JP2006172769A - Fuel cell system and method of controlling fuel cell system - Google Patents

Fuel cell system and method of controlling fuel cell system Download PDF

Info

Publication number
JP2006172769A
JP2006172769A JP2004360511A JP2004360511A JP2006172769A JP 2006172769 A JP2006172769 A JP 2006172769A JP 2004360511 A JP2004360511 A JP 2004360511A JP 2004360511 A JP2004360511 A JP 2004360511A JP 2006172769 A JP2006172769 A JP 2006172769A
Authority
JP
Japan
Prior art keywords
fuel cell
series circuit
series
power
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004360511A
Other languages
Japanese (ja)
Other versions
JP4917749B2 (en
Inventor
Osamu Tajima
收 田島
Toru Kawabata
透 川畑
Masatake Inoue
真壮 井上
Motoyuki Ichikawa
元幸 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Research Institute Ltd
Sanyo Electric Co Ltd
Original Assignee
Japan Research Institute Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Research Institute Ltd, Sanyo Electric Co Ltd filed Critical Japan Research Institute Ltd
Priority to JP2004360511A priority Critical patent/JP4917749B2/en
Publication of JP2006172769A publication Critical patent/JP2006172769A/en
Application granted granted Critical
Publication of JP4917749B2 publication Critical patent/JP4917749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system which can reduce the amount of losses of kinetic energy accompanying the transformation of an electric power. <P>SOLUTION: The fuel cell system includes a plurality of fuel cells 40 a-p which distributes and is provided in each of thermal load 56 a-p provided in a distinct position that the quantity of heat should be supplied, a series circuit 61 a-d which connects the fuel cell 40 a-p in series, an orthogonal conversion apparatus 60 a-d to an electric power load 58 a-p which consumes the ac power by converging a dc power obtained by the series circuit 61 a-d into the ac power, and a fuel cell switching part 50 which stops the amount of deteriorations of a dc voltage inputted into the orthogonal conversion apparatus 60 a-d, and a fuel cell switching part 50 which suppresses the amount of deteriorations of a dc voltage inputted into the orthogonal conversion apparatus 60 a-d by connecting a fuel cell 40 a-p new to the series circuit in series when the fuel cell of one of the fuel cell 40 a-p is removed from the series circuit. The fuel cell switching part 50 selects the fuel cell 40 a-p as a thermal load 56 a-p which is the most insufficient of the quantity of heat to need for the quantity of heat and a power generation is made to start, and connects the fuel cell 40 a-p to the series circuit 61 a-d. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池システムおよび燃料電池システム制御方法に関する。特に本発明は、複数の燃料電池を直列に接続することによって直交変換装置に入力する直流電圧の低下量を抑える、燃料電池システムおよび燃料電池システム制御方法に関する。   The present invention relates to a fuel cell system and a fuel cell system control method. In particular, the present invention relates to a fuel cell system and a fuel cell system control method for suppressing a decrease in the DC voltage input to an orthogonal transformation device by connecting a plurality of fuel cells in series.

燃料電池を用いたコージェネレーションシステムにおいては、例えば、燃料電池の発電する直流電力を、燃料電池に接続されたインバータを用いて交流電力に変換して、交流負荷に供給する。(例えば、特許文献1参照。)。
特開平8-306376号公報
In a cogeneration system using a fuel cell, for example, DC power generated by the fuel cell is converted into AC power using an inverter connected to the fuel cell and supplied to an AC load. (For example, refer to Patent Document 1).
JP-A-8-306376

一般に、インバータにおける直流から交流への電力の変換効率は、インバータへの入力電圧の低下に伴って低下する。したがって、出力電圧が数十ボルト程度の燃料電池を用いて100Vの交流電圧を必要とする交流負荷に電力を供給する場合には、インバータでの電力変換に伴うエネルギーの損失量が大きくなるという課題があった。   In general, the conversion efficiency of power from direct current to alternating current in an inverter decreases as the input voltage to the inverter decreases. Therefore, when power is supplied to an AC load that requires an AC voltage of 100 V using a fuel cell with an output voltage of about several tens of volts, the amount of energy loss associated with power conversion in the inverter increases. was there.

一方で、直列に接続される多数の発電セルを有する燃料電池を用いることで、インバータでの変換効率を高めることができる。しかし、燃料電池の各々が多数の発電セルを有するシステムでは、設備コストが増えるので好ましくない。またこのようなシステムでは、燃料電池の有する一の発電セルが故障することによって、発電セルが故障した燃料電池全体が使用できなくなってしまう。この場合、他の多数の正常な発電セルが使用されずに無駄になるとともに、発電セルが故障した燃料電池に接続されるインバータも使用されずに無駄となるので好ましくない。   On the other hand, the conversion efficiency in an inverter can be improved by using the fuel cell which has many power generation cells connected in series. However, a system in which each fuel cell has a large number of power generation cells is not preferable because the equipment cost increases. In such a system, if one power generation cell of the fuel cell fails, the entire fuel cell in which the power generation cell has failed cannot be used. In this case, many other normal power generation cells are not used and are wasted, and the inverter connected to the fuel cell in which the power generation cell has failed is not used and is not preferred.

このような課題を解決するために、本発明の第1の形態における燃料電池システムは、異なる位置に設けられる熱負荷のそれぞれに熱量を供給すべく分散して設けられる複数の燃料電池と、複数の燃料電池を直列に接続する直列回路と、直列回路により得られる直流電力を交流電力に変換して、交流電力を消費する電力負荷に供給する直交変換装置と、複数の燃料電池の中の一の燃料電池を直列回路から除いた場合に、直列回路に新たな燃料電池を直列に接続することによって、直交変換装置に入力する直流電圧の低下量を抑える燃料電池切替部とを備えた。このため、直交変換装置における電力の変換に伴うエネルギーの損失量を削減することができる。   In order to solve such a problem, the fuel cell system according to the first aspect of the present invention includes a plurality of fuel cells provided in a distributed manner so as to supply heat to each of thermal loads provided at different positions, and a plurality of fuel cells. A series circuit that connects the fuel cells in series, an orthogonal conversion device that converts DC power obtained by the series circuit into AC power, and supplies the AC power to a power load, and one of a plurality of fuel cells When the fuel cell is removed from the series circuit, a new fuel cell is connected in series to the series circuit, thereby reducing the amount of decrease in the DC voltage input to the orthogonal transformation device. For this reason, the amount of energy loss accompanying the conversion of power in the orthogonal transform device can be reduced.

燃料電池切替部は、必要とする熱量が最も不足している熱負荷に熱量を供給することのできる燃料電池を、新たな燃料電池として選択して発電を開始させ、当該燃料電池を直列回路に接続する。このため、熱負荷の必要とする熱量が不足することを防げる。   The fuel cell switching unit selects a fuel cell that can supply heat to the heat load that requires the least amount of heat as a new fuel cell, starts power generation, and places the fuel cell in a series circuit. Connecting. For this reason, it can prevent that the calorie | heat amount which a heat load requires is insufficient.

燃料電池切替部は、熱負荷が必要とする熱量に比べて熱量を余剰に生産している燃料電池を選択し、選択した燃料電池を直列回路から除くとともに、選択した燃料電池の発電を停止する。このため、燃料電池が熱量を余剰に生成することによるエネルギーの無駄を削減することができる。   The fuel cell switching unit selects a fuel cell that produces more heat than the heat required by the heat load, removes the selected fuel cell from the series circuit, and stops power generation of the selected fuel cell. . For this reason, it is possible to reduce waste of energy due to the fuel cell generating excessive heat.

また本形態における燃料電池システムは、燃料電池の故障を検知する故障検知部を更に備え燃料電池切替部は、故障検知部が故障を検知した場合に、故障した燃料電池を直列回路から除く。このため、直列に接続されている燃料電池が故障した場合でも、電力負荷に電力を供給し続けることができる。   The fuel cell system according to this embodiment further includes a failure detection unit that detects a failure of the fuel cell, and the fuel cell switching unit removes the failed fuel cell from the series circuit when the failure detection unit detects the failure. For this reason, even when the fuel cells connected in series fail, it is possible to continue supplying power to the power load.

燃料電池切替部は、燃料電池の利用者によって燃料電池の発電が停止された場合に、当該燃料電池を直列回路から除き、必要とする熱量が最も不足している熱負荷に熱量を供給することのできる燃料電池を、新たな燃料電池として選択して発電を開始させ、当該燃料電池を直列回路に接続する。このため、直列に接続されている燃料電池が運転を停止した場合でも、他の燃料電池を接続して電力を供給し続けることができる。   When the fuel cell user stops the power generation of the fuel cell, the fuel cell switching unit removes the fuel cell from the series circuit, and supplies the heat load to the heat load that requires the least amount of heat. The fuel cell that can be used is selected as a new fuel cell to start power generation, and the fuel cell is connected to the series circuit. For this reason, even when the fuel cells connected in series stop operating, it is possible to continue supplying power by connecting other fuel cells.

また本形態における燃料電池システムは、燃料電池の各々が出力する直流電圧は、直交変換装置が出力する交流電圧のピーク値よりも小さく、直列回路により得られる電圧は、直交変換装置が出力する交流電圧のピーク値以上である。このため、各々が高い出力電圧を持つ燃料電池を使用する場合に比べて、直交変換装置に入力する電圧をより低いコストで高めることができる。   In the fuel cell system according to this embodiment, the DC voltage output from each of the fuel cells is smaller than the peak value of the AC voltage output from the orthogonal transformation device, and the voltage obtained by the series circuit is the AC output from the orthogonal transformation device. More than the peak voltage value. For this reason, compared with the case where each uses a fuel cell with a high output voltage, the voltage input into an orthogonal transformation device can be raised at lower cost.

また本形態における燃料電池システムは、燃料電池切替部は、電力負荷の必要とする電力量を供給するための、直列回路に接続される複数の燃料電池全体の発電効率と直交変換装置の変換効率とを含む全体のエネルギー効率を計算し、一の燃料電池を直列回路から除いた場合に、直列回路に新たな燃料電池を接続したときのエネルギー効率が、直列回路に新たな燃料電池を接続しないときのエネルギー効率に比べて高いことを条件として、直列回路に新たな燃料電池を接続する。このため、システム全体のエネルギー効率の低下量を削減することができる。   Further, in the fuel cell system according to the present embodiment, the fuel cell switching unit supplies the amount of power required by the power load, and the power generation efficiency of the plurality of fuel cells connected to the series circuit and the conversion efficiency of the orthogonal transform device When one fuel cell is removed from the series circuit, the energy efficiency when a new fuel cell is connected to the series circuit does not connect the new fuel cell to the series circuit. A new fuel cell is connected to the series circuit on the condition that it is higher than the energy efficiency of the time. For this reason, the amount of reduction in energy efficiency of the entire system can be reduced.

燃料電池切替部は、一の燃料電池を直列回路から除いた場合のエネルギー効率が、一の燃料電池を直列回路から除かない場合のエネルギー効率に比べて高い場合に、直列回路から一の燃料電池を除く。このため、電力負荷の消費する電力量が低下して燃料電池が部分負荷運転になった場合であっても、システム全体のエネルギー効率の低下量を削減することができる。   The fuel cell switching unit is configured such that when the energy efficiency when one fuel cell is removed from the series circuit is higher than the energy efficiency when the one fuel cell is not removed from the series circuit, the one fuel cell is removed from the series circuit. except for. For this reason, even when the amount of power consumed by the power load is reduced and the fuel cell is in partial load operation, the amount of reduction in the energy efficiency of the entire system can be reduced.

直交変換装置は複数設けられ、直列回路は直交変換装置毎に設けられており、直列回路は、複数の燃料電池の各々を直列回路中に挿入して直列に接続する接続スイッチと、複数の燃料電池の各々を直列回路に挿入せずにバイパスするバイパススイッチとを有する。燃料電池切替部は、一の燃料電池を直列回路から除く場合に、一の燃料電池を当該直列回路に直列に接続する接続スイッチを開放するとともに一の燃料電池をバイパスするバイパススイッチを閉じ、更に、新たな燃料電池を直列回路に挿入せずにバイパスするバイパススイッチを開放するとともに、新たな燃料電池を直列回路に直列に接続する接続スイッチを閉じる。このため、簡易な構成で燃料電池の直列回路への接続を制御することができる。また、燃料電池の自由な組み合わせで直列回路に燃料電池を接続することができる。   A plurality of orthogonal transformation devices are provided, and a series circuit is provided for each orthogonal transformation device. The series circuit includes a connection switch that inserts each of the plurality of fuel cells into the series circuit and connects them in series, and a plurality of fuels. A bypass switch that bypasses each of the batteries without inserting them into the series circuit. When removing one fuel cell from the series circuit, the fuel cell switching unit opens a connection switch that connects the one fuel cell to the series circuit in series and closes a bypass switch that bypasses the one fuel cell. The bypass switch for bypassing the new fuel cell without inserting it into the series circuit is opened, and the connection switch for connecting the new fuel cell in series with the series circuit is closed. For this reason, it is possible to control the connection of the fuel cell to the series circuit with a simple configuration. Further, the fuel cell can be connected to the series circuit by any combination of fuel cells.

燃料電池切替部は、一の燃料電池が発電を停止した場合に、一の燃料電池が接続されている直列回路を選択し、選択した直列回路から一の燃料電池を除くとともに新たな燃料電池を直列に接続する。このため、直交変換装置の電力の変換効率の低下に伴うエネルギーの損失量を削減でき、効率よく電力負荷に電力を供給することができる。   The fuel cell switching unit selects a series circuit to which one fuel cell is connected when one fuel cell stops power generation, removes one fuel cell from the selected series circuit, and installs a new fuel cell. Connect in series. For this reason, the amount of energy loss accompanying the fall of the power conversion efficiency of an orthogonal transformation device can be reduced, and electric power can be efficiently supplied to a power load.

燃料電池切替部は、予め定めた数以上の燃料電池が発電を停止した場合に、一の直交変換装置の動作を停止して、当該直交変換装置に接続していた燃料電池のそれぞれを、停止した燃料電池が接続されていた直列回路のそれぞれに直列に接続する。このため、複数の直交変換装置の全体において、電力の変換効率の低下によるエネルギーの損失量を削減することができる。   The fuel cell switching unit stops the operation of one orthogonal transformation device and stops each of the fuel cells connected to the orthogonal transformation device when a predetermined number of fuel cells stop generating power. The fuel cells connected in series are connected in series. For this reason, in the whole of a plurality of orthogonal transform apparatuses, the amount of energy loss due to a decrease in power conversion efficiency can be reduced.

本発明の他の形態における燃料電池システムは、異なる位置に設けられる熱負荷のそれぞれに熱量を供給すべく分散して設けられる複数の燃料電池と、複数の燃料電池を直列に接続する直列回路と、直列回路により得られる直流電力を交流電力に変換して、交流電力を消費する電力負荷に供給する直交変換装置と、複数の燃料電池の中の一の燃料電池を直列回路から除いた場合において、直列回路に接続された残りの燃料電池の発電する電力を増加させることによって新たな燃料電池を直列回路に接続せずに電力を供給できる場合に、一の燃料電池が直列回路から除かれることに伴う直交変換装置の変換効率の低下によって生じるエネルギーの損失量の増加量が、残りの燃料電池の発電する電力を増加させることで得られるエネルギーの損失量の低下量を下回ることを条件として、新たな燃料電池を直列回路に直列に接続することによって直交変換装置に入力する直流電圧の低下量を抑える燃料電池切替部を備える。このため燃料電池システム全体におけるエネルギーの損失量の増加量を削減することができる。   A fuel cell system according to another embodiment of the present invention includes a plurality of fuel cells provided in a distributed manner so as to supply heat to each of thermal loads provided at different positions, and a series circuit that connects the plurality of fuel cells in series. In the case where the direct current power obtained by the series circuit is converted into alternating current power and supplied to the power load that consumes alternating current power, and one fuel cell of the plurality of fuel cells is removed from the series circuit A fuel cell is removed from the series circuit when power can be supplied without increasing the power generated by the remaining fuel cells connected to the series circuit without connecting the new fuel cell to the series circuit. Energy loss obtained by increasing the power generated by the remaining fuel cells due to the increase in energy loss caused by the decrease in conversion efficiency of the orthogonal transformation device On condition that less than the amount of decrease, including a fuel cell switching unit to suppress the decrease of the DC voltage to be input to the orthogonal transform unit by connecting in series with the series circuit of the new fuel cell. For this reason, the increase amount of the energy loss in the whole fuel cell system can be reduced.

本発明の他の形態における燃料電池システム制御方法は、異なる位置に設けられる熱負荷のそれぞれに熱量を供給すべく分散して設けられる複数の燃料電池を直列回路を用いて直列に接続するステップと、直列回路により得られる直流電力を直交変換装置を用いて交流電力に変換して、交流電力を消費する電力負荷に供給するステップと、複数の燃料電池の中の一の燃料電池を直列回路から除いた場合に、直列回路に新たな燃料電池を直列に接続することによって、直交変換装置に入力する直流電圧の低下量を抑える燃料電池切替ステップとを備えた。   A fuel cell system control method according to another aspect of the present invention includes a step of connecting a plurality of fuel cells provided in a distributed manner to supply heat to each of thermal loads provided at different positions using a series circuit. Converting DC power obtained by the series circuit into AC power using an orthogonal transformation device and supplying the AC power to a power load that consumes AC power; and one fuel cell of the plurality of fuel cells from the series circuit In the case of removing the fuel cell, a fuel cell switching step is provided in which a new fuel cell is connected in series to the series circuit to suppress a decrease in the DC voltage input to the orthogonal transformation device.

燃料電池切替ステップは、必要とする熱量が最も不足している熱負荷に熱量を供給することのできる燃料電池を、新たな燃料電池として選択して発電を開始させ、当該燃料電池を直列回路に接続する。燃料電池切替ステップは、熱負荷が必要とする熱量に比べて余剰に熱量を生産している燃料電池を選択し、選択した燃料電池を直列回路から除く。   In the fuel cell switching step, a fuel cell that can supply heat to the heat load that requires the least amount of heat is selected as a new fuel cell to start power generation, and the fuel cell is put into a series circuit. Connecting. In the fuel cell switching step, a fuel cell that produces an excessive amount of heat compared to the amount of heat required by the heat load is selected, and the selected fuel cell is removed from the series circuit.

また本形態における燃料電池システム制御方法は、直交変換装置は複数設けられ、直列回路は直交変換装置毎に設けられており、直列回路は、複数の燃料電池の各々を直列回路中に挿入して直列に接続する接続スイッチと、燃料電池の各々を直列回路に挿入せずにバイパスするバイパススイッチとを有し、燃料電池切替ステップは、一の燃料電池を直列回路から除く場合に、一の燃料電池を当該直列回路に直列に接続する接続スイッチを開放するとともに一の燃料電池をバイパスするバイパススイッチを閉じ、更に、新たな燃料電池を直列回路に挿入せずにバイパスするバイパススイッチを開放するとともに、新たな燃料電池を直列回路に直列に接続する接続スイッチを閉じる。   In the fuel cell system control method according to the present embodiment, a plurality of orthogonal transformation devices are provided, and a series circuit is provided for each orthogonal transformation device. The series circuit inserts each of the plurality of fuel cells into the series circuit. A connection switch for connecting in series and a bypass switch for bypassing each of the fuel cells without inserting them into the series circuit, and the step of switching the fuel cell is to remove one fuel cell from the series circuit. Open the connection switch that connects the battery in series with the series circuit, close the bypass switch that bypasses one fuel cell, and open the bypass switch that bypasses the new fuel cell without inserting it into the series circuit. Close the connection switch that connects the new fuel cell in series to the series circuit.

燃料電池切替ステップは、一の燃料電池が発電を停止した場合に、一の燃料電池が接続されている直列回路を選択し、選択した直列回路から一の燃料電池を除くとともに新たな燃料電池を直列に接続する。燃料電池切替ステップは、予め定めた数以上の燃料電池が発電を停止した場合に、一の直交変換装置の動作を停止して、当該直交変換装置に接続していた燃料電池のそれぞれを、発電を停止した燃料電池が接続されていた直列回路のそれぞれに直列に接続する。   The fuel cell switching step selects a series circuit to which one fuel cell is connected when one fuel cell stops power generation, removes one fuel cell from the selected series circuit, and installs a new fuel cell. Connect in series. In the fuel cell switching step, when more than a predetermined number of fuel cells stop generating power, the operation of one orthogonal transform device is stopped, and each fuel cell connected to the orthogonal transform device is Are connected in series to each of the series circuits to which the fuel cells having been stopped are connected.

なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又発明となりうる。   The above summary of the invention does not enumerate all the necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

本発明によれば、電力の変換に伴うエネルギーの損失量を削減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the amount of energy loss accompanying conversion of electric power can be reduced.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求にかかる発明を限定するものではなく、又実施形態の中で説明されている特徴の組み合わせの全てが発明の開発手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the claimed invention, and all the combinations of features described in the embodiments are not included in the invention. It is not always essential for development means.

図1は、本発明の実施形態に係る燃料電池システム30の構成の一例を示す。本実施形態は、電力の変換に伴うエネルギーの損失量を削減することができる燃料電池システムを提供することを目的とする。   FIG. 1 shows an example of the configuration of a fuel cell system 30 according to an embodiment of the present invention. An object of the present embodiment is to provide a fuel cell system capable of reducing the amount of energy loss accompanying power conversion.

燃料電池システム30は、複数の住居(42a〜42p、以下42と総称する。)に電力および熱を供給する。ここで燃料電池システム30は、複数の住居42が設けられる一の建造物に電力および熱を供給するものであってよく、異なる領域に設けられた複数の建造物のそれぞれに設けられる住居42に電力および熱を供給するものであってよい。   The fuel cell system 30 supplies power and heat to a plurality of dwellings (42a to 42p, hereinafter collectively referred to as 42). Here, the fuel cell system 30 may supply electric power and heat to a single building in which a plurality of residences 42 are provided, and the residence 42 provided in each of the plurality of buildings provided in different regions. It may supply power and heat.

燃料電池システム30は、複数の住居42、複数の直列回路(61a〜61d、以下61と総称する。)、複数の直交変換装置(60a〜60d、以下60と総称する。)、故障検知部52、電力ネットワーク44、電力計46、および燃料電池切替部50を備える。   The fuel cell system 30 includes a plurality of residences 42, a plurality of series circuits (61a to 61d, hereinafter collectively referred to as 61), a plurality of orthogonal transformation devices (60a to 60d, hereinafter collectively referred to as 60), and a failure detection unit 52. , A power network 44, a power meter 46, and a fuel cell switching unit 50.

住居42aは、燃料電池40a、電力負荷58a、貯湯槽54a、および熱負荷56aを備える。住居(42b〜42p)は、住居42aと同一の構成要素を持ち、各構成要素の符号の末尾にそれぞれb〜pの符号を付けることにより、いずれの住居42の構成要素であるかを識別する。   The residence 42a includes a fuel cell 40a, a power load 58a, a hot water tank 54a, and a heat load 56a. The dwellings (42b to 42p) have the same components as the dwelling 42a, and identify which dwelling 42 is a component by attaching the symbols b to p at the end of the symbols of the components. .

以下、住居42aの各構成要素の動作について説明する。燃料電池40aは、水素を消費して発電する。燃料電池40は、例えば固体高分子形燃料電池(PEFC)である。燃料電池40は、都市ガス、プロパンガス等を改質して得られる水素ガスを燃料として発電するものであってよく、また外部から供給される水素ガスを燃料として発電するものであってもよい。燃料電池40が発電した電力は、直列回路61および直交変換装置60を経て、電力ネットワーク44に供給される。電力負荷58aは、電力ネットワーク44から電力を受け取って動作する。貯湯槽54aは、燃料電池40aを冷却する冷却水を循環させて燃料電池40aの発電に伴う排熱を受け取り、受け取った熱量によって生成される温水を貯湯する。貯湯槽54aに貯湯された温水は熱負荷56aに供給され、熱負荷56aによって消費される。   Hereinafter, operation | movement of each component of the residence 42a is demonstrated. The fuel cell 40a consumes hydrogen to generate power. The fuel cell 40 is, for example, a polymer electrolyte fuel cell (PEFC). The fuel cell 40 may generate electricity using hydrogen gas obtained by reforming city gas, propane gas, or the like, or may generate electricity using hydrogen gas supplied from the outside as fuel. . The power generated by the fuel cell 40 is supplied to the power network 44 through the series circuit 61 and the orthogonal transformation device 60. The power load 58 a receives power from the power network 44 and operates. The hot water storage tank 54a circulates the cooling water for cooling the fuel cell 40a, receives the exhaust heat accompanying the power generation of the fuel cell 40a, and stores hot water generated by the received amount of heat. The hot water stored in the hot water tank 54a is supplied to the heat load 56a and consumed by the heat load 56a.

以上、住居42aの各構成要素の動作について説明したが、他のいずれの住居42の各構成要素の動作は、住居42aの各構成要素の動作と同一であるので説明を省略する。   The operation of each component of the dwelling 42a has been described above, but the operation of each component of any other dwelling 42 is the same as the operation of each component of the dwelling 42a.

直列回路61は、直交変換装置60毎に設けられており、燃料電池40を直列に接続して得られる直流電力を直交変換装置60に入力する。直交変換装置60は、入力される直流電力を交流電力に変換して出力するインバータであり、直列回路61により得られる直流電力を交流電力に変換して電力ネットワーク44に供給する。   The series circuit 61 is provided for each orthogonal transformation device 60 and inputs DC power obtained by connecting the fuel cells 40 in series to the orthogonal transformation device 60. The orthogonal transform device 60 is an inverter that converts input DC power into AC power and outputs the AC power, and converts the DC power obtained by the series circuit 61 into AC power and supplies it to the power network 44.

本実施形態の燃料電池システムでは、一例として、直交変換装置60への入力電圧の定格値は200Vであり、燃料電池40の各々の出力電圧の定格値は50Vとする。直列回路61は、燃料電池40を直列に4台接続して得られる200Vの直流電力を直交変換装置60に入力する。直交変換装置60は直列回路61から入力される200Vの直流電力を100Vの交流電力に変換して電力ネットワーク44に供給する。一般にインバータは、入力される直流電圧を高めることによって、電力の変換効率を高めることができる。したがって、燃料電池40を直列回路61によって直列に接続して、直交変換装置60に入力する直流電圧を高めることによって、一の燃料電池を直交変換装置60に入力した場合に比べて、高い効率で直交変換装置60を運転することができる。また、燃料電池40を昇圧するための昇圧回路等を設けることなく電力負荷58が必要とする電圧に変換して電力を供給できる。   In the fuel cell system of the present embodiment, as an example, the rated value of the input voltage to the orthogonal transformation device 60 is 200V, and the rated value of each output voltage of the fuel cell 40 is 50V. The series circuit 61 inputs 200V DC power obtained by connecting four fuel cells 40 in series to the orthogonal transformation device 60. The orthogonal transform device 60 converts the 200V DC power input from the series circuit 61 into 100V AC power and supplies it to the power network 44. In general, an inverter can increase the power conversion efficiency by increasing the input DC voltage. Therefore, by connecting the fuel cells 40 in series by the series circuit 61 and increasing the DC voltage input to the orthogonal transformation device 60, the efficiency is higher than when one fuel cell is input to the orthogonal transformation device 60. The orthogonal transformation device 60 can be operated. Further, it is possible to supply power by converting the voltage into a voltage required by the power load 58 without providing a boosting circuit for boosting the fuel cell 40.

直列回路61aは、複数のバイパススイッチ(62a〜62p、以下62と総称する。)と、複数の接続スイッチ(64a〜64pおよび65a〜65p、以下それぞれ64および65と総称する。)とを備える。直列回路61b、直列回路61c、および直列回路61dは、直列回路61aと同一の構成要素を持ち、各構成要素の符号の末尾にそれぞれb、c、およびdの符号を付けることにより、いずれの直列回路61の構成要素であるかを識別する。   The series circuit 61a includes a plurality of bypass switches (62a to 62p, hereinafter collectively referred to as 62) and a plurality of connection switches (64a to 64p and 65a to 65p, hereinafter collectively referred to as 64 and 65, respectively). The series circuit 61b, the series circuit 61c, and the series circuit 61d have the same components as the series circuit 61a, and any series can be obtained by adding the symbols b, c, and d to the end of the symbols of the respective components. Whether it is a component of the circuit 61 is identified.

以下、直列回路61aの各構成要素の動作について説明する。接続スイッチ64および接続スイッチ65は、それぞれ燃料電池40の出力端子に接続され、燃料電池40の各々を直列回路61中に挿入して直列に接続する。バイパススイッチ62は、燃料電池40の各々を直列回路61aに挿入せずにバイパスする。   Hereinafter, the operation of each component of the series circuit 61a will be described. The connection switch 64 and the connection switch 65 are each connected to the output terminal of the fuel cell 40, and each of the fuel cells 40 is inserted into the series circuit 61 and connected in series. The bypass switch 62 bypasses each fuel cell 40 without inserting it into the series circuit 61a.

以上、直列回路61aの各構成要素の動作について説明したが、他のいずれの直列回路61の有する各構成要素の動作は、直列回路61aの各構成要素の動作と同一であるので説明を省略する。   The operation of each component of the series circuit 61a has been described above, but the operation of each component of any other series circuit 61 is the same as the operation of each component of the series circuit 61a, and thus the description thereof is omitted. .

このように、直交変換装置60の持つ直列回路61の各々は、いずれの燃料電池40をも直列に接続することができる。また、燃料電池40を自由な組み合わせで直列回路61の各々に接続することができる。   In this way, each of the series circuits 61 included in the orthogonal transformation device 60 can connect any of the fuel cells 40 in series. Further, the fuel cell 40 can be connected to each of the series circuits 61 in any combination.

燃料電池切替部50は、バイパススイッチ62、接続スイッチ(64、65)の開閉を制御することによって、直列回路61に接続される燃料電池40を選択する。燃料電池切替部50は、直列回路61から燃料電池40を除いた場合に、直列回路61に新たな燃料電池40を直列に接続する。このようにして燃料電池切替部50は、燃料電池40が直列回路61から除かれた場合の直交変換装置60に入力する直流電圧の低下量を抑えることができるので、電力の変換に伴うエネルギーの損失量を削減することができる。   The fuel cell switching unit 50 selects the fuel cell 40 connected to the series circuit 61 by controlling opening and closing of the bypass switch 62 and the connection switches (64, 65). When the fuel cell 40 is removed from the series circuit 61, the fuel cell switching unit 50 connects the new fuel cell 40 to the series circuit 61 in series. In this way, the fuel cell switching unit 50 can suppress the amount of decrease in the DC voltage input to the orthogonal transformation device 60 when the fuel cell 40 is removed from the series circuit 61, so that the energy associated with power conversion can be reduced. Loss amount can be reduced.

故障検知部52は、燃料電池40の故障を検知した場合に、故障した燃料電池40を燃料電池切替部50に通知する。故障検知部52は、各燃料電池40の有する発電セルの各々の電圧を監視しており、当該電圧が予め定めた電圧値より低下した場合に燃料電池40が故障したと判断して、故障した燃料電池40を識別する情報を燃料電池切替部50に通知する。また、故障検知部52は、燃料電池40の各々について、燃料消費量に対する発電電力量の比を監視しており、当該比が、予め定めた値よりも低下した場合に燃料電池40が故障したと判断して、故障した燃料電池40を識別する情報を燃料電池切替部50に通知する。燃料電池切替部50は、故障検知部52から燃料電池40の故障を通知された場合に、故障した燃料電池を直列回路61から除く。   The failure detection unit 52 notifies the fuel cell switching unit 50 of the failed fuel cell 40 when detecting a failure of the fuel cell 40. The failure detection unit 52 monitors the voltage of each power generation cell of each fuel cell 40, and determines that the fuel cell 40 has failed when the voltage falls below a predetermined voltage value. Information for identifying the fuel cell 40 is notified to the fuel cell switching unit 50. In addition, the failure detection unit 52 monitors the ratio of the amount of generated power to the amount of fuel consumed for each of the fuel cells 40, and the fuel cell 40 has failed when the ratio falls below a predetermined value. Is determined, and information for identifying the failed fuel cell 40 is notified to the fuel cell switching unit 50. When the failure detection unit 52 is notified of the failure of the fuel cell 40, the fuel cell switching unit 50 removes the failed fuel cell from the series circuit 61.

また、燃料電池切替部50は、燃料電池40の利用者によって燃料電池40の発電が停止された場合にも、当該燃料電池40を直列回路から除く。例えば、燃料電池40の利用者が燃料電池40の運転スイッチを切った場合に、当該燃料電池40を直列回路から除く。   The fuel cell switching unit 50 also removes the fuel cell 40 from the series circuit even when power generation of the fuel cell 40 is stopped by the user of the fuel cell 40. For example, when the user of the fuel cell 40 turns off the operation switch of the fuel cell 40, the fuel cell 40 is removed from the series circuit.

このようにして、故障により発電を停止した燃料電池40または利用者によって発電を停止した燃料電池40が直列回路61に直列に接続されていた場合でも、当該直列回路61が接続される直交変換装置60から電力を供給し続けることができる。   Thus, even when the fuel cell 40 whose power generation has been stopped due to a failure or the fuel cell 40 whose power generation has been stopped by a user is connected in series to the series circuit 61, the orthogonal transformation device to which the series circuit 61 is connected 60 can continue to supply power.

また、燃料電池切替部50は、貯湯槽54に貯湯された温水の持つ熱量が、熱負荷56の消費する熱量に比べて余剰である貯湯槽54を選択し、当該貯湯槽54に熱量を供給する燃料電池40を直列回路61から除くとともに、燃料電池40の発電を停止する。したがって、燃料電池40が熱量を余剰に生成することによるエネルギーの無駄を防ぐことができる。また、貯湯槽54が温水で満杯になることを未然に防げるので、燃料電池40の冷却水を冷却できなくなることによる燃料電池40の停止を防げる。   In addition, the fuel cell switching unit 50 selects the hot water storage tank 54 in which the amount of heat of the hot water stored in the hot water storage tank 54 is excessive as compared with the amount of heat consumed by the heat load 56 and supplies the heat storage tank 54 with the heat amount. The fuel cell 40 to be removed is removed from the series circuit 61 and the power generation of the fuel cell 40 is stopped. Accordingly, it is possible to prevent waste of energy due to the fuel cell 40 generating excessive heat. Further, since the hot water tank 54 can be prevented from being filled with hot water, the fuel cell 40 can be prevented from being stopped due to the cooling water of the fuel cell 40 being unable to be cooled.

また、燃料電池切替部50は、燃料電池40の発電電力量および熱負荷56の消費熱量の履歴を管理しており、当該履歴と、貯湯槽54に現在貯湯される温水の持つ熱量に基づいて、貯湯槽54に貯湯されている温水の持つ熱量が熱負荷56の必要とする熱量に比べて余剰であるか否かを判断する。このようにして燃料電池切替部50は、貯湯槽54に熱量が余剰に供給されるか否かを予め判断できる。そして、貯湯槽54に貯湯された温水の持つ熱量が過不足とならないように、発電する燃料電池40を選択して直列回路61に接続することができる。   In addition, the fuel cell switching unit 50 manages the history of the amount of power generated by the fuel cell 40 and the amount of heat consumed by the thermal load 56, and based on the history and the amount of heat of hot water currently stored in the hot water tank 54. Then, it is determined whether the amount of heat of the hot water stored in the hot water storage tank 54 is excessive as compared with the amount of heat required by the heat load 56. In this way, the fuel cell switching unit 50 can determine in advance whether or not an excessive amount of heat is supplied to the hot water tank 54. Then, the fuel cell 40 that generates power can be selected and connected to the series circuit 61 so that the amount of heat of the hot water stored in the hot water tank 54 does not become excessive or insufficient.

また、燃料電池切替部50は、燃料電池40、貯湯槽54、接続スイッチ(64、65)、バイパススイッチ62、および直交変換装置60と、イーサーネット(登録商標)等の通信ネットワークによって結ばれている。燃料電池切替部50は、当該通信ネットワークを通じて、燃料電池40および貯湯槽54から各々の状態を示す情報を取得するとともに、燃料電池40、接続スイッチ(64、65)、バイパススイッチ62、および直交変換装置60の動作を制御する。   The fuel cell switching unit 50 is connected to the fuel cell 40, the hot water tank 54, the connection switches (64, 65), the bypass switch 62, and the orthogonal transformation device 60 through a communication network such as Ethernet (registered trademark). Yes. The fuel cell switching unit 50 acquires information indicating the respective states from the fuel cell 40 and the hot water tank 54 through the communication network, and the fuel cell 40, the connection switches (64, 65), the bypass switch 62, and the orthogonal transformation. The operation of the device 60 is controlled.

図2は、バイパススイッチ62および接続スイッチ(64、65)の開閉状態の一例を示す図である。図2は、一例として、燃料電池(40a、40b、40c)を直列に接続して得られる直流電力を直交変換装置60aに入力し、かつ、それら以外の燃料電池40の電力を直交変換装置60aに入力しない場合の、直列回路61aにおけるバイパススイッチ62、接続スイッチ(64、65)の各々の開閉状態を示す図である。直列回路61aのバイパススイッチ(62a、62b、62c)は開放されており、かつ、接続スイッチ(64a、64b、64c、65a、65b、65c)は閉じている。こうして、燃料電池(40a、40b、40c)が直列に接続される。   FIG. 2 is a diagram illustrating an example of an open / close state of the bypass switch 62 and the connection switches (64, 65). As an example, FIG. 2 shows that DC power obtained by connecting fuel cells (40a, 40b, 40c) in series is input to an orthogonal transformation device 60a, and the electric power of other fuel cells 40 is orthogonal transformation device 60a. It is a figure which shows the open / close state of each of the bypass switch 62 and the connection switch (64, 65) in the series circuit 61a when not inputting into. The bypass switches (62a, 62b, 62c) of the series circuit 61a are open, and the connection switches (64a, 64b, 64c, 65a, 65b, 65c) are closed. Thus, the fuel cells (40a, 40b, 40c) are connected in series.

また、直列回路61aの接続スイッチ(64d〜64p、65d〜65p)は開放され、バイパススイッチ(62d〜62p)は閉じられている。これによって、燃料電池(40d〜40p)は直列回路61に接続されず、燃料電池(40a、40b、40c)だけが直列に接続されて直交変換装置60aに電力を入力する回路が形成される。   Further, the connection switches (64d to 64p, 65d to 65p) of the series circuit 61a are opened, and the bypass switches (62d to 62p) are closed. Thus, the fuel cells (40d to 40p) are not connected to the series circuit 61, and only the fuel cells (40a, 40b, 40c) are connected in series to form a circuit for inputting power to the orthogonal transformation device 60a.

このように、燃料電池切替部50は、燃料電池40を直列回路61から除く場合に、当該燃料電池40を当該直列回路61に直列に接続する接続スイッチ(64、65)を開放するとともに、当該燃料電池40をバイパスするバイパススイッチ62を閉じる。そして、燃料電池切替部50は、燃料電池40を直列回路61に挿入する場合に、当該燃料電池40を直列回路61に挿入せずにバイパスしているバイパススイッチ62を開放するとともに、当該燃料電池40を直列回路61に直列に接続する接続スイッチ(64、65)を閉じる。   Thus, when the fuel cell 40 is removed from the series circuit 61, the fuel cell switching unit 50 opens the connection switches (64, 65) that connect the fuel cell 40 in series to the series circuit 61, and The bypass switch 62 that bypasses the fuel cell 40 is closed. When the fuel cell switching unit 50 inserts the fuel cell 40 into the series circuit 61, the fuel cell switching unit 50 opens the bypass switch 62 that bypasses the fuel cell 40 without inserting the fuel cell 40 into the series circuit 61. The connection switches (64, 65) that connect 40 to the series circuit 61 in series are closed.

燃料電池切替部50は、予め定めた数以上の燃料電池40が発電を停止した場合に、一の直交変換装置60の動作を停止して、当該直交変換装置60に接続される燃料電池40のそれぞれを、停止した燃料電池40が接続されていた直列回路61のそれぞれに直列に接続する。そして、燃料電池切替部50は、直列回路61に接続されない燃料電池40の数が予め定めた数を下回るように、直交変換装置60の停止と燃料電池40の直列回路61への接続を切り替える。   The fuel cell switching unit 50 stops the operation of one orthogonal transform device 60 when a predetermined number or more of the fuel cells 40 stop generating power, and the fuel cell switching unit 50 is connected to the orthogonal transform device 60. Each is connected in series to each of the series circuits 61 to which the stopped fuel cells 40 were connected. Then, the fuel cell switching unit 50 switches the stop of the orthogonal transformation device 60 and the connection of the fuel cell 40 to the series circuit 61 so that the number of the fuel cells 40 not connected to the series circuit 61 falls below a predetermined number.

本実施形態の燃料電池システムでは、直交変換装置60の直列回路61の各々に対して接続される燃料電池40の標準接続数を予め定めており、燃料電池切替部50は当該標準接続数以上の燃料電池40が発電を停止した場合に、直交変換装置60の停止と燃料電池40の直列回路61への接続を切り替える。例えば、直交変換装置60の入力電圧の定格値を超えない範囲で直交変換装置60の電力の変換効率が最大となる燃料電池40の接続台数を標準接続数とする。本実施形態の燃料電池システムでは、入力電圧の定格値が200Vである直交変換装置60に、定格電圧が50Vの燃料電池40の直流電力を直列に入力するので、標準接続数を4とする。   In the fuel cell system of the present embodiment, the standard connection number of the fuel cells 40 connected to each of the series circuits 61 of the orthogonal transformation device 60 is determined in advance, and the fuel cell switching unit 50 is equal to or greater than the standard connection number. When the fuel cell 40 stops the power generation, the orthogonal transformation device 60 is stopped and the connection of the fuel cell 40 to the series circuit 61 is switched. For example, the number of connected fuel cells 40 that maximizes the power conversion efficiency of the orthogonal transformation device 60 within a range not exceeding the rated value of the input voltage of the orthogonal transformation device 60 is defined as the standard connection number. In the fuel cell system of this embodiment, the DC power of the fuel cell 40 with a rated voltage of 50V is input in series to the orthogonal transformation device 60 with a rated value of the input voltage of 200V, so the standard number of connections is four.

図3は、燃料電池切替部50が直交変換装置60を停止して燃料電池40の接続を切り替える手順を示すフローチャートである。燃料電池切替部50は、直列回路61から除かれている燃料電池40の総数が、予め定めた規定数以上であるか否かを判断する(S122)。燃料電池切替部50は、S122において、動作中である直交変換装置60の直列回路61の各々について、標準接続数と、実際に接続されている燃料電池40の数との差を求め、当該差の総和を、直列回路61から除かれている燃料電池の総数とする。なお、S122の判断における規定数を、例えば標準接続数と同じ値に設定する。燃料電池切替部50は、S122において直列回路61から除かれている燃料電池40の総数が、予め定めた規定数未満である場合は、処理を終了する。   FIG. 3 is a flowchart illustrating a procedure in which the fuel cell switching unit 50 stops the orthogonal transformation device 60 and switches the connection of the fuel cell 40. The fuel cell switching unit 50 determines whether or not the total number of the fuel cells 40 removed from the series circuit 61 is equal to or greater than a predetermined number (S122). In step S122, the fuel cell switching unit 50 obtains a difference between the number of standard connections and the number of fuel cells 40 that are actually connected for each of the series circuits 61 of the orthogonal transformation device 60 that are operating, and calculates the difference. Is the total number of fuel cells removed from the series circuit 61. Note that the prescribed number in the determination of S122 is set to the same value as the standard connection number, for example. The fuel cell switching unit 50 ends the process when the total number of the fuel cells 40 removed from the series circuit 61 in S122 is less than a predetermined number.

燃料電池切替部50は、S122において、直列回路61から除かれている燃料電池40の総数が、予め定めた規定数以上である場合は、運転中の直交変換装置60のうち、接続される燃料電池40の数が最も少ない直交変換装置60のひとつを停止する(S124)。さらに、燃料電池切替部50は、S124で停止させた直交変換装置60に接続されており、かつ、発電中である燃料電池40が存在するか否かを判断する(S126)。   When the total number of fuel cells 40 removed from the series circuit 61 is greater than or equal to a predetermined number in S122, the fuel cell switching unit 50 is connected to the connected orthogonal transformation device 60 in the operating orthogonal transform device 60. One of the orthogonal transformation devices 60 with the smallest number of batteries 40 is stopped (S124). Further, the fuel cell switching unit 50 determines whether or not there is a fuel cell 40 that is connected to the orthogonal transformation device 60 stopped in S124 and is generating power (S126).

燃料電池切替部50は、S126において、停止させた直交変換装置60に接続され発電中である燃料電池40が存在する場合に、当該発電中の燃料電池40を当該直列回路61から除く(S128)。そして、燃料電池切替部50は、運転中の他の直交変換装置60の直列回路61を選択して、S128で直列回路61から除いた燃料電池40を、選択した直列回路61に接続する(S130)。なお、燃料電池切替部50は、S130で燃料電池40を接続する直列回路61を選択する場合は、運転中の直交変換装置60の持つ直列回路61の中で、接続されている燃料電池40の数が標準接続数よりも少なく、かつ、接続される燃料電池40の数が最も多い直列回路61を順に選択する。燃料電池切替部50は、S130の処理の後、S122の判断に処理を移す。S126において、停止させた直交変換装置60に接続され発電中である燃料電池40が存在しない場合は、S122の判断に処理を移す。   When there is a fuel cell 40 that is connected to the stopped orthogonal transformation device 60 and is generating power in S126, the fuel cell switching unit 50 removes the fuel cell 40 that is generating power from the series circuit 61 (S128). . Then, the fuel cell switching unit 50 selects the series circuit 61 of the other orthogonal transformation device 60 in operation, and connects the fuel cell 40 removed from the series circuit 61 in S128 to the selected series circuit 61 (S130). ). In addition, when the fuel cell switching unit 50 selects the series circuit 61 to which the fuel cell 40 is connected in S130, the fuel cell switching unit 50 of the connected fuel cell 40 is included in the series circuit 61 of the orthogonal transformation device 60 in operation. A series circuit 61 having a smaller number than the standard connection number and the largest number of connected fuel cells 40 is sequentially selected. After the process of S130, the fuel cell switching unit 50 moves the process to the determination of S122. In S126, when there is no fuel cell 40 that is connected to the stopped orthogonal transform device 60 and is generating power, the process proceeds to S122.

このように、燃料電池切替部50は、予め定めた数以上の燃料電池40が発電を停止した場合に、一の直交変換装置60の動作を停止して、当該直交変換装置60に接続している燃料電池40のそれぞれを、停止した燃料電池40が接続されていた直列回路61の各々に直列に接続するので、複数の直交変換装置60の全体において電力の変換効率の低下によるエネルギーのロスを削減することができる。   Thus, the fuel cell switching unit 50 stops the operation of one orthogonal transform device 60 and connects to the orthogonal transform device 60 when the predetermined number or more of the fuel cells 40 stop generating power. Since each of the existing fuel cells 40 is connected in series to each of the series circuits 61 to which the stopped fuel cells 40 were connected, energy loss due to a reduction in power conversion efficiency in the whole of the plurality of orthogonal transform devices 60 is reduced. Can be reduced.

図4は、直交変換装置60への燃料電池40の接続状態の一例を示す図である。燃料電池40のうち、燃料電池(40b、40e、40g、40k、40o)が発電を停止した場合に、これら停止した燃料電池40は燃料電池切替部50によって直列回路61から除かれる。燃料電池切替部50は、直列回路61aの標準接続数を満たすべく、燃料電池(40a、40f、40c、40d)の4台の燃料電池40を直交変換装置60aに接続させる。また、燃料電池切替部50は、直列回路61cの標準接続数を満たすべく、燃料電池(40i、40j、40l、40h)の4台の燃料電池40を直交変換装置60cに接続させる。また、燃料電池切替部50は、発電中である残りの燃料電池(40m、40n、40p)の3台の燃料電池40を直交変換装置60dに接続する。そして燃料電池切替部50は、直列回路61bにはいずれの燃料電池40も接続させずに、直交変換装置60bの運転を停止させる。   FIG. 4 is a diagram illustrating an example of a connection state of the fuel cell 40 to the orthogonal transformation device 60. When the fuel cells (40b, 40e, 40g, 40k, 40o) of the fuel cells 40 stop generating power, the stopped fuel cells 40 are removed from the series circuit 61 by the fuel cell switching unit 50. The fuel cell switching unit 50 connects the four fuel cells 40 of the fuel cells (40a, 40f, 40c, 40d) to the orthogonal transformation device 60a in order to satisfy the standard connection number of the series circuit 61a. Further, the fuel cell switching unit 50 connects the four fuel cells 40 of the fuel cells (40i, 40j, 40l, 40h) to the orthogonal transformation device 60c in order to satisfy the standard connection number of the series circuit 61c. The fuel cell switching unit 50 connects the three fuel cells 40 of the remaining fuel cells (40 m, 40 n, 40 p) that are generating power to the orthogonal transformation device 60 d. Then, the fuel cell switching unit 50 stops the operation of the orthogonal transformation device 60b without connecting any of the fuel cells 40 to the series circuit 61b.

このように、燃料電池切替部50は、燃料電池40が発電を停止した場合に、発電を停止した燃料電池40が接続されている直列回路61を選択し、選択した直列回路61から燃料電池40を除くとともに新たな燃料電池40を直列に接続する。このため、直交変換装置60における電力の変換効率の低下に伴うエネルギーの損失量を削減することによって、効率よく電力負荷58に電力を供給することができる。   Thus, when the fuel cell 40 stops generating power, the fuel cell switching unit 50 selects the series circuit 61 to which the fuel cell 40 that has stopped generating power is connected, and the fuel cell 40 is selected from the selected series circuit 61. And a new fuel cell 40 is connected in series. For this reason, it is possible to efficiently supply power to the power load 58 by reducing the amount of energy loss associated with a decrease in power conversion efficiency in the orthogonal transform device 60.

燃料電池切替部50は、燃料電池40を直列回路61から除いた場合に、他の燃料電池40を新たに直列回路61に接続するか否かを、直列回路61に他の燃料電池40を新たに接続した場合のエネルギー効率と、他の燃料電池40を新たに接続しない場合のエネルギー効率とを比較して判断する。   When the fuel cell 40 is removed from the series circuit 61, the fuel cell switching unit 50 determines whether or not another fuel cell 40 is newly connected to the series circuit 61. Judgment is made by comparing the energy efficiency when the fuel cell is connected to the fuel cell and the energy efficiency when the other fuel cell 40 is not newly connected.

一般に、燃料電池40の発電効率は燃料電池40の発電電力に依存し、発電電力が高いほど発電効率も高い。したがって、一の直列回路61に接続される燃料電池40のいずれかが定格出力以下で運転される場合においては、当該直列回路61に接続される燃料電池40の数を減らして燃料電池40の発電電力を増加させることで発電効率を高めることができる。しかし、直交変換装置60での電力の変換に伴うエネルギーの損失量は、直列回路61に接続される燃料電池40の数が少ないほど増加する。   In general, the power generation efficiency of the fuel cell 40 depends on the power generated by the fuel cell 40, and the higher the power generation power, the higher the power generation efficiency. Therefore, when any one of the fuel cells 40 connected to one series circuit 61 is operated at a rated output or less, the number of fuel cells 40 connected to the series circuit 61 is reduced to generate power from the fuel cell 40. The power generation efficiency can be increased by increasing the power. However, the amount of energy loss accompanying power conversion in the orthogonal transform device 60 increases as the number of fuel cells 40 connected to the series circuit 61 decreases.

図5は、燃料電池切替部50が直列回路61から除いた場合の動作手順を示すフローチャートである。燃料電池切替部50は、発電を停止した燃料電池40を直列回路から除く(S212)。そして燃料電池切替部50は、他の燃料電池40を直列回路61に新たに接続した方が、新たに接続しない場合に比べてエネルギー効率が高いか否かを判断する(S214)。   FIG. 5 is a flowchart showing an operation procedure when the fuel cell switching unit 50 is removed from the series circuit 61. The fuel cell switching unit 50 removes the fuel cell 40 whose power generation has been stopped from the series circuit (S212). Then, the fuel cell switching unit 50 determines whether the energy efficiency is higher when another fuel cell 40 is newly connected to the series circuit 61 than when not newly connected (S214).

S214において燃料電池切替部50は、一の燃料電池40が直列回路61から除かれることに伴う直交変換装置60の変換効率の低下によって生じるエネルギーの損失量を、予め記憶した変換効率と接続台数との関係に基づいて計算して、直交変換装置60におけるエネルギー損失量の増加量を決定する。また燃料電池切替部50は、直列回路61に他の燃料電池40を新たに接続せずに、残りの燃料電池40の発電する電力を増加させた場合のエネルギーの損失量を、予め記憶した発電効率と発電電力との関係に基づいて計算して、直交変換装置60に接続された燃料電池40全体におけるエネルギーの損失量の低下量を決定する。そして燃料電池切替部50は、一の燃料電池40が直列回路61から除かれることに伴う直交変換装置60の変換効率の低下によって生じるエネルギーの損失量の増加量が、残りの燃料電池40の発電する電力を増加させた場合のエネルギーの損失量の低下量を下回る場合に、他の燃料電池40を直列回路61に新たに接続した方が、新たに接続しない場合に比べてエネルギー効率が高いと判断する。   In S214, the fuel cell switching unit 50 stores in advance the conversion efficiency and the number of connected units, the amount of energy loss caused by the decrease in the conversion efficiency of the orthogonal transform device 60 when one fuel cell 40 is removed from the series circuit 61. The amount of increase in the amount of energy loss in the orthogonal transformation device 60 is determined based on the above relationship. In addition, the fuel cell switching unit 50 stores in advance the amount of energy lost when the power generated by the remaining fuel cells 40 is increased without newly connecting another fuel cell 40 to the series circuit 61. Calculation is made based on the relationship between the efficiency and the generated power, and the amount of reduction in energy loss in the entire fuel cell 40 connected to the orthogonal transformation device 60 is determined. The fuel cell switching unit 50 determines that the increase in the amount of energy loss caused by the decrease in the conversion efficiency of the orthogonal transformation device 60 due to the removal of one fuel cell 40 from the series circuit 61 is the power generation of the remaining fuel cells 40. If the amount of loss of energy when the power to be increased is less than the amount of decrease in energy loss, the energy efficiency is higher when the other fuel cell 40 is newly connected to the series circuit 61 than when it is not newly connected. to decide.

燃料電池切替部50は、S214において、新たな燃料電池40を直列回路61に接続した方が、接続しない場合に比べてエネルギー効率が高いと判断した場合は、貯湯槽54のそれぞれにおける将来の蓄熱量を予測する(S216)。このとき燃料電池切替部50は、貯湯槽54に蓄積される熱量を、現在から6時間後までの期間にわたって予測する。そして、燃料電池切替部50は、発電していない燃料電池40が熱量を供給する貯湯槽54のうち、蓄熱量が最も不足する貯湯槽54を決定する(S218)。このとき燃料電池切替部50は、S216で予測した蓄熱量が、予め定めた蓄熱量の下限値を最も早い時刻に下回ると予測される貯湯槽54を、蓄熱量が最も不足する貯湯槽54として決定する。そして燃料電池切替部50は、S218で決定した貯湯槽54に温水を供給する燃料電池40を直列回路61に接続し(S220)、処理を終了する。燃料電池切替部50は、S214において新たな燃料電池40を直列回路61に接続した方が、接続しない場合に比べてエネルギー効率が低いと判断した場合は、処理を終了する。   When the fuel cell switching unit 50 determines in S214 that the energy efficiency is higher when the new fuel cell 40 is connected to the series circuit 61 than when the fuel cell switching unit 50 is not connected, the future heat storage in each of the hot water tanks 54 is performed. The amount is predicted (S216). At this time, the fuel cell switching unit 50 predicts the amount of heat accumulated in the hot water storage tank 54 over a period from the present to 6 hours later. Then, the fuel cell switching unit 50 determines the hot water storage tank 54 with the shortest heat storage amount among the hot water storage tanks 54 to which the fuel cells 40 that are not generating power supply heat (S218). At this time, the fuel cell switching unit 50 sets the hot water storage tank 54 in which the heat storage amount predicted in S216 is predicted to fall below the predetermined lower limit value of the heat storage amount at the earliest time as the hot water storage tank 54 with the shortest heat storage amount. decide. Then, the fuel cell switching unit 50 connects the fuel cell 40 that supplies hot water to the hot water tank 54 determined in S218 to the series circuit 61 (S220), and ends the process. If the fuel cell switching unit 50 determines in S214 that the energy efficiency is lower when the new fuel cell 40 is connected to the series circuit 61 than when it is not connected, the process is terminated.

このように、燃料電池切替部50は、直列回路61に燃料電池40を新たに接続する場合に、必要とする熱量が最も不足している熱負荷56に熱量を供給することのできる燃料電池40を選択して発電を開始させ、当該燃料電池40を直列回路61に接続する。このため、熱負荷56の必要とする熱量が不足することを防げる。また、燃料電池切替部50が、燃料電池40を直列回路61から除いた場合に、直列回路61に他の燃料電池40を新たに接続した場合のエネルギー効率と、直列回路61に新たに燃料電池40を接続しない場合のエネルギー効率とを比較して、直列回路61に燃料電池40を新たに接続するか否かを判断するので、燃料電池40を直列回路61から除いた場合のシステム全体のエネルギー効率の低下量を削減することができる。   As described above, when the fuel cell switching unit 50 newly connects the fuel cell 40 to the series circuit 61, the fuel cell 40 can supply the heat amount to the heat load 56 in which the required heat amount is most insufficient. Is selected to start power generation, and the fuel cell 40 is connected to the series circuit 61. For this reason, it can prevent that the calorie | heat amount which the heat load 56 requires is insufficient. Further, when the fuel cell switching unit 50 removes the fuel cell 40 from the series circuit 61, the energy efficiency when another fuel cell 40 is newly connected to the series circuit 61, and the fuel cell newly added to the series circuit 61. Compared with the energy efficiency when not connecting 40, it is determined whether or not the fuel cell 40 is newly connected to the series circuit 61. Therefore, the energy of the entire system when the fuel cell 40 is removed from the series circuit 61 is determined. The amount of decrease in efficiency can be reduced.

なお、燃料電池切替部50は、直交変換装置60への入力電圧が予め定めた電圧値よりも低くなる直列回路61が存在する場合は、当該直列回路61に燃料電池40を新たに接続するよう制御してもよい。例えば、直交変換装置60への入力電圧が、電力負荷58の必要とする交流電圧のピーク値以上であるよう直列回路61に接続する燃料電池40の数を増加させる。本実施例の燃料電池システム30では、一の直列回路61に接続される燃料電池40の数が3台以上となるよう直列回路61に接続される燃料電池を制御する。   When there is a series circuit 61 in which the input voltage to the orthogonal transformation device 60 is lower than a predetermined voltage value, the fuel cell switching unit 50 newly connects the fuel cell 40 to the series circuit 61. You may control. For example, the number of fuel cells 40 connected to the series circuit 61 is increased so that the input voltage to the orthogonal transformation device 60 is equal to or higher than the peak value of the AC voltage required by the power load 58. In the fuel cell system 30 of the present embodiment, the fuel cells connected to the series circuit 61 are controlled so that the number of the fuel cells 40 connected to one series circuit 61 is three or more.

このようにして、電力負荷58の必要とする交流電圧のピーク値よりも低い発電電圧を持つ燃料電池40を用いて、電力負荷58に電力を供給できる。このため、直交変換装置60の出力するピーク電圧よりも低い発電電圧をもつ燃料電池を用いて、低コストで燃料電池システム30を構築することができる。また、直交変換装置60への入力電圧を高めるための昇圧回路等を設置せずに電力負荷58の必要とする電圧で交流電力を供給できる。   In this way, power can be supplied to the power load 58 using the fuel cell 40 having a power generation voltage lower than the peak value of the AC voltage required by the power load 58. For this reason, the fuel cell system 30 can be constructed at a low cost by using a fuel cell having a power generation voltage lower than the peak voltage output from the orthogonal transformation device 60. Also, AC power can be supplied at a voltage required by the power load 58 without installing a booster circuit or the like for increasing the input voltage to the orthogonal transform device 60.

また、燃料電池切替部50は、電力負荷58の消費する電力に基づいて、燃料電池40を直列回路61から除いた方が総合的なエネルギー効率が高まる場合に、燃料電池40を直列回路61から除いて発電を停止させる。   In addition, the fuel cell switching unit 50 removes the fuel cell 40 from the series circuit 61 when the overall energy efficiency is increased by removing the fuel cell 40 from the series circuit 61 based on the power consumed by the power load 58. Except for this, power generation is stopped.

図6は、燃料電池切替部50が消費電力に基づいて燃料電池40の接続を制御する手順を示すフローチャートである。燃料電池切替部50は、電力負荷58の消費する電力量を電力計46から取得する(S232)。燃料電池切替部50は、燃料電池40と直交変換装置60の全体のエネルギー効率を計算する(S234)。燃料電池切替部50は、S234において、S214で説明した手順と同様の手順によって、直列回路61から燃料電池40を除いた場合と除かない場合のエネルギーの損失量を計算することでエネルギー効率を計算する。そして、燃料電池切替部50は、電力負荷58が必要とする電力を直交変換装置60が出力する場合のエネルギー効率が、直列回路61から燃料電池40を除くことによって高くなるか否かを判断する(S236)。   FIG. 6 is a flowchart illustrating a procedure in which the fuel cell switching unit 50 controls connection of the fuel cell 40 based on power consumption. The fuel cell switching unit 50 acquires the amount of power consumed by the power load 58 from the wattmeter 46 (S232). The fuel cell switching unit 50 calculates the overall energy efficiency of the fuel cell 40 and the orthogonal transformation device 60 (S234). In S234, the fuel cell switching unit 50 calculates the energy efficiency by calculating the amount of energy lost when the fuel cell 40 is removed from the series circuit 61 and when the fuel cell 40 is not removed, in the same procedure as described in S214. To do. Then, the fuel cell switching unit 50 determines whether or not the energy efficiency when the orthogonal transformation device 60 outputs the power required by the power load 58 is increased by removing the fuel cell 40 from the series circuit 61. (S236).

燃料電池切替部50は、S236において直列回路61から燃料電池40を除くことによってエネルギー効率が高くなると判断した場合は、貯湯槽54のそれぞれにおける将来の蓄熱量を予測する(S238)。このとき燃料電池切替部50は、貯湯槽54に蓄積される熱量を、現在から6時間後までの期間にわたって予測する。そして燃料電池切替部50は、発電している燃料電池40が熱量を供給する貯湯槽54のうち、蓄熱量が最も余剰となる貯湯槽54を決定する(S240)。このとき燃料電池切替部50は、S238で予測した蓄熱量が、予め定めた蓄熱量の上限値を最も早い時刻に上回ると予測される貯湯槽54を、蓄熱量が最も余剰となる貯湯槽54として決定する。そして燃料電池切替部50は、S240で決定した貯湯槽54に温水を供給する燃料電池40を直列回路61から除き(S242)、当該燃料電池40の発電を停止して、処理を終了する。燃料電池切替部50は、S236において直列回路61から燃料電池40を除くことによってエネルギー効率が低くなると判断した場合は、処理を終了する。   When the fuel cell switching unit 50 determines that the energy efficiency is increased by removing the fuel cell 40 from the series circuit 61 in S236, the fuel cell switching unit 50 predicts the future heat storage amount in each of the hot water tanks 54 (S238). At this time, the fuel cell switching unit 50 predicts the amount of heat accumulated in the hot water storage tank 54 over a period from the present to 6 hours later. And the fuel cell switching part 50 determines the hot water storage tank 54 from which the heat storage amount becomes the most surplus among the hot water storage tanks 54 to which the fuel cell 40 which is generating electric power supplies heat (S240). At this time, the fuel cell switching unit 50 replaces the hot water storage tank 54 in which the heat storage amount predicted in S238 is predicted to exceed the predetermined upper limit value of the heat storage amount at the earliest time, and the hot water storage tank 54 in which the heat storage amount becomes the most excessive Determine as. And the fuel cell switching part 50 removes the fuel cell 40 which supplies warm water to the hot water storage tank 54 determined by S240 from the series circuit 61 (S242), stops the electric power generation of the said fuel cell 40, and complete | finishes a process. If the fuel cell switching unit 50 determines that the energy efficiency is lowered by removing the fuel cell 40 from the series circuit 61 in S236, the process is terminated.

このように、燃料電池切替部50は、一の燃料電池40を直列回路61から除いた場合のエネルギー効率が、燃料電池40を直列回路61から除かない場合のエネルギー効率に比べて高い場合に、直列回路61から一の燃料電池40を除く。このため、電力負荷58の消費する電力量が低下して燃料電池40が部分負荷運転になった場合であっても、システム全体のエネルギー効率の低下量を削減することができる。   As described above, the fuel cell switching unit 50 has a higher energy efficiency when the one fuel cell 40 is removed from the series circuit 61 than when the fuel cell 40 is not removed from the series circuit 61. One fuel cell 40 is removed from the series circuit 61. For this reason, even when the amount of power consumed by the power load 58 is reduced and the fuel cell 40 is in partial load operation, the amount of reduction in the energy efficiency of the entire system can be reduced.

図5のS216および図6のS238において、燃料電池切替部50は、燃料電池40の発電電力量および熱負荷56の消費熱量の履歴に基づいて、各々の貯湯槽54に将来において貯湯される温水の持つ熱量を予測する。   In S216 of FIG. 5 and S238 of FIG. 6, the fuel cell switching unit 50 performs hot water to be stored in each hot water storage tank 54 in the future based on the history of the amount of power generated by the fuel cell 40 and the amount of heat consumed by the thermal load 56. Predict the amount of heat.

図7は、燃料電池切替部50が貯湯槽54の蓄熱量を予測する手順を示すフローチャートである。燃料電池切替部50は、熱負荷56の消費熱量の履歴に基づいて、熱負荷56が将来消費する熱量の積算値(Q1)を計算する(S252)。さらに、燃料電池切替部50は、燃料電池40の発電電力量の履歴に基づいて、貯湯槽54へ供給される熱量の積算値(Q2)を計算する(S254)。さらに燃料電池切替部50は、将来貯湯槽54へ供給される熱量の積算値(Q2)と、現在貯湯槽54に蓄積されている熱量との和を計算して、これを貯湯槽54への蓄熱積算量(Q3)とする(S256)。さらに燃料電池切替部50は、貯湯槽54への蓄熱積算量(Q3)から、熱負荷56が将来消費する熱量の積算値(Q1)を減じた値を計算して、この値を将来貯湯槽54に蓄積される熱量(Q4)とする(S258)。   FIG. 7 is a flowchart illustrating a procedure in which the fuel cell switching unit 50 predicts the amount of heat stored in the hot water tank 54. The fuel cell switching unit 50 calculates the integrated value (Q1) of the amount of heat consumed by the heat load 56 in the future based on the history of the amount of heat consumed by the heat load 56 (S252). Furthermore, the fuel cell switching unit 50 calculates an integrated value (Q2) of the amount of heat supplied to the hot water tank 54 based on the history of the amount of power generated by the fuel cell 40 (S254). Further, the fuel cell switching unit 50 calculates the sum of the integrated value (Q2) of the heat amount to be supplied to the hot water storage tank 54 in the future and the heat amount currently stored in the hot water storage tank 54, and supplies this to the hot water storage tank 54. The accumulated heat storage amount (Q3) is set (S256). Further, the fuel cell switching unit 50 calculates a value obtained by subtracting the integrated value (Q1) of the heat amount that the thermal load 56 will consume in the future from the accumulated heat amount (Q3) to the hot water tank 54, and uses this value as the future hot water tank. The amount of heat (Q4) accumulated in 54 is set (S258).

なお、燃料電池切替部50は、熱負荷56が消費する熱量を計算する場合に、貯湯槽54から熱負荷56に供給される温水の量と、温水の温度とに基づいて計算する。また、燃料電池切替部50は、貯湯槽54に蓄積されている熱量を、貯湯槽54に貯湯されている温水の量と、温水の温度とに基づいて計算する。また、燃料電池切替部50は、燃料電池40から受け取る熱量と燃料電池40の発電電力量との関係を予め記憶しており、当該関係に基づいて貯湯槽54に供給される熱量を計算する。   The fuel cell switching unit 50 calculates the amount of heat consumed by the heat load 56 based on the amount of hot water supplied from the hot water tank 54 to the heat load 56 and the temperature of the hot water. The fuel cell switching unit 50 calculates the amount of heat stored in the hot water storage tank 54 based on the amount of hot water stored in the hot water storage tank 54 and the temperature of the hot water. The fuel cell switching unit 50 stores in advance a relationship between the amount of heat received from the fuel cell 40 and the amount of power generated by the fuel cell 40, and calculates the amount of heat supplied to the hot water tank 54 based on the relationship.

燃料電池切替部50は、熱負荷56の消費熱量および燃料電池40の発電電力量の過去の履歴を格納する履歴テーブルを有しており、当該履歴テーブルを参照して、将来貯湯槽54に蓄積される熱量(Q4)を計算する。   The fuel cell switching unit 50 has a history table that stores past histories of the amount of heat consumed by the thermal load 56 and the amount of power generated by the fuel cell 40, and is stored in the future hot water tank 54 with reference to the history table. Calculate the amount of heat (Q4).

図8は、燃料電池切替部50が管理する履歴テーブルの一例を示す図である。燃料電池切替部50は、一日の1時から24時までの1時間毎の時間帯別に消費熱量と発電電力量のそれぞれの予め定めた日数での平均値を、住居42毎に履歴テーブルに格納する。さらに、燃料電池切替部50は、平日と、土曜日または日曜日とのそれぞれについて履歴テーブルを作成する。   FIG. 8 is a diagram illustrating an example of a history table managed by the fuel cell switching unit 50. The fuel cell switching unit 50 stores, in the history table for each residence 42, the average value for each predetermined number of days of heat consumption and generated power for each hour of the hour from 1 o'clock to 24 o'clock of the day. Store. Further, the fuel cell switching unit 50 creates a history table for each of weekdays and Saturdays or Sundays.

燃料電池切替部50は、燃料電池切替部50が管理する履歴テーブルの中から、日付情報に基づいて導かれる曜日に該当する履歴テーブルを参照することによって、当日の熱負荷56の消費熱量および燃料電池40の発電電力量の時間発展を得る。そして燃料電池切替部50は、貯湯槽54に蓄積される熱量が熱負荷56の必要とする熱量に比べて余剰となるか否かを判断する場合に、燃料電池40の発電電力量の時間発展から計算される燃料電池40の生成する熱量の時間発展と、熱負荷56の消費熱量の時間発展と、現在貯湯槽54に蓄積された熱量とに基づいて判断する。   The fuel cell switching unit 50 refers to the history table corresponding to the day of the week derived based on the date information from the history table managed by the fuel cell switching unit 50, and thereby the amount of heat consumed and the fuel of the heat load 56 on that day. The time development of the amount of power generated by the battery 40 is obtained. Then, when the fuel cell switching unit 50 determines whether or not the amount of heat accumulated in the hot water storage tank 54 is excessive as compared with the amount of heat required by the heat load 56, the time evolution of the amount of power generated by the fuel cell 40 is developed. This is determined based on the time evolution of the amount of heat generated by the fuel cell 40 calculated from the above, the time evolution of the amount of heat consumed by the heat load 56, and the amount of heat currently stored in the hot water tank 54.

例えば燃料電池切替部50は、現在から6時間後までの期間にわたって、貯湯槽54の各々に蓄積される熱量を予測する。そして、予測された熱量が予め定めた蓄熱量の下限値を下回ると予測される場合に、熱負荷56が必要とする熱量に対して不足すると判断する。また、予測された熱量が予め定めた蓄熱量の上限値を上回ると予測される場合に、熱負荷56が必要とする熱量に対して余剰となると判断する。   For example, the fuel cell switching unit 50 predicts the amount of heat accumulated in each of the hot water tanks 54 over a period from the present to 6 hours later. Then, when the predicted amount of heat is predicted to fall below a predetermined lower limit value of the stored heat amount, it is determined that the amount of heat required by the thermal load 56 is insufficient. Further, when it is predicted that the predicted heat amount exceeds the predetermined upper limit value of the heat storage amount, it is determined that the heat amount required by the thermal load 56 is excessive.

なお、履歴テーブルに格納されている発電電力量と実際の発電電力量との差が、予め定めた電力量よりも大きい場合は、履歴テーブルに格納されている発電電力量に対して、実際の発電電力量に合致するよう補正することによって、将来の発電電力量を計算する。例えば、現在の直前の1時間における実際の発電電力量と、履歴テーブルに格納されている発電電力量との差を計算して、当該差と、履歴テーブルに格納されている発電電力量との和を、将来の発電電力量として計算する。同様にして、履歴テーブルに格納されている消費熱量と実際の消費熱量との差が予め定めた熱量よりも大きい場合は、履歴テーブルに格納されている消費熱量に対して、実際の消費熱量に合致するよう補正することによって、将来の消費熱量を計算する。   In addition, when the difference between the generated power amount stored in the history table and the actual generated power amount is larger than the predetermined power amount, the actual generated power amount is compared with the actual generated power amount with respect to the generated power amount. The future power generation amount is calculated by correcting to match the power generation amount. For example, the difference between the actual generated power amount in the hour immediately before the current time and the generated power amount stored in the history table is calculated, and the difference between the generated power amount and the generated power amount stored in the history table is calculated. The sum is calculated as the amount of power generated in the future. Similarly, when the difference between the heat consumption amount stored in the history table and the actual heat consumption amount is larger than the predetermined heat amount, the actual heat consumption amount is compared with the heat consumption amount stored in the history table. Calculate future heat consumption by correcting to match.

一般に、熱負荷56の消費熱量や燃料電池40の発電電力量は、平日であるか、土曜日または日曜であるかによって大きく異なる。燃料電池切替部50は、熱負荷56の消費熱量および燃料電池40の発電電力量の過去の履歴が格納される履歴テーブルに基づいて、消費熱量や発電電力量を曜日に基づいて適切に判断できるので、燃料電池切替部50は貯湯槽54の熱量が余剰となるか否かを適切に判断できる。   In general, the amount of heat consumed by the heat load 56 and the amount of power generated by the fuel cell 40 vary greatly depending on whether it is a weekday, Saturday or Sunday. The fuel cell switching unit 50 can appropriately determine the amount of heat consumed and the amount of generated power based on the day of the week based on a history table in which past histories of the amount of heat consumed by the thermal load 56 and the amount of power generated by the fuel cell 40 are stored. Therefore, the fuel cell switching unit 50 can appropriately determine whether or not the amount of heat in the hot water storage tank 54 becomes excessive.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良を加えることができることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements are also included in the technical scope of the present invention.

本発明の実施形態に係る燃料電池システム30の構成の一例を示す。1 shows an exemplary configuration of a fuel cell system 30 according to an embodiment of the present invention. バイパススイッチ62および接続スイッチ(64、65)の開閉状態の一例を示す。An example of the open / close state of the bypass switch 62 and the connection switches (64, 65) is shown. 燃料電池切替部50が直交変換装置60を停止して燃料電池40の接続を切り替える手順を示すフローチャートである。7 is a flowchart showing a procedure in which the fuel cell switching unit 50 stops the orthogonal transformation device 60 and switches the connection of the fuel cell 40. 直交変換装置60への燃料電池40の接続状態の一例を示す。An example of the connection state of the fuel cell 40 to the orthogonal transformation device 60 is shown. 燃料電池切替部50が直列回路61から除いた場合の動作手順を示すフローチャートである。6 is a flowchart showing an operation procedure when the fuel cell switching unit 50 is removed from the series circuit 61. 燃料電池切替部50が消費電力に基づいて燃料電池40の接続を制御する手順を示すフローチャートである。4 is a flowchart showing a procedure for controlling connection of the fuel cell 40 based on power consumption by the fuel cell switching unit 50. 燃料電池切替部50が貯湯槽54の蓄熱量を予測する手順を示すフローチャートである。4 is a flowchart showing a procedure in which the fuel cell switching unit 50 predicts the amount of heat stored in the hot water tank 54. 燃料電池切替部50が管理する履歴テーブルの一例を示す図である。It is a figure which shows an example of the log | history table which the fuel cell switching part 50 manages.

符号の説明Explanation of symbols

40・・・燃料電池、42・・・住居、44・・・電力ネットワーク、46・・・電力計、50・・・燃料電池切替部、52・・・故障検知部、54・・・貯湯槽、56・・・熱負荷、58・・・電力負荷、60・・・直交変換装置、61・・・直列回路、62・・・バイパススイッチ、64、65・・・接続スイッチ   DESCRIPTION OF SYMBOLS 40 ... Fuel cell, 42 ... Dwelling, 44 ... Electric power network, 46 ... Wattmeter, 50 ... Fuel cell switching part, 52 ... Failure detection part, 54 ... Hot water storage tank 56 ... Thermal load, 58 ... Power load, 60 ... Orthogonal transformation device, 61 ... Series circuit, 62 ... Bypass switch, 64, 65 ... Connection switch

Claims (18)

異なる位置に設けられる熱負荷のそれぞれに熱量を供給すべく分散して設けられる複数の燃料電池と、
前記複数の燃料電池を直列に接続する直列回路と、
前記直列回路により得られる直流電力を交流電力に変換して、交流電力を消費する電力負荷に供給する直交変換装置と、
前記複数の燃料電池の中の一の燃料電池を前記直列回路から除いた場合に、前記直列回路に新たな燃料電池を直列に接続することによって、前記直交変換装置に入力する直流電圧の低下量を抑える燃料電池切替部と
を備える燃料電池システム。
A plurality of fuel cells provided in a distributed manner to supply heat to each of the thermal loads provided at different positions;
A series circuit connecting the plurality of fuel cells in series;
An orthogonal transformation device that converts direct current power obtained by the series circuit into alternating current power and supplies it to a power load that consumes alternating current power;
When one fuel cell of the plurality of fuel cells is removed from the series circuit, the amount of decrease in the DC voltage input to the orthogonal transformation device by connecting a new fuel cell in series to the series circuit A fuel cell system comprising: a fuel cell switching unit that suppresses fuel consumption.
前記燃料電池切替部は、必要とする熱量が最も不足している前記熱負荷に熱量を供給することのできる燃料電池を、前記新たな燃料電池として選択して発電を開始させ、当該燃料電池を前記直列回路に接続する請求項1に記載の燃料電池システム。   The fuel cell switching unit selects a fuel cell that can supply heat to the heat load that requires the least amount of heat as the new fuel cell, and starts power generation. The fuel cell system according to claim 1, wherein the fuel cell system is connected to the series circuit. 前記燃料電池切替部は、前記熱負荷が必要とする熱量に比べて熱量を余剰に生産している燃料電池を選択し、選択した燃料電池を前記直列回路から除くとともに、当該燃料電池の発電を停止する請求項2に記載の燃料電池システム。   The fuel cell switching unit selects a fuel cell that produces more heat than the heat load requires, removes the selected fuel cell from the series circuit, and generates power from the fuel cell. The fuel cell system according to claim 2, which is stopped. 前記複数の燃料電池の故障を検知する故障検知部を更に備え、
前記燃料電池切替部は、前記故障検知部が故障を検知した場合に、故障した燃料電池を前記直列回路から除く請求項2に記載の燃料電池システム。
A failure detector for detecting failures of the plurality of fuel cells;
The fuel cell system according to claim 2, wherein the fuel cell switching unit removes a failed fuel cell from the series circuit when the failure detection unit detects a failure.
前記燃料電池切替部は、前記複数の燃料電池の利用者によって前記一の燃料電池の発電が停止された場合に、前記一の燃料電池を前記直列回路から除き、必要とする熱量が最も不足している前記熱負荷に熱量を供給することのできる燃料電池を、前記新たな燃料電池として選択して発電を開始させ、当該燃料電池を前記直列回路に接続する請求項2に記載の燃料電池システム。   The fuel cell switching unit removes the one fuel cell from the series circuit when the power generation of the one fuel cell is stopped by a user of the plurality of fuel cells, and requires the least amount of heat. The fuel cell system according to claim 2, wherein a fuel cell capable of supplying heat to the thermal load is selected as the new fuel cell to start power generation, and the fuel cell is connected to the series circuit. . 前記複数の燃料電池の各々が出力する直流電圧は、前記直交変換装置が出力する交流電圧のピーク値よりも小さく、
前記直列回路により得られる電圧は、前記ピーク値以上である請求項1に記載の燃料電池システム。
The DC voltage output from each of the plurality of fuel cells is smaller than the peak value of the AC voltage output from the orthogonal transform device,
The fuel cell system according to claim 1, wherein a voltage obtained by the series circuit is equal to or higher than the peak value.
前記燃料電池切替部は、前記電力負荷の必要とする電力量を供給するための、前記直列回路に接続される前記複数の燃料電池全体の発電効率と前記直交変換装置の変換効率とを含む全体のエネルギー効率を計算し、前記一の燃料電池を前記直列回路から除いた場合に、前記直列回路に前記新たな燃料電池を接続したときの前記エネルギー効率が、前記直列回路に前記新たな燃料電池を接続しないときの前記エネルギー効率に比べて高いことを条件として、前記直列回路に前記新たな燃料電池を接続する請求項1に記載の燃料電池システム。   The fuel cell switching unit includes the power generation efficiency of the whole of the plurality of fuel cells connected to the series circuit and the conversion efficiency of the orthogonal transform device for supplying the amount of power required by the power load. When the one fuel cell is removed from the series circuit, the energy efficiency when the new fuel cell is connected to the series circuit is equal to the new fuel cell in the series circuit. 2. The fuel cell system according to claim 1, wherein the new fuel cell is connected to the series circuit on condition that the energy efficiency is higher than the energy efficiency when not connected. 前記燃料電池切替部は、前記一の燃料電池を前記直列回路から除いた場合の前記エネルギー効率が、前記一の燃料電池を前記直列回路から除かない場合の前記エネルギー効率に比べて高い場合に、前記直列回路から前記一の燃料電池を除く請求項7に記載の燃料電池システム。   The fuel cell switching unit, when the energy efficiency when the one fuel cell is removed from the series circuit is higher than the energy efficiency when the one fuel cell is not removed from the series circuit, The fuel cell system according to claim 7, wherein the one fuel cell is excluded from the series circuit. 前記直交変換装置は複数設けられ、前記直列回路は前記直交変換装置毎に設けられており、
前記直列回路のそれぞれは、前記複数の燃料電池の各々を前記直列回路中に挿入して直列に接続する接続スイッチと、前記複数の燃料電池の各々を前記直列回路に挿入せずにバイパスするバイパススイッチとを有し、
前記燃料電池切替部は、前記一の燃料電池を前記直列回路から除く場合に、前記一の燃料電池を当該直列回路に直列に接続する前記接続スイッチを開放するとともに前記一の燃料電池をバイパスする前記バイパススイッチを閉じ、更に、前記新たな燃料電池を当該直列回路に挿入せずにバイパスする前記バイパススイッチを開放するとともに、前記新たな燃料電池を当該直列回路に直列に接続する前記接続スイッチを閉じる請求項3に記載の燃料電池システム。
A plurality of the orthogonal transformation devices are provided, and the series circuit is provided for each orthogonal transformation device,
Each of the series circuits includes a connection switch that inserts each of the plurality of fuel cells into the series circuit and connects them in series, and a bypass that bypasses each of the plurality of fuel cells without being inserted into the series circuit. A switch,
When the one fuel cell is removed from the series circuit, the fuel cell switching unit opens the connection switch that connects the one fuel cell in series to the series circuit and bypasses the one fuel cell. Closing the bypass switch, and further opening the bypass switch for bypassing the new fuel cell without inserting it into the series circuit, and connecting the connection switch for connecting the new fuel cell in series with the series circuit. The fuel cell system according to claim 3.
前記燃料電池切替部は、一の燃料電池が発電を停止した場合に、前記一の燃料電池が接続されている前記直列回路を選択し、選択した前記直列回路から前記一の燃料電池を除くとともに前記新たな燃料電池を直列に接続する請求項9に記載の燃料電池システム。   The fuel cell switching unit selects the series circuit to which the one fuel cell is connected when one fuel cell stops power generation, and removes the one fuel cell from the selected series circuit. The fuel cell system according to claim 9, wherein the new fuel cells are connected in series. 前記燃料電池切替部は、予め定めた数以上の燃料電池が発電を停止した場合に、一の直交変換装置の動作を停止して、当該直交変換装置に接続される燃料電池のそれぞれを、発電を停止した燃料電池が接続されていた前記直列回路のそれぞれに直列に接続する請求項10に記載の燃料電池システム。   The fuel cell switching unit stops the operation of one orthogonal transform device when a predetermined number of fuel cells stop generating power, and generates power for each of the fuel cells connected to the orthogonal transform device. The fuel cell system according to claim 10, wherein the fuel cell system is connected in series to each of the series circuits to which the fuel cells having been stopped are connected. 異なる位置に設けられる熱負荷のそれぞれに熱量を供給すべく分散して設けられる複数の燃料電池と、
前記複数の燃料電池を直列に接続する直列回路と、
前記直列回路により得られる直流電力を交流電力に変換して、交流電力を消費する電力負荷に供給する直交変換装置と、
前記複数の燃料電池の中の一の燃料電池を前記直列回路から除いた場合において、前記直列回路に接続された残りの燃料電池の発電する電力を増加させることによって新たな燃料電池を前記直列回路に接続せずに電力を供給できる場合に、前記一の燃料電池が前記直列回路から除かれることに伴う前記直交変換装置の変換効率の低下によって生じるエネルギーの損失量の増加量が、前記残りの燃料電池の発電する電力を増加させることで得られるエネルギーの損失量の低下量を下回ることを条件として、前記新たな燃料電池を前記直列回路に直列に接続することによって前記直交変換装置に入力する直流電圧の低下量を抑える燃料電池切替部と
を備える燃料電池システム。
A plurality of fuel cells provided in a distributed manner to supply heat to each of the thermal loads provided at different positions;
A series circuit connecting the plurality of fuel cells in series;
An orthogonal transformation device that converts direct current power obtained by the series circuit into alternating current power and supplies the alternating current power to a power load;
When one fuel cell of the plurality of fuel cells is removed from the series circuit, a new fuel cell is added to the series circuit by increasing the power generated by the remaining fuel cells connected to the series circuit. When the one fuel cell is removed from the series circuit when the electric power can be supplied without being connected to, the increase in the amount of energy loss caused by the decrease in the conversion efficiency of the orthogonal transform device is the remaining amount. The new fuel cell is input to the orthogonal transformation device by connecting the new fuel cell in series to the series circuit on condition that the amount of energy loss obtained by increasing the power generated by the fuel cell is less than the reduction amount. A fuel cell system comprising a fuel cell switching unit that suppresses a decrease in DC voltage.
異なる位置に設けられる熱負荷のそれぞれに熱量を供給すべく分散して設けられる複数の燃料電池を、直列回路に直列に接続するステップと、
前記直列回路により得られる直流電力を直交変換装置を用いて交流電力に変換して、交流電力を消費する電力負荷に供給するステップと、
前記複数の燃料電池の中の一の燃料電池を前記直列回路から除いた場合に、前記直列回路に新たな燃料電池を直列に接続することによって、前記直交変換装置に入力する直流電圧の低下量を抑える燃料電池切替ステップと
を備える燃料電池システム制御方法。
Connecting a plurality of fuel cells provided in a distributed manner to supply heat to each of the heat loads provided at different positions in series with a series circuit;
Converting DC power obtained by the series circuit into AC power using an orthogonal transformation device and supplying the AC power to a power load that consumes AC power;
When one fuel cell of the plurality of fuel cells is removed from the series circuit, the amount of decrease in the DC voltage input to the orthogonal transformation device by connecting a new fuel cell in series to the series circuit A fuel cell system control method comprising:
前記燃料電池切替ステップは、必要とする熱量が最も不足している前記熱負荷に熱量を供給することのできる燃料電池を、前記新たな燃料電池として選択して発電を開始させ、当該燃料電池を前記直列回路に接続する請求項13に記載の燃料電池システム制御方法。   In the fuel cell switching step, a fuel cell that can supply heat to the thermal load having the least amount of heat required is selected as the new fuel cell to start power generation. The fuel cell system control method according to claim 13, wherein the fuel cell system control method is connected to the series circuit. 前記燃料電池切替ステップは、前記熱負荷が必要とする熱量に比べて熱量を余剰に生産している燃料電池を選択し、選択した燃料電池を前記直列回路から除く請求項14に記載の燃料電池システム制御方法。   The fuel cell according to claim 14, wherein the fuel cell switching step selects a fuel cell that produces an excessive amount of heat compared to the amount of heat required by the thermal load, and removes the selected fuel cell from the series circuit. System control method. 前記直交変換装置は複数設けられ、前記直列回路は前記直交変換装置毎に設けられており、
前記直列回路は、前記複数の燃料電池の各々を前記直列回路中に挿入して直列に接続する接続スイッチと、前記燃料電池の各々を前記直列回路に挿入せずにバイパスするバイパススイッチとを有し、
前記燃料電池切替ステップは、前記一の燃料電池を前記直列回路から除く場合に、前記一の燃料電池を当該直列回路に直列に接続する前記接続スイッチを開放するとともに前記一の燃料電池をバイパスする前記バイパススイッチを閉じ、更に、前記新たな燃料電池を当該直列回路に挿入せずにバイパスする前記バイパススイッチを開放するとともに、前記新たな燃料電池を当該直列回路に直列に接続する前記接続スイッチを閉じる請求項15に記載の燃料電池システム制御方法。
A plurality of the orthogonal transformation devices are provided, and the series circuit is provided for each orthogonal transformation device,
The series circuit includes a connection switch that inserts each of the plurality of fuel cells into the series circuit and connects them in series, and a bypass switch that bypasses each of the fuel cells without being inserted into the series circuit. And
In the fuel cell switching step, when the one fuel cell is removed from the series circuit, the connection switch for connecting the one fuel cell in series to the series circuit is opened and the one fuel cell is bypassed. Closing the bypass switch, and further opening the bypass switch for bypassing the new fuel cell without inserting it into the series circuit, and connecting the connection switch for connecting the new fuel cell in series with the series circuit. The fuel cell system control method according to claim 15.
前記燃料電池切替ステップは、一の燃料電池が発電を停止した場合に、前記一の燃料電池が接続されている前記直列回路を選択し、選択した前記直列回路から前記一の燃料電池を除くとともに前記新たな燃料電池を直列に接続する請求項16に記載の燃料電池システム制御方法。   In the fuel cell switching step, when one fuel cell stops power generation, the series circuit to which the one fuel cell is connected is selected, and the one fuel cell is removed from the selected series circuit. The fuel cell system control method according to claim 16, wherein the new fuel cells are connected in series. 前記燃料電池切替ステップは、予め定めた数以上の燃料電池が発電を停止した場合に、一の直交変換装置の動作を停止して、当該直交変換装置に接続される燃料電池のそれぞれを、発電を停止した燃料電池が接続されていた前記直列回路のそれぞれに直列に接続する請求項17に記載の燃料電池システム制御方法。   In the fuel cell switching step, when more than a predetermined number of fuel cells stop generating power, the operation of one orthogonal transform device is stopped, and each of the fuel cells connected to the orthogonal transform device generates power. The fuel cell system control method according to claim 17, wherein the fuel cell system is connected in series to each of the series circuits to which the fuel cells having been stopped are connected.
JP2004360511A 2004-12-13 2004-12-13 Fuel cell system and fuel cell system control method Expired - Fee Related JP4917749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360511A JP4917749B2 (en) 2004-12-13 2004-12-13 Fuel cell system and fuel cell system control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360511A JP4917749B2 (en) 2004-12-13 2004-12-13 Fuel cell system and fuel cell system control method

Publications (2)

Publication Number Publication Date
JP2006172769A true JP2006172769A (en) 2006-06-29
JP4917749B2 JP4917749B2 (en) 2012-04-18

Family

ID=36673300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360511A Expired - Fee Related JP4917749B2 (en) 2004-12-13 2004-12-13 Fuel cell system and fuel cell system control method

Country Status (1)

Country Link
JP (1) JP4917749B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181877A (en) * 2007-01-24 2008-08-07 Syspotek Corp Fuel cell having protective device
JP2016019331A (en) * 2014-07-07 2016-02-01 三菱電機株式会社 Photovoltaic power generation monitor system
CN111755718A (en) * 2020-05-15 2020-10-09 广东鸿力氢动科技有限公司 Power distribution method and device for fuel cell system cluster

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140071A (en) * 1984-12-12 1986-06-27 Toshiba Corp Fuel cell plant
JPH0278159A (en) * 1988-09-13 1990-03-19 Toshiba Corp Route switching device for fuel cell
JPH0613102A (en) * 1992-06-26 1994-01-21 Kansai Electric Power Co Inc:The Dispersion type fuel cell power plant and its operation control
JP2003134674A (en) * 2001-10-26 2003-05-09 Toho Gas Co Ltd Household cogeneration network system
JP2003199254A (en) * 2001-10-19 2003-07-11 Matsushita Electric Ind Co Ltd Cogeneration system and program therefor
JP2004274912A (en) * 2003-03-10 2004-09-30 Japan Research Institute Ltd Power supply system and program for maintaining high reliability of direct-current power distribution network
JP2006012689A (en) * 2004-06-28 2006-01-12 Idemitsu Kosan Co Ltd Fuel cell system, fuel cell system control method, and collective apartment house with improved system-wide energy efficiency

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140071A (en) * 1984-12-12 1986-06-27 Toshiba Corp Fuel cell plant
JPH0278159A (en) * 1988-09-13 1990-03-19 Toshiba Corp Route switching device for fuel cell
JPH0613102A (en) * 1992-06-26 1994-01-21 Kansai Electric Power Co Inc:The Dispersion type fuel cell power plant and its operation control
JP2003199254A (en) * 2001-10-19 2003-07-11 Matsushita Electric Ind Co Ltd Cogeneration system and program therefor
JP2003134674A (en) * 2001-10-26 2003-05-09 Toho Gas Co Ltd Household cogeneration network system
JP2004274912A (en) * 2003-03-10 2004-09-30 Japan Research Institute Ltd Power supply system and program for maintaining high reliability of direct-current power distribution network
JP2006012689A (en) * 2004-06-28 2006-01-12 Idemitsu Kosan Co Ltd Fuel cell system, fuel cell system control method, and collective apartment house with improved system-wide energy efficiency

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181877A (en) * 2007-01-24 2008-08-07 Syspotek Corp Fuel cell having protective device
JP2016019331A (en) * 2014-07-07 2016-02-01 三菱電機株式会社 Photovoltaic power generation monitor system
CN111755718A (en) * 2020-05-15 2020-10-09 广东鸿力氢动科技有限公司 Power distribution method and device for fuel cell system cluster
CN111755718B (en) * 2020-05-15 2021-11-30 广东鸿力氢动科技有限公司 Power distribution method and device for fuel cell system cluster

Also Published As

Publication number Publication date
JP4917749B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP3469228B2 (en) Power storage device charge / discharge control device, charge / discharge control method, and power storage system
Vasallo et al. A methodology for sizing backup fuel-cell/battery hybrid power systems
EP1997204A1 (en) Charge controller
JP2007066724A (en) Fuel cell power generation system
US7566989B2 (en) Back-up power system for a cooling system
JP4917749B2 (en) Fuel cell system and fuel cell system control method
JP2012016156A (en) Electric power supply system and residential distribution board
JP2018182905A (en) Power supply system
JP2017050903A (en) Energy management system, energy management apparatus, and energy management method
JP2012151977A (en) Load leveling system
WO2004079842A1 (en) Power supply system and fuel cell unit
JP6637805B2 (en) Fuel cell system
JP2021106091A (en) Fuel cell system
JP6643938B2 (en) Distributed power generation system
JP2014056429A (en) Energy management system, energy management device and method and program for energy management
WO2022038778A1 (en) Fuel cell system and method for controlling fuel cell system
JP3918010B2 (en) High-efficiency fuel cell system, fuel cell system control method and building for reducing fluctuations in power consumption
JP7512916B2 (en) Power management system, server, and method for adjusting power supply and demand
JP7303692B2 (en) POWER MANAGEMENT SYSTEM, POWER MANAGEMENT METHOD, POWER MANAGEMENT APPARATUS, AND PROGRAM
JP6137886B2 (en) Fuel cell power generation system
JP6618788B2 (en) Fuel cell device and control method thereof
JP6476240B2 (en) Power control apparatus, power control apparatus control method, and power control apparatus control program
JP2006262613A (en) Power supply system, power supply method, and building
JP6643939B2 (en) Combined heat and power system
JP6629630B2 (en) Fuel cell system, fuel cell unit, and operation control method for fuel cell unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080725

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees