JPH06129778A - Heating furnace - Google Patents

Heating furnace

Info

Publication number
JPH06129778A
JPH06129778A JP4277427A JP27742792A JPH06129778A JP H06129778 A JPH06129778 A JP H06129778A JP 4277427 A JP4277427 A JP 4277427A JP 27742792 A JP27742792 A JP 27742792A JP H06129778 A JPH06129778 A JP H06129778A
Authority
JP
Japan
Prior art keywords
heating element
resistance heating
graphite
sheet
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4277427A
Other languages
Japanese (ja)
Other versions
JP3287029B2 (en
Inventor
Shunei Sekido
俊英 関戸
Seiji Tanaka
清次 田中
Akira Okuda
章 奥田
Tomihiro Ishida
富弘 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP27742792A priority Critical patent/JP3287029B2/en
Publication of JPH06129778A publication Critical patent/JPH06129778A/en
Application granted granted Critical
Publication of JP3287029B2 publication Critical patent/JP3287029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE:To provide a heating furnace with a resistance heating element, the life of which can be substantially prolonged by completely suppressing evaporation of graphite from a surface of the heating element. CONSTITUTION:A carbon fiber thread layer 3 comprising a laminate formed by winding of carbon fiber threads, and a sheet-shaped graphite layer 4 comprising a laminate formed by winding of a sheet-shaped graphite cover in this order an outer surface of a cylindrical-shaped resistance heating element 2 which is formed of graphite and has an inlet 9a and an outlet 9b for a thread Y. The insulating members 5 which comprise a compact of boron nitride is provided between the sheet-shaped graphite layer 4 and the resistance heating element 2 on the opposite ends thereof. Accordingly, the insulating members 5 prevent carbon vapor having evaporated from an outer surface of the resistance heating element 2 from leaking outside the element, so that a heating furnace is provided to have a heating element 1, the life of which is substantially prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抵抗発熱体に電流を通
じて発熱せしめる加熱炉、特に抵抗発熱体に円筒状の黒
鉛を用いた2500℃以上の高温焼成用のタンマン炉型
式の加熱炉の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating furnace for heating a resistance heating element through an electric current, and more particularly, an improvement of a Tamman furnace type heating furnace for high temperature firing of 2500 ° C. or higher using cylindrical graphite for the resistance heating element. Regarding

【0002】[0002]

【従来の技術】従来、炭素繊維等の炭素材料や、セラミ
ックス系材料等の各種工業用素材の焼成に用いられる高
温加熱炉として、抵抗炉、誘導炉、アーク炉、プラズマ
炉等の数多くの加熱炉が用いられているが、特に黒鉛を
抵抗発熱体とする抵抗炉であるタンマン炉型式の加熱炉
(以下、タンマン式加熱炉という。)は、その加熱手段
が比較的単純であるため、上記工業用素材の熱処理用と
して広く使用されている。
2. Description of the Related Art Conventionally, as a high temperature heating furnace used for firing carbon materials such as carbon fibers and various industrial materials such as ceramic materials, many heatings such as resistance furnaces, induction furnaces, arc furnaces and plasma furnaces have been performed. Although a furnace is used, a heating furnace of a Tammann furnace type (hereinafter referred to as a Tamman heating furnace), which is a resistance furnace using graphite as a resistance heating element, has a relatively simple heating means. Widely used for heat treatment of industrial materials.

【0003】このタンマン式加熱炉を用いて少くとも2
000℃以上の高温加熱を行うには、黒鉛から成る円筒
状の抵抗発熱体に電流を通じ、発生するジュール熱によ
り抵抗発熱体内部に静置または連続的に通過する被加熱
処理物を加熱、焼成するのであるが、この加熱処理は、
通常、窒素やアルゴン等の不活性ガス中あるいは減圧、
真空下で行なわれる。
Using this Tammann type heating furnace, at least 2
In order to perform high-temperature heating at 000 ° C. or higher, an electric current is passed through a cylindrical resistance heating element made of graphite, and Joule heat generated from the resistance heating element causes the object to be heated to be left stationary or continuously passing through the resistance heating element. However, this heat treatment
Usually, in an inert gas such as nitrogen or argon or under reduced pressure,
Done under vacuum.

【0004】この黒鉛からなる抵抗発熱体は、金属材料
やセラミックス系材料の抵抗発熱体では実用に供し得な
い2000〜3000℃の高温領域においても、溶融、
分解等を起こさないので、抵抗発熱体として十分その機
能を発揮し、かつ比較的安価な材料ではあるが、前述の
高温下で長時間使用すると徐々に減耗、劣化するので、
継続使用が困難となる欠点があった。
The resistance heating element made of this graphite melts even in a high temperature range of 2000 to 3000 ° C., which cannot be practically used in the resistance heating element made of a metal material or a ceramic material.
Since it does not cause decomposition etc., it exhibits its function sufficiently as a resistance heating element and is a relatively inexpensive material, but it gradually wears out and deteriorates when used for a long time at the above-mentioned high temperature.
There was a drawback that continuous use was difficult.

【0005】すなわち、抵抗発熱体の減耗、劣化により
肉厚が薄くなると、その部分の電気抵抗が局部的に高く
なって加速度的に減耗が進行し、さらには発熱密度の変
化に伴なう炉内の温度分布の変化をきたすため、焼成し
た製品の品質安定に対する阻害要因となる。したがっ
て、抵抗発熱体は、経時的に新規なものと交換する必要
がある。抵抗発熱体の交換作業は、安全上、炉を冷却し
た後に行なう必要があるが、特に大型の加熱炉において
は、冷却−解体−組立−再加熱といった一連の作業に多
大の時間、労力を必要とし、抵抗発熱体交換周期が短く
なるほど単に抵抗発熱体の材料費のみでなく、生産性を
著しく阻害し、かつ焼成コストの増大をもたらすことに
なる。
That is, when the resistance heating element is worn or deteriorated and its thickness is reduced, the electric resistance of the portion locally increases and the wear is accelerated at an accelerated rate. Further, the furnace is accompanied by a change in heat generation density. Since it causes a change in the temperature distribution inside, it becomes an obstacle to stabilizing the quality of the baked product. Therefore, the resistance heating element needs to be replaced with a new one over time. For safety, it is necessary to replace the resistance heating element after cooling the furnace, but especially in a large heating furnace, a large amount of time and labor are required for a series of operations such as cooling-disassembly-assembly-reheating. However, as the resistance heating element replacement cycle becomes shorter, not only the material cost of the resistance heating element but also the productivity is significantly impaired and the firing cost is increased.

【0006】そこで、かかる問題を解消せんとして、特
開昭58−138981号公報に寿命の延長された抵抗
発熱体を備えた加熱炉が提案されている。
To solve this problem, Japanese Patent Application Laid-Open No. 58-138981 proposes a heating furnace provided with a resistance heating element having an extended life.

【0007】この加熱炉の抵抗発熱体は、円筒状の炭素
材からなる抵抗発熱体の外周面に、繊維状炭素とフィル
ム状またはシート状炭素乃至黒鉛とを、パーン状に捲回
することにより、抵抗発熱体外周面からの黒鉛の蒸発、
減耗をこれら捲回層によって抑制せんとするものであ
る。
The resistance heating element of this heating furnace is obtained by winding fibrous carbon and film-like or sheet-like carbon or graphite in a bun shape on the outer peripheral surface of a resistance heating element made of a cylindrical carbon material. , Evaporation of graphite from the outer peripheral surface of the resistance heating element,
The abrasion loss is suppressed by these wound layers.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記提
案の抵抗発熱体では、パーン巻き状に捲回積層されたシ
ート状の炭素乃至黒鉛に熱的特性と電気的特性に顕著な
異方性があるため、抵抗発熱体外表面からの黒鉛の蒸発
は、極度に抑制されるが、捲回層の両端部が抵抗発熱体
に対して電気的に絶縁されていないため、抵抗発熱体か
ら蒸発した炭素が捲回層の両端部から抵抗発熱体から外
部へ漏出してしまい、両端部近傍に蒸発した黒鉛が付
着、堆積するという欠点がある。したがって、上記提案
の抵抗発熱体は、せっかくのフィルム状またはシート状
炭素乃至黒鉛を設けても、抵抗発熱体表面からの黒鉛の
蒸発を完全に抑制することができず、大幅な抵抗発熱体
の寿命延長が望めないという欠点があった。
However, in the resistance heating element proposed above, the sheet-like carbon or graphite laminated in a bun winding has remarkable anisotropy in thermal and electrical characteristics. Therefore, the evaporation of graphite from the outer surface of the resistance heating element is extremely suppressed, but since both ends of the wound layer are not electrically insulated from the resistance heating element, the carbon evaporated from the resistance heating element is There is a drawback in that the graphite leaks from both ends of the wound layer to the outside from the resistance heating element, and evaporated graphite adheres and deposits in the vicinity of both ends. Therefore, the resistance heating element of the above proposal cannot completely suppress the evaporation of graphite from the surface of the resistance heating element even if the film-shaped or sheet-shaped carbon or graphite is provided, so that the resistance heating element of There was a drawback that the life could not be extended.

【0009】本発明は、このような事情に鑑みてなされ
たもので、抵抗発熱体表面からの黒鉛の蒸発、減耗を著
しく抑制することにより、大幅な寿命延長を図ることが
できる発熱体を備えた加熱炉を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and is provided with a heating element capable of significantly extending the life of the resistance heating element by significantly suppressing the evaporation and wear of graphite. It is intended to provide a heating furnace.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するため、黒鉛から成る両端部が開口された円筒状の
抵抗発熱体の外側に、炭素繊維糸条を捲回積層して成る
炭素繊維糸条層と、シート状黒鉛を捲回積層して成るシ
ート状黒鉛層とがこの順に形成された発熱体を備え、該
発熱体の前記抵抗発熱体に電流を通じて前記抵抗発熱体
内部の被加熱処理物を熱処理する加熱炉において、前記
発熱体の少なくとも前記シート状黒鉛層と前記抵抗発熱
体との間の両端部を、窒化硼素成形体から成る絶縁部材
で封止したことを特徴とする。
In order to achieve the above object, the present invention comprises a carbon fiber yarn wound and laminated on the outside of a cylindrical resistance heating element made of graphite with both ends open. The heating element comprises a carbon fiber yarn layer and a sheet-like graphite layer formed by winding sheet-like graphite in this order, and an electric current is passed through the resistance heating element of the heating element to generate an internal portion of the resistance heating element. In a heating furnace for heat-treating an object to be heated, at least both ends of the heating element between the sheet-shaped graphite layer and the resistance heating element are sealed with an insulating member made of a boron nitride molded body, To do.

【0011】以下、本発明の加熱炉について図面を参照
しながら具体的に説明する。
The heating furnace of the present invention will be specifically described below with reference to the drawings.

【0012】図1は、本発明に係る加熱炉の一実施態様
例の概略縦断面図である。
FIG. 1 is a schematic vertical sectional view of an embodiment of a heating furnace according to the present invention.

【0013】図において、1は、内部を連続的に通過す
る糸条Yを加熱するための発熱体で、黒鉛から成る円筒
状の抵抗発熱体2の外側に、炭素繊維糸条が複数回捲回
されて成る炭素繊維糸条層3と、シート状黒鉛が捲回積
層されて成るシート状黒鉛層4とがこの順に形成されて
いる。また、抵抗発熱体2の外表面とシー状黒鉛層4と
の間の両端部は、窒化硼素成形体から成る絶縁部材5で
封止されている。シート状黒鉛層4の外側には、発熱体
1を保温する例えば、炭素質や黒鉛質の粉末または粒状
物、あるいはフェルト状物等から成る保温材6がシート
状黒鉛層4と同一幅で被覆されており、その外側がさら
に薄鋼板の炉殻7で被覆、保護されている。また、抵抗
発熱体2の両端部には、抵抗発熱体の中心部よりも断面
積が大きい端子部2a、2bが形成され、それぞれの端
子部には、抵抗発熱体2に電流を通電するための電極8
が固定されている。電極8は、図示しない低電圧大電流
の電源部に接続され、その電源部からの通電によって抵
抗発熱体がジュール発熱するようにされている。すなわ
ち、抵抗発熱体2の中央部断面積が端子部2a、2bの
断面積よりも小さくされているので、中央部の電気抵抗
が高くなり、炉内温度が約2500〜3000℃の高温
となって糸条Yを加熱するのである。なお、9a、9b
は、それぞれ糸条Yの入口と出口であり、この出入口を
有するリング状部材が端子部2a、2bの開口部に固定
されることによって、糸条Yの加熱時に図示しない不活
性ガス供給部から抵抗発熱体内部に供給された不活性ガ
スが外部に漏出しないようにするシール部をも兼用して
いる。このように抵抗発熱体2の内部や、炉殻7内の保
温材6には、糸条Yと抵抗発熱体2の酸化や劣化を抑制
するため、通常、窒素やアルゴン等の不活性ガスで満た
すか、もしくは真空下に保たれる。
In the figure, reference numeral 1 is a heating element for heating a yarn Y continuously passing through the inside thereof, and a carbon fiber yarn is wound a plurality of times on the outside of a cylindrical resistance heating element 2 made of graphite. A carbon fiber yarn layer 3 formed by turning and a sheet-like graphite layer 4 formed by winding sheet-like graphite are formed in this order. Further, both end portions between the outer surface of the resistance heating element 2 and the graphite graphite layer 4 are sealed with an insulating member 5 made of a boron nitride molded body. On the outside of the sheet-shaped graphite layer 4, a heat-insulating material 6 for heating the heating element 1, for example, carbonaceous or graphite powder or granular material, or felt-like material is coated with the same width as the sheet-shaped graphite layer 4. The outer side is further covered and protected by the furnace shell 7 made of a thin steel plate. Further, terminal portions 2a and 2b having a larger cross-sectional area than the central portion of the resistance heating element 2 are formed at both ends of the resistance heating element 2, and a current is passed through the resistance heating element 2 at each terminal portion. Electrode 8
Is fixed. The electrode 8 is connected to a low-voltage, high-current power supply unit (not shown), and the resistance heating element generates Joule heat when energized from the power supply unit. That is, since the central cross-sectional area of the resistance heating element 2 is smaller than the cross-sectional area of the terminal portions 2a and 2b, the electric resistance of the central portion becomes high, and the temperature inside the furnace becomes a high temperature of about 2500 to 3000 ° C. The yarn Y is heated. Note that 9a and 9b
Are the inlets and outlets of the yarn Y, respectively, and the ring-shaped members having these inlets and outlets are fixed to the openings of the terminal portions 2a, 2b so that when the yarn Y is heated, an inert gas supply unit (not shown) It also serves as a seal portion for preventing the inert gas supplied inside the resistance heating element from leaking to the outside. As described above, in order to suppress the oxidation and deterioration of the yarn Y and the resistance heating element 2, the heat insulating material 6 inside the resistance heating element 2 and inside the furnace shell 7 is usually filled with an inert gas such as nitrogen or argon. Filled or kept under vacuum.

【0014】上記実施態様例において、抵抗発熱体2
は、発熱のための十分なる電気抵抗を有し、しかも炭素
分の蒸発による減耗に耐えてできるだけ長寿命を保つと
いう相反する特性を発揮するには、その中央部厚みは、
5〜50mm程度にするのが好ましく、10〜30mm
程度にするのがより好ましい。なお、その長さは、特に
限定されない。また、端子部2a、2bの形状は、被加
熱処理物が本実施態様例の糸条Yのように線状体でな
く、板状体、棒状体等であるバッチ式の加熱処理の場合
は、シール部を設けず単に出入口を有するフランジと盲
板から成る構造としてもよい。
In the above embodiment, the resistance heating element 2 is used.
In order to exhibit the contradictory characteristics of having sufficient electrical resistance for heat generation and yet withstanding wear due to evaporation of carbon content and maintaining a long life as much as possible, the central part thickness is
It is preferable to be about 5 to 50 mm, 10 to 30 mm
It is more preferable to adjust the degree. The length is not particularly limited. The shape of the terminals 2a and 2b is not a linear object like the yarn Y of the present embodiment but a plate-like object or a rod-like object in the case of batch type heat treatment. Alternatively, a structure may be used in which a blind portion and a flange having an entrance / exit are provided without providing a seal portion.

【0015】炭素繊維糸条層3は、例えば、ピッチ系、
セルロース系、アクリル系等の有機繊維を不活性ガス中
で800℃以上で焼成して得られる一般の炭素繊維糸条
を抵抗発熱体の外側に複数回捲回したもので、その積層
厚さは、発熱体の肉厚等により一概には決められない
が、5〜20mm程度が好ましい。なお、通常市販の炭
素繊維糸条には、エポキシ系等のサイジング剤が付与さ
れている場合が多いが、これらサイジング剤は、加熱さ
れると分解ガス化するので炉内雰囲気を汚染することに
なる。したがって、抵抗発熱体の外側に捲回積層を形成
する前にサイジング剤を除去するのが好ましく、サイジ
ング剤が付与されていない炭素繊維糸条を用いるのがよ
り好ましい。炭素繊維糸条の繊度は、特に限定されない
が、通常、1000〜20000デニールのものが用い
られる。いずれにしろ、この捲回層は、長時間抵抗発熱
体2の外側に直接接触して黒鉛化が進むことになるの
で、炭化系、黒鉛化系のいずれでも用いることができ
る。なお、炭素繊維糸条は、それ自体電気導電性を有す
るが、これを誘電体である抵抗発熱体の軸に直交するよ
うに巻き付けても、形成された炭素繊維糸条層と抵抗発
熱体との接触抵抗が抵抗発熱体の電気抵抗に比べて極め
て大きいため、大部分の電流が抵抗発熱体内部を流れる
ので、良好な電気絶縁層を形成することになる。
The carbon fiber yarn layer 3 is, for example, a pitch type,
A general carbon fiber yarn obtained by firing organic fibers such as cellulose or acrylic in an inert gas at 800 ° C. or higher is wound around the resistance heating element a plurality of times, and the laminated thickness is Although it is not generally determined depending on the thickness of the heating element, it is preferably about 5 to 20 mm. It should be noted that usually commercially available carbon fiber yarns are often provided with a sizing agent such as an epoxy type, but since these sizing agents are decomposed and gasified when heated, they contaminate the atmosphere in the furnace. Become. Therefore, it is preferable to remove the sizing agent before forming the wound laminate on the outside of the resistance heating element, and it is more preferable to use the carbon fiber yarn to which the sizing agent is not applied. The fineness of the carbon fiber yarn is not particularly limited, but a fineness of 1000 to 20000 denier is usually used. In any case, since this wound layer is in direct contact with the outside of the resistance heating element 2 for a long time and graphitization proceeds, either a carbonization type or a graphitization type can be used. Although the carbon fiber yarn itself has electrical conductivity, even if it is wound so as to be orthogonal to the axis of the resistance heating element which is a dielectric, the carbon fiber thread layer and the resistance heating element are formed. Since the contact resistance is extremely higher than the electric resistance of the resistance heating element, most of the current flows inside the resistance heating element, so that a good electric insulating layer is formed.

【0016】炭素繊維糸条の捲回積層にあたっては、抵
抗発熱体2の外側に密着させ、かつ糸条間に間隙ができ
ないように密に巻き付けることが肝要で、例えば巻取機
や旋盤等を用い、発熱体を回転させつつ炭素繊維を10
0〜1000g程度の一定張力下で捲回積層するのが好
ましい。この場合、発熱体の軸方向に対し、ほぼ直角に
なるよう密に巻き付けると、炭素蒸気の蒸発が抑制され
るので好ましい。
When the carbon fiber yarns are wound and laminated, it is important that they are closely attached to the outside of the resistance heating element 2 and that they are tightly wound so that there is no gap between the yarns. For example, a winder or a lathe is used. Use the carbon fiber while rotating the heating element.
It is preferable to wind and laminate under a constant tension of about 0 to 1000 g. In this case, it is preferable to tightly wind the heating element so that it is substantially perpendicular to the axial direction of the heating element, because evaporation of carbon vapor is suppressed.

【0017】シート状黒鉛層4は、膨張黒鉛を加圧成形
したような厚さが0.1〜1mm程度の可撓性のシート
状物から成り、具体的なものとしては、例えば市販され
ている“パーマフォイル”(東洋炭素株式会社製)、
“ニカフィルム”(日本炭素株式会社製)、“グラフォ
イル”(ユニオンカーバイト社製)等が挙げられる。こ
のシート状黒鉛層の積層枚数は、炭素繊維糸条層3表面
から漏出した炭素蒸気を外部へ逃散させないためには1
〜2層では少なく、3〜10層とするのが好ましい。な
お、シート状黒鉛層は、単一のシート状物を複数枚重ね
て炭素材で固めたラミネートシートや、炭素繊維糸条を
抄造して炭素質バインダーで固めたシート状物であって
もよい。上記シート状黒鉛層は、いずれも熱的特性と電
気的特性に顕著な異方性をもち、熱伝導度は、面方向で
は高いが面と垂直な方向、すなわち厚さ方向では低く、
また、電気抵抗率は、熱伝導度とは逆に面方向では低い
が厚さ方向では極めて高いという、加熱炉の発熱体とし
て好適な特性を有する。
The sheet-shaped graphite layer 4 is made of a flexible sheet-shaped material having a thickness of about 0.1 to 1 mm, which is obtained by press-molding expanded graphite. Specific examples thereof are commercially available. "Perm foil" (made by Toyo Tanso Co., Ltd.),
Examples include "Nikafilm" (manufactured by Nippon Carbon Co., Ltd.) and "Grafoil" (manufactured by Union Carbide). The number of laminated sheet graphite layers is 1 in order to prevent carbon vapor leaking from the surface of the carbon fiber yarn layer 3 from escaping to the outside.
The number of layers is less than 2 layers, and preferably 3 to 10 layers. The sheet-like graphite layer may be a laminated sheet obtained by stacking a plurality of single sheet-like materials and solidifying them with a carbon material, or a sheet-like material obtained by making carbon fiber yarns and solidifying them with a carbonaceous binder. . The sheet-like graphite layer has a significant anisotropy in thermal characteristics and electrical characteristics, the thermal conductivity is high in the plane direction, but is low in the direction perpendicular to the plane, that is, the thickness direction,
In addition, the electrical resistivity is low in the plane direction and extremely high in the thickness direction, which is opposite to the thermal conductivity, which is a characteristic suitable as a heating element of a heating furnace.

【0018】絶縁部材5としては、電気絶縁抵抗が大き
く、高温に耐え得るものであればよく、具体的なものと
しては、例えば、高温減圧化で熱化学沈着法(いわゆる
熱CVD法)で製造される市販の窒化硼素成形体等が挙
げられる。絶縁部材5に、上記窒化硼素成形体を用いる
場合は、抵抗発熱体表面から蒸発した炭素蒸気の封止の
見地から、抵抗発熱体外周面に熱化学沈着法で厚さ1m
mで幅が20mm乃至30mmの円筒状に形成するのが
好ましい。窒化硼素は、不活性ガス雰囲気中で本発明の
加熱炉の加熱温度領域である2800℃程度まで安全に
使用でき、しかもその電気抵抗は、1000℃におい
て、5×109 Ω・cmであるので、黒鉛から成る抵抗発
熱体の電気抵抗0.0010〜0.0020Ω・cmに比
べて格段にその値が大きいため、電気絶縁部材として使
用することがきる。なお、絶縁部材5は、図に示すよう
に、少なくともシート状黒鉛層4と抵抗発熱体2との間
の両端部に設けられていればよく、絶縁部材5とシート
状黒鉛層4との間に炭素繊維糸条層3が介在することを
妨げるものでないが、抵抗発熱体2の外表面から蒸発し
た炭素蒸気が炭素繊維糸条層4からショートパスして炉
外に漏れ易いので、なるべく炭素繊維糸条層3が介在し
ない方がよい。
Any material may be used as the insulating member 5 as long as it has a large electric insulation resistance and can withstand high temperatures. As a concrete example, the insulating member 5 is manufactured by thermochemical deposition method (so-called thermal CVD method) under reduced pressure at high temperature. Commercially available boron nitride compacts and the like may be mentioned. When the above-mentioned boron nitride molded body is used for the insulating member 5, from the viewpoint of sealing the carbon vapor evaporated from the surface of the resistance heating element, a thickness of 1 m is formed on the outer peripheral surface of the resistance heating element by thermochemical deposition.
It is preferably formed into a cylindrical shape having a width of m and a width of 20 mm to 30 mm. Boron nitride can be safely used in an inert gas atmosphere up to about 2800 ° C., which is the heating temperature range of the heating furnace of the present invention, and its electric resistance is 5 × 10 9 Ω · cm at 1000 ° C. Since the resistance heating element made of graphite has a remarkably large value as compared with the electric resistance of 0.0010 to 0.0020 Ω · cm, it can be used as an electric insulating member. As shown in the figure, the insulating member 5 may be provided at least at both ends between the sheet-shaped graphite layer 4 and the resistance heating element 2, and between the insulating member 5 and the sheet-shaped graphite layer 4. Although it does not prevent the carbon fiber yarn layer 3 from intervening, the carbon vapor evaporated from the outer surface of the resistance heating element 2 short-passes from the carbon fiber yarn layer 4 and easily leaks out of the furnace. It is preferable that the fiber yarn layer 3 does not intervene.

【0019】以上に説明した本発明の加熱炉で処理でき
る被加熱処理物は、糸条Yとしては、上記炭素繊維糸条
層3を形成する糸条と同じものを加熱処理することがで
き、また、単体としては、板状体、棒状体等を加熱処理
することができる。
In the object to be heated which can be processed in the heating furnace of the present invention described above, as the yarn Y, the same yarn as that forming the carbon fiber yarn layer 3 can be heat-treated. Moreover, as a simple substance, a plate-shaped body, a rod-shaped body, or the like can be heat-treated.

【0020】[0020]

【作用】本発明の加熱炉によれば、炭素繊維糸条層は、
抵抗熱体の外表面から蒸発する炭素を封鎖し、炭素繊維
糸条層内部での蒸発炭素の分圧を高める。また、シート
状黒鉛層は、その異方性により、輻射熱を内部に反射さ
せて断熱効果を発揮する。 この場合、抵抗発熱体の両
端部において、抵抗発熱体外表面から蒸発した炭素蒸気
が抵抗発熱体外部へ漏出しょうとするが、この部位で発
熱体外表面とシート状黒鉛層とを絶縁部材が封止してい
るので、その漏出が防止される。
According to the heating furnace of the present invention, the carbon fiber yarn layer is
The carbon evaporated from the outer surface of the resistance heating element is blocked, and the partial pressure of the evaporated carbon inside the carbon fiber yarn layer is increased. Further, the sheet-shaped graphite layer reflects radiant heat to the inside due to its anisotropy, and exhibits a heat insulating effect. In this case, at both ends of the resistance heating element, carbon vapor evaporated from the outer surface of the resistance heating element tries to leak to the outside of the resistance heating element, but the insulating member seals the outer surface of the heating element and the sheet graphite layer at this part. Therefore, the leakage is prevented.

【0021】したがって、本発明の加熱炉は、2500
℃以上もの高温下においても、発熱体の寿命が大幅に延
長された状態で被加熱処理物を連続的に熱処理すること
ができる。
Therefore, the heating furnace of the present invention is 2500
Even at a high temperature of ℃ or more, the object to be heated can be continuously heat-treated while the life of the heating element is greatly extended.

【0022】[0022]

【実施例】図1に示した加熱炉において、抵抗発熱体2
として内径30mm、外径50mm(中央部の肉厚10m
m)、長さ1250mmの黒鉛パイプを用い、このパイ
プの中央部外周に600mmの長さに渡って、炭素繊維
糸条“トレカ”(東レ株式会社製)T−1000G×6
K糸のノーサイジング糸を巻付け張力約250gでパイ
プ軸に直交するよう密に捲回積層して、厚さ5mmの炭
素繊維糸条捲回層3を形成した。そして、炭素繊維糸条
捲回層3の両端部に窒化硼素成形体から成る絶縁部材5
を溶着した上、さらにその外周面に厚さ0.2mmの
“パーマフォイル”を5層巻き付けてシート状黒鉛層4
を形成し、上記炭素繊維糸条で縛って加熱体1を構成し
た。
EXAMPLE In the heating furnace shown in FIG.
Inner diameter 30mm, outer diameter 50mm (wall thickness of the central part 10m
m), a graphite pipe having a length of 1250 mm is used, and a carbon fiber yarn “Torayca” (manufactured by Toray Industries, Inc.) T-1000G × 6 is provided along the outer periphery of the central portion of the pipe at a length of 600 mm.
A no-sizing yarn of K yarn was wound and tightly wound and laminated at a tension of about 250 g so as to be orthogonal to the pipe axis to form a carbon fiber yarn wound layer 3 having a thickness of 5 mm. Then, the insulating member 5 made of a boron nitride molded body is formed on both ends of the carbon fiber yarn winding layer 3.
Sheet-like graphite layer 4 by welding 5 layers of "permafoil" with a thickness of 0.2 mm around the outer peripheral surface of the sheet.
Was formed and bound with the above-mentioned carbon fiber thread to form the heating element 1.

【0023】次に、この発熱体1の中心位置に黒鉛製の
ブロックを置き、電極8に通電して、図示しない不活性
ガス封入部から純度99.999%のアルゴンガスを封
入して、ブロックの表面温度が常圧下で約3000℃に
なるように、その赤熱した色を軸方向の一端部に設置し
た放射温度計で測定制御しながら連続加熱を行った。発
熱体1表面が減耗して破断するまでの寿命を測定したと
ころ、437時間(約18日間)であった。
Next, a block made of graphite is placed at the central position of the heating element 1, the electrode 8 is energized, and an argon gas of 99.999% purity is filled from an inert gas filling portion (not shown) to block the block. Was continuously heated while controlling the measurement of the red-hot color with a radiation thermometer installed at one end in the axial direction so that the surface temperature of the product became about 3000 ° C. under normal pressure. When the life until the surface of the heating element 1 was depleted and broken was measured, it was 437 hours (about 18 days).

【0024】[0024]

【比較例】これに対し、図1の発熱体1において、絶縁
部材5が存在しない他は、上記実施例1と全く同一条件
の発熱体を用い、同一の加熱条件でその寿命を測定した
ところ、258時間(約10.8日間)となり、絶縁部
材5が存在しない発熱体は、実施例1の発熱体に比べて
その寿命が短いことが分った。
Comparative Example On the other hand, in the heating element 1 of FIG. 1, except that the insulating member 5 does not exist, the heating element under exactly the same conditions as in Example 1 was used, and the life was measured under the same heating conditions. It was 258 hours (about 10.8 days), and it was found that the heating element without the insulating member 5 had a shorter life than the heating element of Example 1.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
の加熱炉は、黒鉛から成る両端部が開口された円筒状の
抵抗発熱体の外側に、炭素繊維糸条を捲回積層して成る
炭素繊維糸条層と、シート状黒鉛を捲回積層して成るシ
ート状黒鉛層とがこの順に形成された発熱体を備え、こ
の発熱体の抵抗発熱体に電流を通じて抵抗発熱体内部の
被加熱処理物を熱処理する加熱炉において、少なくとも
シート状黒鉛層と抵抗発熱体との間の両端部を、窒化硼
素成形体から成る絶縁部材で封止したので、抵抗発熱体
外表面から蒸発した炭素蒸気が抵抗発熱体の両端部から
抵抗発熱体外部へ漏出するのを抑制することができ、発
熱体の大幅な寿命延長を図ることができる。
As is apparent from the above description, in the heating furnace of the present invention, the carbon fiber yarn is wound and laminated on the outside of the cylindrical resistance heating element made of graphite with both ends open. And a sheet-shaped graphite layer formed by winding and laminating sheet-shaped graphite in this order.A heating element is formed in this order, and a current is passed through the resistance heating element of the heating element to cover the inside of the resistance heating element. In a heating furnace for heat-treating a heat-treated product, at least both ends between the sheet-shaped graphite layer and the resistance heating element are sealed with an insulating member made of a boron nitride molded body, so carbon vapor evaporated from the outer surface of the resistance heating element. Can be suppressed from leaking from both ends of the resistance heating element to the outside of the resistance heating element, and the life of the heating element can be greatly extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る加熱炉の一実施態様例の概略縦断
面図である。
FIG. 1 is a schematic vertical sectional view of an embodiment of a heating furnace according to the present invention.

【符号の説明】[Explanation of symbols]

1:発熱体 2a、2b:端子部 3:炭素繊維糸条層 4:シート状黒鉛層 5:絶縁部材 6:保温材 7:炉殻 8:電極 9a:入口 9b:出口 Y:糸条 1: Heating element 2a, 2b: Terminal part 3: Carbon fiber yarn layer 4: Sheet-shaped graphite layer 5: Insulating member 6: Heat insulating material 7: Furnace shell 8: Electrode 9a: Inlet 9b: Outlet Y: Yarn

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 富弘 愛媛県伊予郡松前町大字筒井1515 東レ株 式会社愛媛工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomihiro Ishida 1515 Tsutsui, Matsumae-cho, Iyo-gun, Ehime Prefecture Toray Co., Ltd. Ehime factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛から成る両端部が開口された円筒状
の抵抗発熱体の外側に、炭素繊維糸条を捲回積層して成
る炭素繊維糸条層と、シート状黒鉛を捲回積層して成る
シート状黒鉛層とがこの順に形成された発熱体を備え、
該発熱体の前記抵抗発熱体に電流を通じて前記抵抗発熱
体内部の被加熱処理物を熱処理する加熱炉において、 前記発熱体の少なくとも前記シート状黒鉛層と前記抵抗
発熱体との間の両端部を、窒化硼素成形体から成る絶縁
部材で封止したことを特徴とする加熱炉。
1. A carbon fiber yarn layer formed by winding and laminating a carbon fiber yarn and a sheet-shaped graphite are laminated on the outside of a cylindrical resistance heating element made of graphite with both ends open. A sheet-like graphite layer composed of a heating element formed in this order,
In a heating furnace for heat-treating an object to be heated inside the resistance heating element by passing an electric current through the resistance heating element of the heating element, at least both ends of the heating element between the sheet graphite layer and the resistance heating element are A heating furnace characterized by being sealed with an insulating member made of a boron nitride molded body.
JP27742792A 1992-10-15 1992-10-15 heating furnace Expired - Fee Related JP3287029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27742792A JP3287029B2 (en) 1992-10-15 1992-10-15 heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27742792A JP3287029B2 (en) 1992-10-15 1992-10-15 heating furnace

Publications (2)

Publication Number Publication Date
JPH06129778A true JPH06129778A (en) 1994-05-13
JP3287029B2 JP3287029B2 (en) 2002-05-27

Family

ID=17583412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27742792A Expired - Fee Related JP3287029B2 (en) 1992-10-15 1992-10-15 heating furnace

Country Status (1)

Country Link
JP (1) JP3287029B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198669A (en) * 2006-01-26 2007-08-09 Ibiden Co Ltd Heating furnace
CN102660809A (en) * 2012-03-21 2012-09-12 上海联川自动化科技有限公司 A novel graphite heater with a single end fixed
CN105014992A (en) * 2015-07-03 2015-11-04 苏州国宇碳纤维科技有限公司 Manufacturing technology for carbon fiber heating tube
CN105128359A (en) * 2015-07-03 2015-12-09 苏州国宇碳纤维科技有限公司 Processing technology for carbon-fiber heating tube
JP2017515002A (en) * 2014-03-03 2017-06-08 クラリアント・インターナシヨナル・リミテツド Heating device for producing carbon fiber
CN111283334A (en) * 2020-03-18 2020-06-16 常熟通乐电子材料有限公司 Processing technology of composite heating body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198669A (en) * 2006-01-26 2007-08-09 Ibiden Co Ltd Heating furnace
CN102660809A (en) * 2012-03-21 2012-09-12 上海联川自动化科技有限公司 A novel graphite heater with a single end fixed
JP2017515002A (en) * 2014-03-03 2017-06-08 クラリアント・インターナシヨナル・リミテツド Heating device for producing carbon fiber
US10337125B2 (en) 2014-03-03 2019-07-02 Clariant International Ltd. Heating device for producing carbon fibers
CN105014992A (en) * 2015-07-03 2015-11-04 苏州国宇碳纤维科技有限公司 Manufacturing technology for carbon fiber heating tube
CN105128359A (en) * 2015-07-03 2015-12-09 苏州国宇碳纤维科技有限公司 Processing technology for carbon-fiber heating tube
CN111283334A (en) * 2020-03-18 2020-06-16 常熟通乐电子材料有限公司 Processing technology of composite heating body

Also Published As

Publication number Publication date
JP3287029B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
EP0082678B1 (en) Improved electric resistance heating element and electric resistance heating furnace using the same as heat source
US4982068A (en) Fluid permeable porous electric heating element
KR100404809B1 (en) Heat treatment of carbon materials
EP0514407A1 (en) High temperature diffusion furnace.
WO2003017726A1 (en) Heater
JPS63153388A (en) Heat treating furnace
JPH06129778A (en) Heating furnace
US4031851A (en) Apparatus for producing improved high strength filaments
US3891828A (en) Graphite-lined inert gas arc heater
JPS6317381A (en) Carbonating furnace
JPS6311448B2 (en)
JP4906359B2 (en) heating furnace
JPH09101086A (en) High temperature atmospheric furnace
JPS5925936B2 (en) heating furnace
RU2710176C1 (en) Pass-through furnace for high-temperature treatment of carbon-fiber materials with induction heating of working zone
JPS5828980A (en) Induction heating furnace
JPH03175289A (en) Heating furnace
US2744152A (en) Electric furnace with carbonaceous atmosphere
US4641321A (en) Cooled furnace head for heavy-current resistance furnaces
GB2111809A (en) An improved fluid permeable porous electric heating element
JP2573102B2 (en) Furnace wall of heating furnace
JPS58138981A (en) Electric heating furnace
JPH06280117A (en) Heating furnace for graphite fiber production
JPS6363649B2 (en)
JPH07218145A (en) Heating furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees