82を掛け、アモルファス
Siの場合には0.74を掛ける。
The sensor solar cell 4 is the main solar cell 1.
It is provided to estimate the short circuit current of the. The sensor solar cell 4 is provided in the vicinity of the main solar cell 1 so that the same amount of light as the main solar cell 1 can be obtained.
Besides, they are installed in parallel and the main solar cell 1
The same material as is used. It goes without saying that the sensor solar cell 4 is smaller in scale than the main solar cell 1. If the sensor solar cell 4 is provided as described above, the ratio of the short circuit current of the sensor solar cell 4 to the short circuit current of the main solar cell 1 becomes equal to the area ratio of the two cells. Therefore, the current conversion unit 6 calculates the short-circuit current of the main solar cell 1 by multiplying the area ratio by the short-circuit current of the sensor solar cell 4. Further, the current conversion unit 6 calculates the short-circuit current of the main solar cell 1 by using the short-circuit current and the maximum power current described in Table 1 and Table 2 in order to obtain the current of the main solar cell 1 at the maximum power. The current at maximum power is obtained by multiplying the current ratio with. For example, 0.82 is multiplied when the two solar cells are single crystal Si, and 0.74 is multiplied when the two solar cells are amorphous Si.

【0025】比較部7は、上記電流換算部6が算出した
最大電力時の電流と、太陽電池の電流とを比較して、そ
の比の大きさに応じて、当該両電流値が近づくように動
作点を移動させる。例えば、最大電力時の電流がメイン
太陽電池1の電流よりも大きい時には、メイン太陽電池
1の電流を増加するように、即ち、電圧変換部2の電圧
変換比を増加させるように電圧変換部2を制御する。さ
らに具体的に説明する。数式1から、メイン太陽電池1
の電流は電圧変換比の2乗に比例することがわかるの
で、上記求めた最大電力時の電流がメイン太陽電池電流
のm倍であるときには、電圧変換比を現時点の値にmの
2乗根を掛けた値に変更すれば、メイン太陽電池電流を
最大電力時の電流にすることができる。
The comparison unit 7 compares the current at the maximum power calculated by the current conversion unit 6 with the current of the solar cell, and the two current values approach each other according to the magnitude of the ratio. Move the operating point. For example, when the current at the maximum power is larger than the current of the main solar cell 1, the voltage conversion unit 2 increases the current of the main solar cell 1, that is, increases the voltage conversion ratio of the voltage conversion unit 2. To control. A more specific description will be given. From Equation 1, the main solar cell 1
It can be seen that the current of is proportional to the square of the voltage conversion ratio. Therefore, when the current at the maximum power obtained above is m times the main solar cell current, the voltage conversion ratio is set to the current value with the square root of m. By changing to a value multiplied by, the main solar cell current can be the current at the maximum power.

【0026】電圧変換部2は、昇圧チョッパ回路又は降
圧チョッパ回路或いは両チョッパ回路からなり、上記比
較部7により、制御される。
The voltage conversion section 2 is composed of a step-up chopper circuit, a step-down chopper circuit, or both chopper circuits, and is controlled by the comparison section 7.

【0027】[0027]

【発明の効果】上記の如く本発明によれば、従来のよう
な複雑な演算や、動作点が最大電力点まで徐々に移動し
てくるのを待つ必要がなく、応答が速くなる。また、複
雑な演算や、その結果により動作点移動方向を変更する
機構を必要としないので、装置が簡単になる。
As described above, according to the present invention, it is not necessary to wait for the complicated calculation and the gradual movement of the operating point to the maximum power point as in the prior art, and the response becomes faster. Further, since the complicated calculation and the mechanism for changing the moving direction of the operating point according to the result are not required, the apparatus becomes simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理構成図である。FIG. 1 is a principle configuration diagram of the present invention.

【図2】単結晶Siの太陽電池の電流−電力特性の一例
を示す。
FIG. 2 shows an example of current-power characteristics of a monocrystalline Si solar cell.

【図3】アモルファスSi太陽電池の電流−電力特性の
一例を示す。
FIG. 3 shows an example of current-power characteristics of an amorphous Si solar cell.

【図4】従来の構成例を示す。FIG. 4 shows a conventional configuration example.

【図5】太陽電池の電流−電圧、電力特性を示す。FIG. 5 shows current-voltage and power characteristics of a solar cell.

【図6】従来の制御フローチャートを示す。FIG. 6 shows a conventional control flowchart.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 電圧変換部 3 第1の電流測定部 4 センサ用太陽電池 5 第2の電流測定部 6 電流換算部 7 比較部 1 Solar Cell 2 Voltage Converter 3 First Current Measuring Section 4 Solar Cell for Sensor 5 Second Current Measuring Section 6 Current Conversion Section 7 Comparison Section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池(1)と該太陽電池(1)の電
圧を変換して出力する電圧変換部(2)とを少なくとも
備える太陽光発電システムにおいて、 上記太陽電池(1)の電流値を測定する第1の電流測定
部(3)と、 センサ用太陽電池(4)と、 該センサ用太陽電池(4)の短絡電流値を測定する第2
の電流測定部(5)と、 上記第2の電流測定部(5)が測定した短絡電流値を予
め決められた定数倍して出力する電流換算部(6)と、 上記第1の電流測定部(3)が測定した電流値と上記電
流換算部(6)が出力する電流値とを比較して、該2つ
の電流値の比に基づいて、制御信号を電圧変換部(2)
へ出力する比較部(7)とを設け、 上記制御信号により、電圧変換部(2)における電圧変
換比を調整することにより、上記第1の電流測定部
(3)が測定した電流値と上記電流換算部(6)が出力
する電流値とを近づけるように制御することを特徴とす
る太陽光発電システム。
1. A solar power generation system comprising at least a solar cell (1) and a voltage conversion section (2) for converting and outputting the voltage of the solar cell (1), wherein the current value of the solar cell (1) is A first current measuring section (3) for measuring the temperature, a solar cell (4) for sensor, and a second short circuit current value for measuring the short circuit current value of the solar cell (4) for sensor
A current measuring section (5), a current converting section (6) for multiplying the short circuit current value measured by the second current measuring section (5) by a predetermined constant, and outputting the current. The current value measured by the section (3) is compared with the current value output by the current conversion section (6), and the control signal is converted into the voltage conversion section (2) based on the ratio of the two current values.
And a current value measured by the first current measuring unit (3) by adjusting the voltage conversion ratio in the voltage converting unit (2) by the control signal. A solar power generation system, which is controlled so that the current value output by the current conversion unit (6) approaches.
JP4282571A 1992-10-21 1992-10-21 Solar power generator system Pending JPH06131065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4282571A JPH06131065A (en) 1992-10-21 1992-10-21 Solar power generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4282571A JPH06131065A (en) 1992-10-21 1992-10-21 Solar power generator system

Publications (1)

Publication Number Publication Date
JPH06131065A true JPH06131065A (en) 1994-05-13

Family

ID=17654224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4282571A Pending JPH06131065A (en) 1992-10-21 1992-10-21 Solar power generator system

Country Status (1)

Country Link
JP (1) JPH06131065A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614570B1 (en) * 1998-03-30 2006-10-24 산요덴키가부시키가이샤 Power supply unit
JP2010061263A (en) * 2008-09-02 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> Maximum power control device and maximum power control method
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
CN102375467A (en) * 2010-08-18 2012-03-14 联咏科技股份有限公司 Power control device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614570B1 (en) * 1998-03-30 2006-10-24 산요덴키가부시키가이샤 Power supply unit
JP2010061263A (en) * 2008-09-02 2010-03-18 Nippon Telegr & Teleph Corp <Ntt> Maximum power control device and maximum power control method
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
CN102375467A (en) * 2010-08-18 2012-03-14 联咏科技股份有限公司 Power control device and method

Similar Documents

Publication Publication Date Title
US9657718B2 (en) Extremum seeking-based control method for maximum output tracking of a wind turbine generator
JP3382434B2 (en) Battery power supply voltage control device and voltage control method
KR0161560B1 (en) Power generating device
US5654883A (en) Power control apparatus and method and power generating system using them
EP0762597A2 (en) Power control method and apparatus for battery power supply and battery power supply system
US20100117623A1 (en) System and method of determining maximum power point tracking for a solar power inverter
JPH08227324A (en) Photovoltaic power generator
CN103019294B (en) Maximum power point tracking (MPPT) method of self-adaption disturbance frequency and step
KR101311528B1 (en) Device and Method for Tracing Maximum Power of Solar Cell
CN104571256B (en) A kind of photo-voltaic power supply extremum search method considering illumination variation
JP2006039634A (en) Solar battery power generating device
CN105425895B (en) A kind of new variable step photovoltaic maximal power tracing system and method
CN104199507B (en) Photovoltaic maximal power tracing system and method based on P U curvature characteristics
US20050051209A1 (en) System and method for implementing virtual solar cell
CN108681363A (en) The MPPT control method of constant pressure combination variable step conductance increment
JPH06131065A (en) Solar power generator system
Wang et al. An independent maximum power extraction strategy for wind energy conversion systems
JP3493644B2 (en) Maximum power tracking method for photovoltaic system
US10845836B2 (en) Method for tracking control of maximum power point of solar cell and tracking device
CN104303128B (en) The control device of solar cell
CN116800165A (en) Automatic frequency conversion energy-saving speed regulation control system
JP6546501B2 (en) Power storage device
JP3461228B2 (en) Solar cell output characteristic measuring device and solar cell output characteristic measuring method
CN110362147B (en) Power reserve control method and system based on photovoltaic system
JP2014081919A (en) Device and method for tracking maximum power point of power supply