JPH0613084A - Electrode and its manufacture - Google Patents

Electrode and its manufacture

Info

Publication number
JPH0613084A
JPH0613084A JP4166515A JP16651592A JPH0613084A JP H0613084 A JPH0613084 A JP H0613084A JP 4166515 A JP4166515 A JP 4166515A JP 16651592 A JP16651592 A JP 16651592A JP H0613084 A JPH0613084 A JP H0613084A
Authority
JP
Japan
Prior art keywords
metal
electrode
metal mesh
porous
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4166515A
Other languages
Japanese (ja)
Inventor
Seishi Takagi
清史 高木
Koichi Hosokawa
宏一 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4166515A priority Critical patent/JPH0613084A/en
Publication of JPH0613084A publication Critical patent/JPH0613084A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To facilitate the measurement of dimension, and manufacture an electrode having a high dimensional precision by forming the electrode from a core part consisting of a porous metal and a metal mesh closely adhered to the outside to cover it. CONSTITUTION:At least one kind selected from the group consisting of metal staples, metal sponge pieces and metal mesh pieces is kneaded with an organic material, for example, a resin solution, and the resulting kneaded material is formed into a sheet to form a metal base 1. A metal mesh 2 is arranged on its outside, and the base 1 is closely adhered to the mesh 2 and laid into a continuable composite sheet state. This is pressurized and integrated by use of a roll, and heat-treated to provide a porous electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電極とその製造方法に関
し、更に詳しくは、その内部に活物質を充填することに
より二次電池用の正極として用いることができる多孔質
電極とそれを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode and a method for producing the same, more specifically, a porous electrode which can be used as a positive electrode for a secondary battery by filling the inside thereof with an active material, and the method for producing the same. Regarding the method.

【0002】[0002]

【従来の技術】例えばZr−Ni系の水素吸蔵合金を負
極とする二次電池の正極としては、多孔質のNi基体に
活物質である水酸化ニッケル(NiOOH)を充填した
材料が使用されている。上記した多孔質のNi基体に
は、電極としての反応表面積を大きくして電池効率を高
めるために、通常、多孔度(空隙率)が80%程度であ
る連通構造のものが使用されている。
2. Description of the Related Art For example, a material obtained by filling a porous Ni substrate with nickel hydroxide (NiOOH) as an active material is used as a positive electrode of a secondary battery having a negative electrode of a Zr-Ni-based hydrogen storage alloy. There is. As the above-mentioned porous Ni substrate, in order to increase the reaction surface area as an electrode and improve the battery efficiency, a porous structure having a porosity (porosity) of about 80% is usually used.

【0003】従来、この多孔質Ni基体は次のようにし
て製造されている。すなわち、まず、粘度が1000〜
2000cps程度の多官能性ポリオールに、少量の多
官能性ポリオール,フロン22や水のような発泡剤,炭
素やパラジウムのような導電剤をそれぞれ所定量配合し
て主剤を調製し、この主剤と変性トルエンジイソシアネ
ートのような硬化剤とを低圧発泡機のヘッドに装着され
ているインペラのような撹拌手段で撹拌混合したのち、
得られた混合液を例えばコンベアベルトの上に連続的に
滴下する。
Conventionally, this porous Ni substrate is manufactured as follows. That is, first, the viscosity is 1000 to
A small amount of a polyfunctional polyol of about 2000 cps, a small amount of a polyfunctional polyol, a foaming agent such as Freon 22 or water, and a conductive agent such as carbon or palladium are mixed in a predetermined amount to prepare a main agent. After stirring and mixing a curing agent such as toluene diisocyanate with stirring means such as an impeller attached to the head of a low pressure foaming machine,
The obtained mixed liquid is continuously dropped on, for example, a conveyor belt.

【0004】そして、滴下され、コンベアベルトで運搬
されていく混合液は数10秒の時間経過の過程で自己発
熱反応を起こして発泡し、かつ硬化して数10倍〜数1
00倍のポリウレタン発泡体となってコンベアベルト上
を連続的に移動していく。得られたポリウレタン発泡体
を例えばカッターで所定寸法の長さに切断したのち、そ
の切断片に対し、更に、スライサーのような切断手段を
用いて、例えば厚みが1.4〜1.7mm程度の多孔質な連通
構造の薄片に加工する。
Then, the mixed liquid dropped and conveyed by the conveyor belt causes a self-exothermic reaction in the course of a time of several tens of seconds, foams, and hardens to several tens to several times.
It becomes a polyurethane foam of 100 times and moves continuously on the conveyor belt. The obtained polyurethane foam is cut into a length of a predetermined size with, for example, a cutter, and then the cut piece is further cut with a cutting means such as a slicer to have a thickness of, for example, about 1.4 to 1.7 mm. It is processed into a thin piece with a porous communication structure.

【0005】ついで、得られた多孔質の薄片を、公知の
無電解ニッケル浴に浸漬し、ポリウレタンから成る骨格
の表面に厚み0.2〜2μm程度のNiめっき膜を形成す
る。最後に、無電解ニッケルめっきされた発泡体を例え
ば400〜500℃に温度制御された循環熱風炉の中で
1〜2時間程度放置することにより、発泡体の骨格であ
るポリウレタンを熱分解除去する。その結果、ポリウレ
タンの骨格表面を被覆していたNiめっき膜はそのまま
残留し、ここにNiを骨格とする連通構造の多孔質体が
得られる。
Then, the obtained porous flakes are immersed in a known electroless nickel bath to form a Ni plating film having a thickness of about 0.2 to 2 μm on the surface of the skeleton made of polyurethane. Finally, the electroless nickel-plated foam is left in a circulating hot air oven whose temperature is controlled at 400 to 500 ° C. for about 1 to 2 hours to thermally decompose and remove the polyurethane, which is the skeleton of the foam. . As a result, the Ni plating film covering the surface of the skeleton of polyurethane remains as it is, and a porous body having a communication structure having Ni as a skeleton is obtained there.

【0006】[0006]

【発明が解決しようとする課題】ところで、ポリウレタ
ン発泡体は弾性体であってその剛性は低い。したがっ
て、上記した従来の方法の場合、ポリウレタン発泡体の
切断片を更にスライスして薄片に加工するときに、スラ
イス刃の動きによりスライスされている切断片が弾性変
形を起こし、得られた薄片の寸法精度が落ちる。電池効
率との関係から厚み方向の寸法精度を0.01〜0.2mmの
公差範囲におさめることが要求されているが、上記した
方法では、薄片の厚みをこの公差範囲にいれることは非
常に困難である。
By the way, the polyurethane foam is an elastic body and its rigidity is low. Therefore, in the case of the conventional method described above, when the cut piece of the polyurethane foam is further sliced and processed into a thin piece, the cut piece sliced by the movement of the slicing blade causes elastic deformation, and the obtained thin piece is The dimensional accuracy drops. Although it is required to keep the dimensional accuracy in the thickness direction within the tolerance range of 0.01 to 0.2 mm due to the relationship with the battery efficiency, it is extremely difficult to put the thickness of the flakes within this tolerance range in the above method. Have difficulty.

【0007】また、この薄片の寸法を測定する際に、ノ
ギスやマイクロメータのように薄片と接触した状態で測
定する測定具を使用した場合、薄片は弾性体であるた
め、接触個所が弾性変形して、得られた測定値の測定誤
差が非常に大きくなる。このような問題は、薄片を−2
0℃以下の低温に冷凍してその弾性変形を防止する処置
を採ることによって解決できるが、しかし、その処置は
冷凍装置を必要とするなど実用的とはいえない。
When measuring the dimensions of the thin piece, when a measuring tool such as a caliper or a micrometer is used in contact with the thin piece, since the thin piece is an elastic body, the contact point is elastically deformed. Then, the measurement error of the obtained measurement value becomes very large. Such a problem is a thin section -2
This can be solved by taking measures to prevent elastic deformation by freezing to a low temperature of 0 ° C. or less, but such measures are not practical such as requiring a refrigerating device.

【0008】更に、寸法測定に関しては、例えばCCD
カメラを用いた非接触タイプの方法を適用することもで
きるが、適用対象の薄片は連通構造の発泡体であるため
その外側の輪郭を正確に測定することが困難であり、得
られた測定値には0.01〜0.5mm程度の誤差が不可避と
なる。また、上記した方法におけるポリウレタン骨格の
熱分解除去時には次のような問題が発生することもあ
る。
Further, regarding the dimension measurement, for example, CCD
It is possible to apply the non-contact type method using a camera, but it is difficult to accurately measure the outer contour of the thin piece to be applied because it is a foam with a communication structure, and the obtained measured value Inevitably, an error of 0.01 to 0.5 mm is unavoidable. Further, the following problems may occur during the thermal decomposition and removal of the polyurethane skeleton by the above method.

【0009】すなわち、ポリウレタンの骨格が熱分解す
るときには分解ガスが発生する。そして、この骨格を被
覆しているNiめっき膜に微細な亀裂がある場合は、こ
の分解ガスはこれら亀裂から揮発していくが、しかし骨
格がNiめっき膜で完全に被覆されている場合は、分解
ガスがめっき膜内に密封されることになり、それが弱い
膜の部分から突沸してNiめっき膜を部分的に破断さ
せ、得られた多孔質のNi骨格の表面が不均一になる。
その結果、この多孔質体を電極として組み込んで二次電
池を構成した場合、その電流効率の低下が引き起こされ
ることになる。
That is, when the skeleton of polyurethane is thermally decomposed, decomposed gas is generated. When the Ni plating film covering the skeleton has fine cracks, the decomposed gas evaporates from these cracks, but when the skeleton is completely covered with the Ni plating film, The decomposed gas is sealed in the plating film, and this causes bumping from the weak film portion to partially rupture the Ni plating film, and the surface of the obtained porous Ni skeleton becomes uneven.
As a result, when the porous body is incorporated as an electrode to form a secondary battery, the current efficiency is lowered.

【0010】更には、前記した製造方法は、全体の工程
が複雑であり、得られる電極の製造コストを引き上げる
という問題もある。本発明は上記した従来の多孔質電極
が備えている問題を解決し、寸法の測定を容易に行うこ
とができ、しかも高い寸法精度を備えた電極とそれを製
造する方法の提供を目的とする。
Further, the above-mentioned manufacturing method has a problem that the whole process is complicated and the manufacturing cost of the obtained electrode is increased. An object of the present invention is to provide an electrode which solves the above-mentioned problems of the conventional porous electrode, enables easy measurement of dimensions, and has high dimensional accuracy, and a method for producing the same. .

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、多孔質金属基体から成る芯
部と、前記芯部の外側を密着して被包する金属メッシュ
とから成ることを特徴とする電極が提供され、また、金
属短繊維,金属スポンジ片、または金属メッシュ片の群
から選ばれる少なくとも1種を有機物質と混練し、得ら
れた混練物を金属メッシュから成る筒状体に充填したの
ち加圧成形し、ついで、得られた成形体を加熱して前記
有機物質を熱分解除去することを特徴とする電極の製造
方法と、金属短繊維,金属スポンジ片、または金属メッ
シュ片の群から選ばれる少なくとも1種を有機物質と混
練し、得られた混練物をシート状に成形し、ついで、前
記成形シートの両面に金属メッシュを重ねたのち加圧成
形し複合シートとし、得られた複合シートを加熱して前
記有機物質を熱分解除去することを特徴とする電極の製
造方法が提供される。
In order to achieve the above-mentioned object, the present invention comprises a core made of a porous metal substrate and a metal mesh for tightly enclosing the outside of the core. An electrode characterized by the above is provided, and at least one selected from the group of short metal fibers, metal sponge pieces, or metal mesh pieces is kneaded with an organic substance, and the obtained kneaded product is a cylinder made of a metal mesh. A method for manufacturing an electrode, which comprises filling a shaped body, pressurizing and molding, and then heating the obtained shaped body to thermally decompose and remove the organic substance, and metal short fibers, metal sponge pieces, or At least one selected from the group of metal mesh pieces is kneaded with an organic substance, the obtained kneaded product is formed into a sheet, and then the metal mesh is superposed on both sides of the formed sheet, followed by pressure forming to obtain a composite sheet. When , Method of manufacturing an electrode, characterized in that the resulting removal pyrolysis the organic material by heating the composite sheet is provided.

【0012】本発明の電極は、図1で示したように、芯
部が所定厚みの多孔質金属基体1から成り、その外側に
金属メッシュ2が配設され、多孔質金属基体1と金属メ
ッシュ2は互いに密着して導通可能な状態になってい
る。これらの多孔質金属基体や金属メッシュは、二次電
池の電解液が強アルカリであることを考えると、例えば
Ni,軟鋼やステンレス鋼の表面をNiで被覆したよう
な耐強アルカリ性の材料で構成されていることが好まし
い。
In the electrode of the present invention, as shown in FIG. 1, the core portion is made of a porous metal substrate 1 having a predetermined thickness, and a metal mesh 2 is arranged outside the porous metal substrate 1, and the porous metal substrate 1 and the metal mesh are provided. 2 are in close contact with each other and are in a conductive state. Considering that the electrolyte of the secondary battery is a strong alkali, these porous metal substrates and metal meshes are made of, for example, a strong alkaline resistant material such as Ni, mild steel or stainless steel whose surface is coated with Ni. Is preferably provided.

【0013】多孔質金属基体1は、所定金属の短繊維や
メッシュ片が互いに絡みあい、またはスポンジ片が互い
に集合しあって構成され、全体は連通構造になってい
る。なお、基体1を金属短繊維で構成する場合には、短
繊維として、その長さが基体1の厚みよりも長いものを
用いると、短繊維は上下両面に位置する金属メッシュと
も絡みあい、導通状態が良好になるので好適である。
The porous metal substrate 1 is composed of short fibers or mesh pieces of a predetermined metal intertwined with each other or sponge pieces assembled together, and has a communication structure as a whole. When the substrate 1 is composed of metal short fibers, if the length of the short fibers is longer than the thickness of the substrate 1, the short fibers are entangled with the metal meshes located on the upper and lower surfaces, and electrical continuity is achieved. It is preferable because the condition becomes good.

【0014】図1で示した構造の電極は次のようにして
製造することができる。まず、所定長さの短繊維,所定
粒度に粉砕された金属スポンジ片、または所定サイズに
裁断された金属メッシュをフィラーとし、これに有機物
質を配合して両者を混練する。有機物質としては、例え
ば、アクリル樹脂,ポリビニルアルコール,ポリ酢酸ビ
ニル/ポリビニルアルコールの共重合体のような熱可塑
性樹脂を、酢酸エチル,イソプロピルアルコール,メタ
ノール/イソプロピルアルコール混合溶液のような有機
溶媒に溶解した樹脂液が用いられる。このとき、熱可塑
性樹脂と有機溶媒との割合は、得られた樹脂液による前
記フィラーの混練が充分に行なえる粘度となるように決
められる。
The electrode having the structure shown in FIG. 1 can be manufactured as follows. First, a short fiber having a predetermined length, a metal sponge piece crushed to a predetermined particle size, or a metal mesh cut into a predetermined size is used as a filler, and an organic substance is mixed with the filler to knead both. As the organic substance, for example, a thermoplastic resin such as acrylic resin, polyvinyl alcohol, or a polyvinyl acetate / polyvinyl alcohol copolymer is dissolved in an organic solvent such as ethyl acetate, isopropyl alcohol, or a methanol / isopropyl alcohol mixed solution. The resin solution is used. At this time, the ratio of the thermoplastic resin to the organic solvent is determined so that the viscosity of the obtained resin liquid allows the kneading of the filler to be sufficiently performed.

【0015】フィラーと有機物質との配合割合は目的と
する電極の多孔度との関係や混練の難易を勘案して決め
られる。例えば、フィラーが多すぎると均一な混練操作
が困難となり、またフィラーが少なすぎると得られた混
練物の賦型性が悪くなると同時に得られる電極が過度に
ポーラスとなってその機械的強度の低下を招くので、通
常は、フィラー5〜20体積部に対し有機物質を20〜
60体積部にすることが好ましい。
The mixing ratio of the filler and the organic substance is determined in consideration of the relationship with the target porosity of the electrode and the difficulty of kneading. For example, if the amount of the filler is too large, the uniform kneading operation becomes difficult, and if the amount of the filler is too small, the kneading property of the obtained kneaded product becomes poor and, at the same time, the resulting electrode becomes excessively porous and its mechanical strength is deteriorated. Therefore, the organic substance is usually added in an amount of 20 to 20 parts by volume with respect to 5 to 20 parts by volume of the filler.
It is preferably 60 parts by volume.

【0016】混練は、定温下において例えば加圧ニーダ
のような加圧手段を備えた混練機を用いて行うことが好
ましい。加圧しながらフィラーと有機物質を混練する
と、両者の均一混練を行うことができ、均質な連通構造
の多孔質金属基体が得やすくなるからである。なお、混
練時には、例えばポリビニルアルコールのような揮発性
の溶媒を更に適量添加して混練物の粘性を調節してもよ
い。
The kneading is preferably carried out at a constant temperature using a kneader equipped with a pressurizing means such as a press kneader. This is because if the filler and the organic substance are kneaded while applying pressure, the both can be uniformly kneaded, and a porous metal substrate having a uniform communication structure can be easily obtained. At the time of kneading, an appropriate amount of a volatile solvent such as polyvinyl alcohol may be added to adjust the viscosity of the kneaded product.

【0017】ついで、例えば有底筒状体のような所定形
状の型の中に、得られた混練物を充填したのちそれを定
温下で乾燥して、混練物を上記した型の形状に成形す
る。このようにして得られた混練物の成形体を、金属メ
ッシュの筒状体の中に挿入する。用いる筒状体は、Ni
やNi合金から成る金属繊維を編組したものが好適であ
る。編組は伸縮性に富み後述の加圧成形が容易となるか
らである。
Then, the obtained kneaded product is filled in a mold having a predetermined shape such as a bottomed cylindrical body and dried at a constant temperature to form the kneaded product into the shape of the above-mentioned mold. To do. The molded body of the kneaded material thus obtained is inserted into the tubular body of the metal mesh. The tubular body used is Ni
A braided metal fiber made of Ni alloy or Ni alloy is preferable. This is because the braid is highly stretchable and the pressure molding described later becomes easy.

【0018】なお、金属メッシュの筒状体を用いること
なく、例えば、公知の編組機を用いて混練物の成形体の
外周に所定の金属繊維を連続的に編組として編みあげる
ことにより、成形体の外周に金属メッシュを配置しても
よい。ついで、図2に示したように、混練物の成形体
1’が編組した金属メッシュの筒状体2に挿入された複
合体Aを基台3の上に横たえて置き、全体を、用いた有
機物質の熱分解温度以下の温度で加熱することにより前
記成形体1’を軟化させ、複合体Aの側面から複数(図
では2個)のローラ4a,4bで加圧して所定の厚みと
幅を有する板状体Bに成形する。
It should be noted that, without using a tubular body of metal mesh, for example, a known braiding machine is used to continuously knit a predetermined metal fiber as a braid on the outer periphery of the molded body of the kneaded product to form a molded product. You may arrange | position a metal mesh on the outer periphery of. Then, as shown in FIG. 2, the composite A inserted into the tubular body 2 of the metal mesh braided with the molded body 1'of the kneaded material was laid down on the base 3 and the whole was used. The molded body 1 ′ is softened by heating it at a temperature lower than the thermal decomposition temperature of the organic substance, and is pressed from the side surface of the composite A by a plurality (two in the figure) of rollers 4a and 4b to have a predetermined thickness and width. To form a plate-shaped body B having

【0019】このとき、ローラ4bと基台3の間隔を適
宜に選定することにより、任意の厚みの板状態を得るこ
とができる。なお、得られた板状体Bは成形体1’を芯
部としその四周が金属メッシュ2で囲撓された電極前駆
体になっている。この前駆体では、芯部の表面と金属メ
ッシュが圧着されることにより、軟質な芯部は金属メッ
シュの目の中に圧入されて互いに良好な結合状態が実現
されている。
At this time, by appropriately selecting the distance between the roller 4b and the base 3, it is possible to obtain a plate state having an arbitrary thickness. The plate-shaped body B thus obtained is an electrode precursor in which the molded body 1 ′ is the core portion and the four circumferences are surrounded and bent by the metal mesh 2. In this precursor, the surface of the core portion and the metal mesh are pressure-bonded to each other, so that the soft core portion is press-fitted into the eyes of the metal mesh to realize a good bonding state with each other.

【0020】板状体Bは適宜な長さに切断されたのち、
用いた有機物質の熱分解温度よりも高い温度の炉内に導
入される。芯部の有機物質は熱分解し、生成した分解ガ
スは揮散して、芯部には互いに絡みあった金属短繊維や
金属メッシュ片または互いに圧着しあった状態で集合す
る金属スポンジ片のみが残留する。その結果、図1で示
したような連通構造の多孔質電極が得られる。
After the plate-like body B is cut into an appropriate length,
It is introduced into the furnace at a temperature higher than the thermal decomposition temperature of the organic substance used. The organic substance in the core is thermally decomposed, the generated decomposition gas is volatilized, and only the short metal fibers or metal mesh pieces intertwined with each other or the metal sponge pieces gathered in the state of being pressed against each other remain in the core portion. To do. As a result, a porous electrode having a communication structure as shown in FIG. 1 is obtained.

【0021】また、本発明方法によれば、前記した混練
物を所定厚みのシートに成形し、この混練物シートの両
面を金属メッシュで挟んで複合シートとしたのち、全体
を例えばロールを用いて加圧して一体化し、最後にその
一体化シートを熱処理することにより、図3で示したよ
うに、多孔質な芯部1の両面に金属メッシュ2が一体化
されている構造の多孔質電極を製造することができる。
According to the method of the present invention, the kneaded material is formed into a sheet having a predetermined thickness, and the kneaded material sheet is sandwiched on both sides with a metal mesh to form a composite sheet. By pressurizing and integrating, and finally heat-treating the integrated sheet, as shown in FIG. 3, a porous electrode having a structure in which the metal mesh 2 is integrated on both surfaces of the porous core part 1 is obtained. It can be manufactured.

【0022】このようにして製造された電極において
は、外側の金属メッシュと芯部の多孔質金属基体とは互
いに機械的に絡みあって結合しているが、更に、全体に
例えばNiのめっき処理を施すと、絡みあっている部分
の結合力は増大することになるので好適である。
In the electrode manufactured in this manner, the outer metal mesh and the porous metal substrate of the core are mechanically entangled with each other and bonded together. Is preferable because the binding force of the entangled portions increases.

【0023】[0023]

【発明の実施例】Examples of the invention

実施例1 平均直径15μm,平均長さ0.3mmのNi短繊維と、ア
クリル樹脂40体積%を60体積%の酢酸エチルに溶解
して成る樹脂液と、ポリビニルアルコールとを加圧ニー
ダに12.5:40:12.5の体積比で投入し、室温下に
おいて30〜50kg/cm2の圧力を加えながら1〜2時間
混練した。
Example 1 Ni short fibers having an average diameter of 15 μm and an average length of 0.3 mm, a resin solution prepared by dissolving 40% by volume of an acrylic resin in 60% by volume of ethyl acetate, and polyvinyl alcohol were placed in a pressure kneader. The mixture was added at a volume ratio of 5: 40: 12.5 and kneaded at room temperature for 1 to 2 hours while applying a pressure of 30 to 50 kg / cm 2 .

【0024】得られた混練物を型に充填し、定温下にお
いて約1時間放置して乾燥し、直径22.5mmの円柱成形
体にした。線径7.5μmのNi繊維を編組して成る直径
30mmの筒を用意し、この筒の中に上記した円柱成形体
を挿入して複合体とした。ついで、得られた複合体を基
台の上に横たえ、全体を85℃に加熱して成形体を軟化
させた状態で多段ローラを用いて加圧成形し、厚み40
0μmの板状体にした。
The kneaded product thus obtained was filled in a mold and left to stand at a constant temperature for about 1 hour to be dried to obtain a cylindrical molded product having a diameter of 22.5 mm. A cylinder having a diameter of 30 mm prepared by braiding Ni fibers having a wire diameter of 7.5 μm was prepared, and the above-mentioned cylindrical molded body was inserted into this cylinder to obtain a composite body. Then, the obtained composite was laid on a base, and the whole was heated to 85 ° C. to soften the molded product and pressure-molded using a multistage roller to give a thickness of 40.
The plate was made to have a thickness of 0 μm.

【0025】得られた板状体を、400±10℃に温度
管理されている熱風炉の中に1時間放置してアクリル樹
脂と溶媒を除去することにより本発明の多孔質電極を得
た。得られた電極の厚みは395〜397μmでそのば
らつきは2μm以内であった。 実施例2 実施例1で調製した混練物にロール成形を施して厚みが
1.4mmのシートにした。
The obtained plate-like body was left in a hot air oven whose temperature was controlled at 400 ± 10 ° C. for 1 hour to remove the acrylic resin and the solvent to obtain a porous electrode of the present invention. The thickness of the obtained electrode was 395 to 397 μm, and the variation was within 2 μm. Example 2 The kneaded material prepared in Example 1 was roll-formed to have a thickness of
I made a 1.4mm sheet.

【0026】この混練物のシート両面を、繊維径が15
μmのNi繊維から成るメッシュで挟み、全体を温度8
5℃で厚み1.1mmにロール成形した。得られた複合シー
トを実施例1と同様の条件で熱処理した。全体の厚みが
1.05〜1.07mm、そのばらつきは20μm以内である
多孔質電極が得られた。
The fiber diameter is 15 on both sides of the sheet of this kneaded product.
It is sandwiched between meshes of Ni fiber of μm, and the whole temperature is 8
Roll molding was performed at 5 ° C to a thickness of 1.1 mm. The obtained composite sheet was heat-treated under the same conditions as in Example 1. The overall thickness
A porous electrode having a thickness of 1.05 to 1.07 mm and a variation of 20 μm or less was obtained.

【0027】[0027]

【発明の効果】以上の説明で明らかなように、本発明方
法によれば、電極の厚みは加圧成形時の基台とローラと
の間隔で厳密に制御することができるので、得られる電
極の寸法精度は非常に高いものとなる。また、用いる材
料は、いずれも、ポリウレタン発泡体のような弾性体で
はないため、寸法測定を容易に行うことができる。本発
明方法で製造した電極は、高い寸法精度を有しているの
で、芯部に活物質を充填して成る二次電池の正極に用い
て非常に有用である。
As is apparent from the above description, according to the method of the present invention, the thickness of the electrode can be strictly controlled by the distance between the base and the roller at the time of pressure molding. The dimensional accuracy of is very high. In addition, since the materials used are not elastic bodies such as polyurethane foam, the dimensions can be easily measured. The electrode manufactured by the method of the present invention has high dimensional accuracy, and thus is very useful as a positive electrode of a secondary battery having a core filled with an active material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極例を示す断面図である。FIG. 1 is a sectional view showing an example of an electrode of the present invention.

【図2】図1の電極の前駆体を加圧成形する状態を示す
斜視図である。
FIG. 2 is a perspective view showing a state in which the precursor of the electrode of FIG. 1 is pressure-molded.

【図3】本発明の電極の他の例を示す断面図である。FIG. 3 is a cross-sectional view showing another example of the electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 多孔質金属基体 1’ 混練物の成形体 2 金属メッシュ 3 基台 4a,4b ロール 1 Porous Metal Substrate 1'Molded Material Formed Body 2 Metal Mesh 3 Base 4a, 4b Roll

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔質金属基体から成る芯部と、前記芯
部の外側を密着して被包する金属メッシュとから成るこ
とを特徴とする電極。
1. An electrode comprising: a core portion made of a porous metal substrate; and a metal mesh that tightly covers and encloses the outside of the core portion.
【請求項2】 金属短繊維,金属スポンジ片、または金
属メッシュ片の群から選ばれる少なくとも1種を有機物
質と混練し、得られた混練物を金属メッシュから成る筒
状体に充填したのち加圧成形し、ついで、得られた成形
体を加熱して前記有機物質を熱分解除去することを特徴
とする電極の製造方法。
2. At least one selected from the group of metal short fibers, metal sponge pieces, or metal mesh pieces is kneaded with an organic substance, and the obtained kneaded product is filled in a tubular body made of a metal mesh and then added. A method for producing an electrode, comprising performing pressure molding, and then heating the obtained molded body to thermally decompose and remove the organic substance.
【請求項3】 金属短繊維,金属スポンジ片、または金
属メッシュ片の群から選ばれる少なくとも1種を有機物
質と混練し、得られた混練物をシート状に成形し、つい
で、前記成形シートの両面に金属メッシュを重ねたのち
加圧成形し複合シートとし、得られた複合シートを加熱
して前記有機物質を熱分解除去することを特徴とする電
極の製造方法。
3. At least one selected from the group consisting of short metal fibers, metal sponge pieces, or metal mesh pieces is kneaded with an organic substance, the obtained kneaded product is molded into a sheet, and then the molded sheet A method for producing an electrode, comprising laminating metal meshes on both sides and press-molding to form a composite sheet, and heating the obtained composite sheet to thermally decompose and remove the organic substance.
JP4166515A 1992-06-25 1992-06-25 Electrode and its manufacture Pending JPH0613084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166515A JPH0613084A (en) 1992-06-25 1992-06-25 Electrode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166515A JPH0613084A (en) 1992-06-25 1992-06-25 Electrode and its manufacture

Publications (1)

Publication Number Publication Date
JPH0613084A true JPH0613084A (en) 1994-01-21

Family

ID=15832755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166515A Pending JPH0613084A (en) 1992-06-25 1992-06-25 Electrode and its manufacture

Country Status (1)

Country Link
JP (1) JPH0613084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140864A (en) * 2004-11-15 2006-06-01 Audio Technica Corp Output connector of condenser microphone
JP2013088299A (en) * 2011-10-19 2013-05-13 Seiko Epson Corp Sensor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140864A (en) * 2004-11-15 2006-06-01 Audio Technica Corp Output connector of condenser microphone
JP4560380B2 (en) * 2004-11-15 2010-10-13 株式会社オーディオテクニカ Condenser microphone output connector
JP2013088299A (en) * 2011-10-19 2013-05-13 Seiko Epson Corp Sensor device

Similar Documents

Publication Publication Date Title
EP1091841B1 (en) Production of a porous foam product for battery electrodes
US6823584B2 (en) Process for manufacturing a membrane electrode assembly
EP0924783B1 (en) Process for producing a porous pasted electrode
JP2009509033A (en) Method for producing metal foam having uniform cell structure
EP1612891B1 (en) Anisotropic electrically conductive film and method of producing the same
JPH11154517A (en) Metallic porous body for secondary battery and its manufacture
KR20070053262A (en) Method of making electrodes for electrochemical fuel cells
US3595700A (en) Method of making electrode
JPH0613084A (en) Electrode and its manufacture
JP4527844B2 (en) Manufacturing method of battery electrode plate
JPS5539179A (en) Manufacturing method of electrode for cell
CN100399602C (en) Electrode, a method for manufacturing an electrode and bipolar battery
JP2674057B2 (en) Method of manufacturing polarizable electrodes
KR101523949B1 (en) electrode for fuel cell using porous foam and manufacturing method thereof
JP2002208405A (en) Manufacturing method of porous base body for electrode
US20150104612A1 (en) Method of manufacturing a foam showing a gradient poisson's ratio behaviour
JPH04249857A (en) Manufacture of battery electrode plate
JP2001287300A (en) Copper-clad laminated substrate and its manufacturing method
JP2000021416A (en) Electrode active material holding board and manufacture thereof, and positive electrode for alkaline secondary battery using the board
JPH1086255A (en) Vacuum heat insulation material
KR100791810B1 (en) Method for preparing gas diffusion electrode
JPH01292754A (en) Electrode for alkaline storage battery and manufacture thereof
JP2010251074A (en) Bonding method of urethane foam block for electrode base material and method of manufacturing electrode metal porous body using the same bonding method
JPH10302802A (en) Storage battery electrode and manufacture thereof
JPS58225566A (en) Production method of nickel electrode