JPH0613102A - Dispersion type fuel cell power plant and its operation control - Google Patents

Dispersion type fuel cell power plant and its operation control

Info

Publication number
JPH0613102A
JPH0613102A JP4168684A JP16868492A JPH0613102A JP H0613102 A JPH0613102 A JP H0613102A JP 4168684 A JP4168684 A JP 4168684A JP 16868492 A JP16868492 A JP 16868492A JP H0613102 A JPH0613102 A JP H0613102A
Authority
JP
Japan
Prior art keywords
fuel cell
power
plant
operation control
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4168684A
Other languages
Japanese (ja)
Other versions
JP3100768B2 (en
Inventor
Masaru Ogawa
賢 小川
Atsushi Takeda
淳 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP04168684A priority Critical patent/JP3100768B2/en
Publication of JPH0613102A publication Critical patent/JPH0613102A/en
Application granted granted Critical
Publication of JP3100768B2 publication Critical patent/JP3100768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a dispersion type power plant which is freely adjustable to restricted site conditions and has less output deterioration of the plant even at the time of plant shutdown due to periodic inspection and failure and provide the operation control of the power plant which is less degradation of generation efficiency even in a low load band. CONSTITUTION:Plural small-power fuel cell generating units 11 are dimensionally arranged in a hierarchically structed building 12. For an operation control, a power plant operating pattern is set in each of power units 11 depending on power load or in each of unit groups of plural units each.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば電気事業用等に
好ましく用いることができる分散配置型燃料電池発電所
およびその運転制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed fuel cell power plant which can be preferably used, for example, for electric utilities and an operation control method thereof.

【0002】[0002]

【従来の技術】現在、リン酸型燃料電池の開発は数百K
W級迄の需要家隣接設置の業務用オンサイト型と、5M
W〜10MW級の都市近郊設置の電気事業用分散配置型
の両者の開発が推進されている。このような状況におい
て、分散配置型発電所の単機容量構成については、例え
ば「富士時報」、第63巻第11号(1990年、富士電
機(株)内「富士時報」編集部発行)の720頁、745
頁、776頁に記載されている様に、5MW程度以上の
モジュールとすることが通常の考え方であった。また、
「リン酸燃料電池発電技術の将来展望」第2報(付属資料
編)(昭和61年1月通商産業省工業技術院発行)の3−
7頁にも単機容量が6.7MW程度で計画されているこ
とが記載されている。
2. Description of the Related Art Currently, the development of phosphoric acid fuel cells is several hundreds of kilograms.
On-site type for business use, which is installed adjacent to customers up to W class, and 5M
Development of both distributed type for electric power companies installed in the suburbs of W-10 MW class is being promoted. In such a situation, for the single-unit capacity configuration of the distributed power plant, see, for example, “Fuji Times”, Volume 63, No. 11 (1990, Fuji Electric Co., Ltd. “Fuji Times” editorial department) 720. Page, 745
As described on page 776, it was a normal idea to use a module of about 5 MW or more. Also,
3rd Report of "Future Outlook of Phosphoric Acid Fuel Cell Power Generation Technology" (Attachment) (January 1986, Ministry of International Trade and Industry, Agency of Industrial Science and Technology)
Page 7 also states that the unit capacity is planned to be about 6.7 MW.

【0003】例えば図8、図9および図10は前記「リ
ン酸燃料電池発電技術の将来展望」3−22〜3−24
頁の中に示された20MW級分散配置型発電所の1階、
2階平面図および立面図であり、図において1は発電単
位となる6MWの燃料電池発電モジュールであり、2は
燃料電池スタック、3は改質器、4は電池冷却水および
原料スチームの気水分離用の水蒸気分離器、5は電池出
力の直流を交流に変換する直交変換装置、6は原料スチ
ーム用の補給水の精製を行う水処理装置、7は冷却塔で
ある。
For example, FIGS. 8, 9 and 10 show the above-mentioned “Future Outlook of Phosphoric Acid Fuel Cell Power Generation Technology” 3-22 to 3-24.
The first floor of the 20MW class distributed power plant shown in the page,
FIG. 2 is a plan view and an elevation view of the second floor, in which 1 is a 6 MW fuel cell power generation module as a power generation unit, 2 is a fuel cell stack, 3 is a reformer, 4 is battery cooling water, and steam of raw material steam. A water vapor separator for water separation, 5 is an orthogonal converter for converting direct current of battery output into alternating current, 6 is a water treatment device for purifying makeup water for raw material steam, and 7 is a cooling tower.

【0004】次に動作について説明する。図8から図1
0において、改質器3に原燃料の天然ガスと水蒸気分離
器4で発生したスチームを混合投入して改質器3にて発
生した水素リッチガスを燃料電池スタック2に導き、燃
料電池スタック2にて発生した直流出力を直交変換装置
5にて交流出力に変換して電力系統(図示省略)に電力を
送電する。ここで送電単位は6MWのモジュール1毎で
あり、定期点検や故障時にブラント停止させる必要が生
じた時も6MWモジュール1単位で停止させることにな
る。
Next, the operation will be described. 8 to 1
At 0, the natural gas of the raw fuel and the steam generated in the steam separator 4 are mixed and injected into the reformer 3, and the hydrogen-rich gas generated in the reformer 3 is guided to the fuel cell stack 2 and then to the fuel cell stack 2. The generated DC output is converted into an AC output by the quadrature conversion device 5, and the power is transmitted to a power system (not shown). Here, the unit of power transmission is every 6 MW module 1, and even when it becomes necessary to stop the blunt at the time of periodic inspection or failure, the 6 MW module is stopped for each unit.

【0005】また燃料電池スタック2は発電時に冷却す
る必要があり、その為の電池冷却水を水蒸気分離器4の
液相部分より燃料電池スタック2に導いている。上記の
原料スチームは発電とともに消費されるので補給水が必
要となり、補給水精製の為の設備が水処理装置6であ
る。またプラント起動時のプラント内昇温媒体及びプラ
ント停止時のプラント内パージに窒素を用いるので、窒
素供給設備(図示省略)が必要となる。これら補給水と窒
素は全6MWモジュール1に共通に必要なユーティリテ
ィーであるので、水処理装置6と窒素供給設備は全6M
Wモジュール1分の容量を備えた共通設備としている。
6MWの容量を賄う各コンポーネント機器の大きさは、
かなり大きな寸法となり、自ずと機器配置が制限され、
例えば図9、図10の様な機器配置となり、6MWモジ
ュール分に対応する敷地寸法は28m/3×42m(39
2平方メートル)、建屋高さ約15mが必要となる。
Further, the fuel cell stack 2 needs to be cooled at the time of power generation, and the cell cooling water for that purpose is guided to the fuel cell stack 2 from the liquid phase portion of the water vapor separator 4. Since the above-mentioned raw material steam is consumed along with power generation, makeup water is required, and the equipment for purifying makeup water is the water treatment device 6. Further, since nitrogen is used for the heating medium in the plant at the time of starting the plant and for the purging in the plant at the time of stopping the plant, a nitrogen supply facility (not shown) is required. These makeup water and nitrogen are utilities required for all 6MW modules 1 in common, so the water treatment device 6 and nitrogen supply equipment are all 6M.
It is a common facility with a capacity of one W module.
The size of each component device that covers the capacity of 6 MW is
The size is quite large and the device layout is naturally limited,
For example, the equipment layout is as shown in Fig. 9 and Fig. 10, and the site size corresponding to 6 MW module is 28 m / 3 x 42 m (39
2 m2) and a building height of about 15 m is required.

【0006】次に5MW級モジュール1の発電効率の出
力に対する特性曲線の一例を図11に示す。発電効率3
6%以上の高効率となる出力領域は60%負荷以上の場
合であり、それ以下の低負荷帯では著しく発電効率が低
下する。5MW級モジュール単位で送電しているので運
転方法の工夫による発電効率の改善は見込めず、図11
の特性曲線で一義的に発電効率は決まってしまう。
Next, FIG. 11 shows an example of a characteristic curve of the output of the power generation efficiency of the 5 MW class module 1. Power generation efficiency 3
The output region with high efficiency of 6% or more is when the load is 60% or more, and the power generation efficiency is significantly reduced in the low load zone below that. Since power is transmitted in units of 5 MW class module, improvement of power generation efficiency cannot be expected by devising the operation method.
The power generation efficiency is uniquely determined by the characteristic curve of.

【0007】[0007]

【発明が解決しようとする課題】従来の分散配置型燃料
電池発電所は以上のように、単機容量が5MW級程度以
上のモジュールとなっているので、各コンポーネント機
器も大容量となり、プラント建設上、配置が一義的に決
まってしまい、敷地形状に自由度がなかった。またプラ
ントの定期点検、故障の際にも5MW級単位で停止せね
ばならず、発電所としての出力低下が大きく信頼性に問
題があった。更に、5MW級モジュール単位で評価する
と低負荷帯での発電効率はモジュール自身の特性で決ま
る低い効率となり、運転方法による改善の余地はなかっ
た。
As described above, since the conventional distributed fuel cell power plant is a module whose unit capacity is about 5 MW or more, each component device also has a large capacity, which is a factor in plant construction. The layout was uniquely determined, and there was no freedom in the site shape. In addition, the plant must be stopped in 5 MW class even during periodic inspections and breakdowns, and the output of the power plant was large and reliability was a problem. Furthermore, when evaluated on a 5 MW class module basis, the power generation efficiency in the low load band was low efficiency determined by the characteristics of the module itself, and there was no room for improvement depending on the operating method.

【0008】この発明は上記のような課題を解決するた
めになされたものであり、プラントの敷地形状が自由に
選択できるとともに、プラントの定期点検や故障時に出
力低下の少ない信頼性の高い分散配置型燃料電池発電所
を得ることを目的とする。また、この発電所に適した部
分負荷高効率の運転制御方法を提供することを目的とす
る。
The present invention has been made in order to solve the above problems, and the site shape of the plant can be freely selected, and the distributed arrangement is highly reliable with less output reduction at the time of periodic inspection and failure of the plant. Type fuel cell power plant. Moreover, it aims at providing the operation control method of partial load high efficiency suitable for this power station.

【0009】[0009]

【課題を解決するための手段】この発明に係る分散配置
型燃料電池発電所は、小電力燃料電池発電ユニットの複
数台を立体的に配置してなるものである。また、複数台
の小電力燃料電池発電ユニットを備えた発電所におい
て、電力負荷に応じて、各小電力燃料電池発電ユニット
を、個別に制御するようにしたものである。さらに、複
数台の小電力燃料電池発電ユニットを備えた発電所にお
いて、小電力燃料電池発電ユニットを複数台ずつグルー
プ化し、電力負荷に応じて、各グループ別に制御するよ
うにしたものである。
A distributed fuel cell power plant according to the present invention comprises a plurality of small power fuel cell power generation units arranged three-dimensionally. Further, in a power plant equipped with a plurality of small power fuel cell power generation units, each small power fuel cell power generation unit is individually controlled according to the power load. Further, in a power plant equipped with a plurality of small power fuel cell power generation units, a plurality of small power fuel cell power generation units are grouped into groups, and each group is controlled according to a power load.

【0010】[0010]

【作用】この発明における小電力燃料電池発電ユニット
は、立体的に配置されていることにより、必要とする敷
地面積を減少させ、敷地形状の選択においても任意度を
増加させる。また、この発明の運転制御方法は各ユニッ
ト単位毎に、或いは他の発明における運転制御方法にお
いては各ユニットグループ毎に、起動、停止の運用を行
うことにより、低負荷時におけるプラント全体としの発
電効率を高めている。
The small-power fuel cell power generation unit according to the present invention, which is three-dimensionally arranged, reduces the required site area and increases the degree of freedom in selecting the site shape. Further, the operation control method of the present invention performs power generation for the entire plant at low load by performing start-up and stop operations for each unit unit or for each unit group in the operation control method according to another invention. It is improving efficiency.

【0011】[0011]

【実施例】実施例1.図1は本発明の一実施例による5
MW級の分散配置型燃料電池発電所を示す立面図であ
る。図において、11は小電力燃料電池発電ユニットと
しての200KW級オンサイト型燃料電池発電ユニット
(以下、単に200KWユニットという)であり、図7に
示す6MW燃料電池発電モジュールに対応する発電に必
要な全てのコンポーネント機器を収納したパッケージ構
造のユニットである。12は200KWユニット11を
階層的に配置する為の建屋であり、2〜5階にこの20
0KWユニット11を配列し、1階に窒素供給設備、お
よび水処理装置6等に相当する全ユニット共通のユーテ
ィリティー関係の共通設備を配している(詳細は図示省
略)。図2は本実施例1の発電所の5階部分の平面図で
あり、200KWユニット11を6台配置している。
EXAMPLES Example 1. FIG. 1 shows a fifth embodiment of the present invention.
It is an elevation view showing a MW-class distributed fuel cell power plant. In the figure, 11 is a 200 kW class on-site fuel cell power generation unit as a low power fuel cell power generation unit.
(Hereinafter, simply referred to as 200 KW unit), which is a unit having a package structure in which all the component devices necessary for power generation corresponding to the 6 MW fuel cell power generation module shown in FIG. 7 are housed. 12 is a building for arranging the 200 kW units 11 in a hierarchical manner.
The 0KW unit 11 is arranged, and the nitrogen supply facility and the common utility-related facility common to all units corresponding to the water treatment device 6 and the like are arranged on the first floor (details are not shown). FIG. 2 is a plan view of the fifth floor portion of the power plant of the first embodiment, in which six 200 KW units 11 are arranged.

【0012】なお、13は集合配管塔、14は冷却塔、
15は分電盤、16はエレベータ塔、17は機械室、1
8はクレーン、19は都市ガス管、20は給水管、21
は蒸気管、22は排気管、23はドレン管、24は電線
管、25は温水管、26は窒素供給管、27は配管・配
線ルートである。
Reference numeral 13 is a collective piping tower, 14 is a cooling tower,
15 is a distribution board, 16 is an elevator tower, 17 is a machine room, 1
8 is a crane, 19 is a city gas pipe, 20 is a water supply pipe, 21
Is a steam pipe, 22 is an exhaust pipe, 23 is a drain pipe, 24 is a conduit pipe, 25 is a hot water pipe, 26 is a nitrogen supply pipe, and 27 is a pipe / wiring route.

【0013】次に動作について説明する。図1、図2に
示すように、この実施例ではオンサイト型燃料電池発電
装置として用いられる小電力の200KWユニット11
が建屋12の2〜5階に立体的に配置され、その集合体
により5MW級発電所が構成されている。この場合、送
電単位は200KWユニット11毎であり、この200
KWユニット11を単独で、もしくは自由にグループ化
して平面的にも、立体的にも自由に配置することが出来
る。なお、この実施例の場合、所要敷地寸法は約32m
×13m(420平方メートル)であり、図9の場合とほ
ぼ同等である。更に、敷地面積が狭い等の制約条件があ
る場合は、1フロアー当たりに配置する200KWユニ
ット数を削減し、建屋階層を高くすれば敷地条件に応じ
て発電所を建設することができるので、自由度が高い。
また敷地形状が任意に選択できる。
Next, the operation will be described. As shown in FIGS. 1 and 2, in this embodiment, a low-power 200 KW unit 11 used as an on-site fuel cell power generator.
Are three-dimensionally arranged on the 2nd to 5th floors of the building 12, and the 5MW-class power plant is constituted by the assembly. In this case, the power transmission unit is every 200 KW unit 11,
The KW units 11 can be arranged independently or in a group, and can be arranged freely in a plane or in a three-dimensional manner. In addition, in the case of this embodiment, the required site size is about 32 m
The size is × 13 m (420 square meters), which is almost the same as the case of FIG. In addition, if there is a constraint such as a small site area, the number of 200KW units to be placed per floor can be reduced and the building level can be increased to build a power plant according to site conditions. The degree is high.
The site shape can be selected arbitrarily.

【0014】また前記の様に送電単位が200KWユニ
ット11毎であるので、定期点検や故障時にも200K
Wユニット11単位で停止させれば良く、プラント全体
としての出力低下が少なく、信頼性の高い発電所とする
ことが出来る。更に、オンサイト型ユニットを利用する
ことにより、実用機ベースの分散配置型発電所ではオン
サイト型ユニット数量が多数となることからコスト低減
効果が期待できる。
Further, as described above, since the power transmission unit is every 200KW unit 11, it is 200K even at the time of periodic inspection or failure.
It suffices to stop every W unit 11 units, so that the output of the entire plant is small and a highly reliable power plant can be obtained. Further, by using the on-site type units, the number of the on-site type units becomes large in the distributed arrangement type power plant based on the practical machine, so that the cost reduction effect can be expected.

【0015】なお、上記実施例では小電力燃料電池発電
ユニット11として、出力200KWのオンサイト用燃
料電池発電ユニットを用いたが、これに限定されるもの
ではなく、例えば500KW程度までの出力を有する発
電ユニットでも同様の効果が期待できる。
Although the on-site fuel cell power generation unit having an output of 200 KW is used as the low power fuel cell power generation unit 11 in the above embodiment, the present invention is not limited to this, and the output is up to about 500 KW, for example. The same effect can be expected in the power generation unit.

【0016】次に上記のよに構成された一実施例による
発電所の運転制御方法について説明する。図3は図1に
示す実施例における200KWユニット11の発電効率
特性であり、図10の5MW級モジユールの発電効率特
性と同様、60%負荷以下の低負荷帯では発電効率は3
6%以下となり、負荷が小さくなるに従い発電効率が著
しく低下する。
Next, the operation control method of the power plant according to the embodiment configured as described above will be explained. FIG. 3 is a power generation efficiency characteristic of the 200 KW unit 11 in the embodiment shown in FIG. 1, and similarly to the power generation efficiency characteristic of the 5 MW class module in FIG. 10, the power generation efficiency is 3 in a low load zone of 60% load or less.
It becomes 6% or less, and the power generation efficiency significantly decreases as the load decreases.

【0017】プラント全体の運転制御方法の一例とし
て、プラント出力に対応して全数の200KWユニット
を仮に同一の出力とする様な運転制御方法を図4に示
す。図4ではプラント出力に対応して、全200KWユ
ニット25台とも同一条件にて負荷率を直線状に比例さ
せた運転制御方法であるから、運転制御曲線31に示す
通りとなっている。この運転制御曲線31では、全20
0KWユニットを使用してプラント出力を構成するの
で、図4のハッチングAで示す線で判る様にどのプラン
ト出力領域でも、負荷増加時には、プラント定格の5M
W出力まで出力増加することが可能であり、負荷変化に
強い柔軟性のある運転方法であるが、プラント全体の発
電効率は200KW基本ユニット自体の発電効率と全く
同一となり低負荷帯で低発電効率であることは、従来の
6MWモジユールの発電効率特性の図11と同様であ
る。
As an example of the operation control method for the entire plant, FIG. 4 shows an operation control method for temporarily making all 200 KW units have the same output corresponding to the plant output. In FIG. 4, the operation control method is a method in which the load factor is linearly proportionally proportional to all the 25 units of 200 KW under the same conditions in accordance with the plant output, and therefore the operation control curve 31 is as shown. In this operation control curve 31, all 20
Since the plant output is configured using the 0 kW unit, as can be seen from the line indicated by hatching A in FIG. 4, in any plant output range, when the load increases, the plant rating is 5M.
It is an operation method that can increase the output up to W output and is flexible against load changes, but the power generation efficiency of the entire plant is exactly the same as the power generation efficiency of the 200KW basic unit itself, and low power generation efficiency in the low load band. That is the same as in FIG. 11 of the power generation efficiency characteristic of the conventional 6 MW module.

【0018】実施例2.図5は本発明の運転制御方法の
一実施例を説明する図である。図5ではプラント出力に
対応して、運用する200KWユニッの台数を細かく設
定しておき、運用する200KWユニットは全て発電効
率の高い75%以上の負荷率で運転する様にした(但
し、500KW以下の低負荷帯は除く)運転制御方法を
行っており、この場合の運転制御曲線は32に示す通り
となっている。この運転制御曲線32の方法では、運用
中の200KWユニットは75%以上の負荷率となって
いる為、プラント全体の発電効率曲線も500KW以下
の超低負荷帯以外は全プラント出力領域にわたり36%
以上の高い発電効率を得ることができる。
Example 2. FIG. 5 is a diagram for explaining an embodiment of the operation control method of the present invention. In Fig. 5, the number of 200KW units to be operated is set finely according to the plant output, and all the 200KW units to be operated are operated at a load factor of 75% or higher with high power generation efficiency (however, 500KW or less. (Excluding the low load zone of No.) is performed, and the operation control curve in this case is as shown by 32. With this method of operation control curve 32, the load factor of the 200 KW unit in operation is 75% or more, so the power generation efficiency curve of the entire plant is 36% over the entire plant output range except for the ultra-low load zone of 500 KW or less.
The above high power generation efficiency can be obtained.

【0019】なお、ハッチングBで示す線から判る様
に、プラント出力対応で細かく200KWユニット運用
台数を設定しているので、運転中のユニットだけで負荷
増加に対応できる量には上限があり、負荷変化可能領域
を超えた負荷増加に瞬時に対応するのは困難である。即
ち大きな負荷増加に対しては運用ユニット数を増加させ
ねばならず、ユニット起動には起動時間が3時間程度か
かることから、瞬時負荷増加には対応が困難である。従
ってこの運転制御方法32は、プラント出力が計画的に
プログラムできる発電所に最適といえる。
As can be seen from the line indicated by hatching B, since the number of operating units of 200 KW units is set finely for the plant output, there is an upper limit to the amount that can be increased by the operating unit only. It is difficult to instantaneously respond to an increase in load that exceeds the changeable range. That is, the number of operating units must be increased for a large increase in load, and it takes about 3 hours to start up a unit, so it is difficult to cope with an instantaneous increase in load. Therefore, this operation control method 32 can be said to be optimal for a power plant in which the plant output can be programmed in a planned manner.

【0020】実施例3.次に、本発明に係る他の運転制
御方法の一実施例として、200KWユニットを複数台
ずつグループ化して、プラント出力に対応して運用する
グループを設定した運転制御方法の一例を図6に示す。
図6の実施例では全ユニット25台を5台ずつ5グルー
プに分割し、プラント出力に対応して2KW迄は2グル
ープ10台運用、2〜2.5MW領域では4グループ2
0台運用、2.5〜5MW領域では5グループ25台運
用を設定しておき、運用中のユニット間で実質的に同一
の負荷率で運転する。この実施例においては、プラント
出力に対する基本ユニットの負荷率は運転制御曲線33
の通りとなっている。なお、図7は上記図6に示す運転
制御方法を簡単に説明するフロー図である。
Example 3. Next, as an embodiment of another operation control method according to the present invention, FIG. 6 shows an example of an operation control method in which a plurality of 200 KW units are grouped into a plurality of groups and a group to be operated corresponding to a plant output is set. .
In the embodiment of FIG. 6, all 25 units are divided into 5 groups, 5 units each, and 2 groups 10 units are operated up to 2 kW according to the plant output, and 4 groups 2 in the 2-2.5 MW region.
0 units are operated, and 25 units are operated in 5 groups in the 2.5 to 5 MW region, and the units in operation are operated at substantially the same load factor. In this embodiment, the load factor of the basic unit with respect to the plant output is the operation control curve 33.
It is as follows. 7. FIG. 7 is a flow chart briefly explaining the operation control method shown in FIG.

【0021】この実施例の様に制御すると、プラント出
力1MW以上の領域では負荷率は50%以上となり、ほ
ぼ35.5%以上の高い発電効率を得ることができる。
なおこの場合、図5に示す実施例との相違点は同一のプ
ラント出力同志で比較すると図6の場合の方が図5の場
合より、運用ユニット数が同等数以上となっており、負
荷増加に対応できる上限値が引き上がっている。従っ
て、この運転制御方法33は、若干発電効率を犠牲にす
るが負荷変化に強い運転制御方法ということができる。
When the control is performed as in this embodiment, the load factor becomes 50% or more in the region where the plant output is 1 MW or more, and a high power generation efficiency of approximately 35.5% or more can be obtained.
In this case, the difference from the embodiment shown in FIG. 5 is that when the same plant outputs are compared, the number of operating units in the case of FIG. 6 is more than that of the case of FIG. The upper limit that can support is raised. Therefore, this operation control method 33 can be said to be an operation control method that is resistant to load changes, although the power generation efficiency is slightly sacrificed.

【0022】なお、本書おいて小電力燃料電池発電ユニ
ットは、特に限定されるものではないが、いわゆるオン
サイト型燃料電池発電所として用いられる例えば数KW
〜数百KW級までのものは、いずれも好ましく用いるこ
とができる。また、上記実施例においては、5MW級の
分散配置型燃料電池発電所およびその運転制御方法につ
いて説明したが、発電所の出力、発電ユニットのグルー
ピングの仕方などは実施例のものに限定されないことは
言うまでもない。
The low-power fuel cell power generation unit is not particularly limited in this document, but is used as a so-called on-site fuel cell power plant, for example, several KW.
Any of up to several hundreds of KW can be preferably used. Further, in the above embodiment, the distributed arrangement type fuel cell power plant of 5 MW class and the operation control method thereof have been described, but the output of the power plant, the grouping method of the power generation units, etc. are not limited to those of the embodiment. Needless to say.

【0023】[0023]

【発明の効果】以上のようにこの発明によれば、小電力
燃料電池発電ユニットを複数台、立体的に配置し、1つ
の分散配置型発電所となしたので、敷地形状が任意に選
択でき、更に、定期点検や故障等の停止が必要な際に
も、プラント出力の低下が少なく、信頼性の高い発電所
が得られる効果が有る。また前記分散配置型燃料電池発
電所において、各ユニット単位毎、或いは各ユニットグ
ループ毎に起動、停止の運用を行う運転制御としたこと
により、プラント全体として低負荷帯より高い発電効率
が得られる効果がある。
As described above, according to the present invention, a plurality of small power fuel cell power generation units are three-dimensionally arranged to form one distributed power plant, so that the site shape can be arbitrarily selected. Further, even when a periodic inspection or a stop due to a failure is required, there is an effect that a reduction in plant output is small and a highly reliable power plant can be obtained. Further, in the distributed fuel cell power plant, the operation control for starting and stopping each unit unit or each unit group is performed, so that the power generation efficiency higher than that in the low load zone is obtained for the entire plant. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による分散配置型燃料電池
発電所を示す立面図である。
FIG. 1 is an elevational view showing a distributed fuel cell power plant according to an embodiment of the present invention.

【図2】図1に示す実施例の平面図である。FIG. 2 is a plan view of the embodiment shown in FIG.

【図3】図1に示す実施例について測定された発電効率
曲線を示す特性図である。
FIG. 3 is a characteristic diagram showing a power generation efficiency curve measured for the example shown in FIG.

【図4】図1に示す実施例の従来方式による運転制御方
法を説明する図である。
FIG. 4 is a diagram illustrating an operation control method according to a conventional method of the embodiment shown in FIG.

【図5】この発明の第2の実施例による分散配置型燃料
電池発電所の運転制御方法を説明する図である。
FIG. 5 is a diagram illustrating an operation control method for a distributed fuel cell power plant according to a second embodiment of the present invention.

【図6】この発明の第3の実施例による分散配置型燃料
電池発電所の運転制御方法を説明する図である。
FIG. 6 is a diagram illustrating an operation control method for a distributed fuel cell power plant according to a third embodiment of the present invention.

【図7】図6に示す実施例の運転制御方法の一例を示す
フロー図である。
FIG. 7 is a flowchart showing an example of the operation control method of the embodiment shown in FIG.

【図8】従来の分散配置型発電所の全体平面図である。FIG. 8 is an overall plan view of a conventional distributed power plant.

【図9】従来の分散配置型発電所の5MWモジュール部
の平面図である。
FIG. 9 is a plan view of a 5 MW module unit of a conventional distributed power plant.

【図10】従来の分散配置型発電所の5MWモジュール
部の立面図である。
FIG. 10 is an elevation view of a 5 MW module section of a conventional distributed power plant.

【図11】従来の分散配置型発電所の発電効率を示す特
性図である。
FIG. 11 is a characteristic diagram showing power generation efficiency of a conventional distributed power plant.

【符号の説明】[Explanation of symbols]

11 小電力燃料電池発電ユニット 12 階層構造を持つ建屋 32 電力負荷に応じて各ユニット毎の運用パターンを
設定した運転制御曲線 33 電力負荷に応じてグループ化したユニット群毎の
運用パターンを設定した運転制御曲線
11 Small Power Fuel Cell Power Generation Unit 12 Building with Hierarchical Structure 32 Operation Control Curve with Operation Pattern of Each Unit Set According to Electricity Load 33 Operation with Operation Pattern of Unit Group Grouped According to Electricity Load Control curve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 小電力燃料電池発電ユニットの複数台を
階層構造をもつ建屋に立体的に配置してなることを特徴
とする分散配置型燃料電池発電所。
1. A distributed fuel cell power plant, wherein a plurality of small power fuel cell power generation units are three-dimensionally arranged in a building having a hierarchical structure.
【請求項2】 複数台の小電力燃料電池発電ユニットを
備えた発電所において、電力負荷に応じて、各小電力燃
料電池発電ユニットを、個別に制御することを特徴とす
る分散配置型燃料電池発電所の運転制御方法。
2. A distributed arrangement type fuel cell, characterized in that, in a power plant equipped with a plurality of small power fuel cell power generation units, each small power fuel cell power generation unit is individually controlled according to an electric power load. Power plant operation control method.
【請求項3】 複数台の小電力燃料電池発電ユニットを
備えた発電所において、小電力燃料電池発電ユニットを
複数台ずつグループ化し、電力負荷に応じて、各グルー
プ別に制御することを特徴とする分散配置型燃料電池発
電所の運転制御方法。
3. A power plant equipped with a plurality of small power fuel cell power generation units, wherein a plurality of small power fuel cell power generation units are grouped and controlled according to each power load in each group. Operation control method for distributed fuel cell power plant.
JP04168684A 1992-06-26 1992-06-26 Distributed fuel cell power plant and operation control method thereof Expired - Fee Related JP3100768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04168684A JP3100768B2 (en) 1992-06-26 1992-06-26 Distributed fuel cell power plant and operation control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04168684A JP3100768B2 (en) 1992-06-26 1992-06-26 Distributed fuel cell power plant and operation control method thereof

Publications (2)

Publication Number Publication Date
JPH0613102A true JPH0613102A (en) 1994-01-21
JP3100768B2 JP3100768B2 (en) 2000-10-23

Family

ID=15872560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04168684A Expired - Fee Related JP3100768B2 (en) 1992-06-26 1992-06-26 Distributed fuel cell power plant and operation control method thereof

Country Status (1)

Country Link
JP (1) JP3100768B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327160A (en) * 2003-04-23 2004-11-18 Aisin Seiki Co Ltd Fuel cell cogeneration system
WO2006006222A1 (en) * 2004-07-09 2006-01-19 Kajima Corporation Fuel cell system suppressing variation in power consumption of entire system, its controlling method and building structure
WO2006006223A1 (en) * 2004-07-09 2006-01-19 Aisin Seiki Co., Ltd. High efficiency fuel cell system suppressing variation in power consumption, its controlling method and building structure
JP2006073446A (en) * 2004-09-06 2006-03-16 Fuji Electric Holdings Co Ltd Fuel cell power generating device
JP2006172769A (en) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd Fuel cell system and method of controlling fuel cell system
JP2007095542A (en) * 2005-09-29 2007-04-12 Kyocera Corp Exhaust gas system of fuel cell
JP2019057362A (en) * 2017-09-19 2019-04-11 東芝燃料電池システム株式会社 Fuel cell system, instruction device for fuel cell system, and instruction method for fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7332565B2 (en) 2020-11-05 2023-08-23 株式会社鷺宮製作所 Temperature type valve device, cooling device and refrigeration cycle system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232569A (en) * 1985-04-08 1986-10-16 Toshiba Corp Fuel cell power generating system
JPS62150664A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Fuel cell power generation system
JPS63304581A (en) * 1987-06-05 1988-12-12 Hitachi Ltd Fuel cell power generating installation
JPH03270651A (en) * 1990-03-16 1991-12-02 Toshiba Corp Operation control system for fuel cell power plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232569A (en) * 1985-04-08 1986-10-16 Toshiba Corp Fuel cell power generating system
JPS62150664A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Fuel cell power generation system
JPS63304581A (en) * 1987-06-05 1988-12-12 Hitachi Ltd Fuel cell power generating installation
JPH03270651A (en) * 1990-03-16 1991-12-02 Toshiba Corp Operation control system for fuel cell power plant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327160A (en) * 2003-04-23 2004-11-18 Aisin Seiki Co Ltd Fuel cell cogeneration system
JP4490647B2 (en) * 2003-04-23 2010-06-30 アイシン精機株式会社 Fuel cell cogeneration system
WO2006006222A1 (en) * 2004-07-09 2006-01-19 Kajima Corporation Fuel cell system suppressing variation in power consumption of entire system, its controlling method and building structure
WO2006006223A1 (en) * 2004-07-09 2006-01-19 Aisin Seiki Co., Ltd. High efficiency fuel cell system suppressing variation in power consumption, its controlling method and building structure
JP2006073446A (en) * 2004-09-06 2006-03-16 Fuji Electric Holdings Co Ltd Fuel cell power generating device
JP2006172769A (en) * 2004-12-13 2006-06-29 Sanyo Electric Co Ltd Fuel cell system and method of controlling fuel cell system
JP2007095542A (en) * 2005-09-29 2007-04-12 Kyocera Corp Exhaust gas system of fuel cell
JP2019057362A (en) * 2017-09-19 2019-04-11 東芝燃料電池システム株式会社 Fuel cell system, instruction device for fuel cell system, and instruction method for fuel cell system

Also Published As

Publication number Publication date
JP3100768B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
Schauder et al. AEP UPFC project: installation, commissioning and operation of the/spl plusmn/160 MVA STATCOM (phase I)
Lasseter et al. Microgrid: A conceptual solution
JP5100009B2 (en) Power system
Shaterabadi et al. Multi-objective stochastic programming energy management for integrated INVELOX turbines in microgrids: A new type of turbines
ES2736949T3 (en) Procedure and device for stabilizing the operation of the network of a power supply network
CN102918734B (en) For the method and apparatus improving the generating in steam power plant
JP2000333373A (en) Distribution power supply system
JPH0613102A (en) Dispersion type fuel cell power plant and its operation control
JP2023101412A (en) Modular electrolyzer system
CN112332461A (en) Multi-energy micro-grid group control method based on two-stage robust model
Alawasa Distributed Energy Resources Electrical Systems: Future prospective
Kobayashi et al. Demonstration study of autonomous demand area power system
US11689023B2 (en) HVDC modular platform design
US9300131B2 (en) Internal electrification scheme for power generation plants
KR101707013B1 (en) Reactive power control apparatus and method of combined generation system
EP2438668A2 (en) Improved internal electrification scheme for power generation plants
JP3919110B2 (en) Combined heat and power system
CN105186896A (en) High voltage DC power conversion system and method of operating the same
Saito et al. Quantitative evaluations of CO2 reduction by microgrid with PV and battery
Kumbar et al. Optimization of Hybrid Renewable Electric Energy System Components for Covid Hospitals
Wei et al. Optimal Configuration of Energy Storage for Offshore Oilfield Power Grids
KR20240007880A (en) Integrated soec building block (sbb)
Bwire et al. HVDC Opportunities for Achieving SDG7 for East Africa Region
DK202270408A1 (en) Improvements relating to servicing or commissioning offshore wind power plants
WO2010044352A1 (en) Photovoltaic power system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees