JPH06127969A - Production of coated optical fiber - Google Patents

Production of coated optical fiber

Info

Publication number
JPH06127969A
JPH06127969A JP4279811A JP27981192A JPH06127969A JP H06127969 A JPH06127969 A JP H06127969A JP 4279811 A JP4279811 A JP 4279811A JP 27981192 A JP27981192 A JP 27981192A JP H06127969 A JPH06127969 A JP H06127969A
Authority
JP
Japan
Prior art keywords
optical fiber
cooling
fine solid
solid particle
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4279811A
Other languages
Japanese (ja)
Inventor
Hisashi Koaizawa
久 小相澤
Nobuaki Orita
伸昭 折田
Yasuhiro Naka
恭宏 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4279811A priority Critical patent/JPH06127969A/en
Publication of JPH06127969A publication Critical patent/JPH06127969A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/50Cooling the drawn fibre using liquid coolant prior to coating, e.g. indirect cooling via cooling jacket
    • C03B2205/52Cooling the drawn fibre using liquid coolant prior to coating, e.g. indirect cooling via cooling jacket by direct contact with liquid coolant, e.g. as spray, mist
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/55Cooling or annealing the drawn fibre prior to coating using a series of coolers or heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To provide the process for production of the coated optical fiber capable of dealing with a higher drawing speed at a low cost. CONSTITUTION:The optical fiber obtd. by drawing the optical fiber 4a from a heating and melting part 1a of an optical fiber while heating the optical fiber 11 preform 1 in drawing and heating furnace 1 is cooled be two stages of coolers 51, 52 of a fine solid particle blowing type. Cooling gases 14 are blown from cooling gas blow-off nozzles 13 to steam flow 12 ejected from steam generators 11 to form the fine solid particle flow contg. fine solid particles 15 in the respective stages of the coolers 51, 52 of the fine solid particle blowing type. Such fine solid particle flow is blown to the optical fiber 1a to cool the optical fiber. The optical fiber 4a is thereafter coated with a resin by a resin coating device 6, by which the coated optical fiber 4 is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱溶融された光ファ
イバ母材から光ファイバを線引きし、得られた光ファイ
バに樹脂を被覆して光ファイバ心線を製造する光ファイ
バ心線の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber core wire for manufacturing an optical fiber core wire by drawing an optical fiber from a heat-melted optical fiber base material and coating the obtained optical fiber with a resin. It is about the method.

【0002】[0002]

【従来の技術】図6は、従来の光ファイバ心線の製造方
法を実施する装置の概略構成を示したものである。即
ち、従来は光ファイバ母材1を線引き加熱炉2のヒータ
3で加熱しつつ、該光ファイバ母材1の加熱溶融部1a
から光ファイバ4aを線引きし、得られた光ファイバ4
aを冷却装置5で冷却した後、該光ファイバ4aを樹脂
被覆器6に通してその外周に樹脂を被覆し光ファイバ心
線4を製造し、次いで該光ファイバ心線4の被覆樹脂を
樹脂硬化器7で硬化させていた。なお、8は線引き加熱
炉2と冷却装置5との間で光ファイバ4aの外径を測定
している外径測定器である。
2. Description of the Related Art FIG. 6 shows a schematic structure of an apparatus for carrying out a conventional optical fiber core wire manufacturing method. That is, conventionally, while heating the optical fiber preform 1 with the heater 3 of the drawing heating furnace 2, the heating and melting portion 1a of the optical fiber preform 1 is heated.
The optical fiber 4a obtained by drawing the optical fiber 4a from
After cooling a by the cooling device 5, the optical fiber 4a is passed through the resin coating device 6 to coat the outer periphery thereof with resin to manufacture the optical fiber core wire 4, and then the coating resin of the optical fiber core wire 4 is coated with resin. It was cured by the curing device 7. An outer diameter measuring instrument 8 measures the outer diameter of the optical fiber 4a between the drawing heating furnace 2 and the cooling device 5.

【0003】このようにして光ファイバ心線4の製造を
行う場合、その生産性を上げるためには、光ファイバ4
aの線引き速度を上げる必要がある。光ファイバ4aの
線引き速度を上げると、線引き加熱炉2から出てきた高
温の光ファイバ4aが冷却装置5で十分に冷却されない
うちに樹脂被覆器6に入り、被覆樹脂の粘度を低下させ
所定の被覆厚に被覆できなかったりして、光ファイバ心
線4の特性が悪化したりする問題点が発生する。
When the optical fiber core wire 4 is manufactured in this manner, in order to increase its productivity, the optical fiber 4
It is necessary to increase the drawing speed of a. When the drawing speed of the optical fiber 4a is increased, the high-temperature optical fiber 4a coming out of the drawing heating furnace 2 enters the resin coater 6 before the cooling device 5 sufficiently cools it, and reduces the viscosity of the coating resin to a predetermined level. There is a problem that the characteristics of the optical fiber core wire 4 are deteriorated because the coating cannot be performed to the coating thickness.

【0004】このため従来は、該図6に示す冷却装置5
で光ファイバ4aを強制冷却していた。この冷却装置5
は、光ファイバ4aを通す冷却筒9を有し、該冷却筒9
の下部には該冷却筒9内に冷却ガスを供給する冷却ガス
供給部9aが設けられ、該冷却ガス供給部9aから供給
されるHeガスにより光ファイバ4aの冷却が行われる
ようになっている。冷却筒9の外周には、冷却ジャケッ
ト10が設けられ、該冷却ジャケット10内に供給され
る冷却水の如き冷却媒体で冷却筒9の冷却が行われるよ
うになっている。
Therefore, conventionally, the cooling device 5 shown in FIG. 6 has been used.
Therefore, the optical fiber 4a was forcibly cooled. This cooling device 5
Has a cooling tube 9 through which the optical fiber 4a passes.
A cooling gas supply unit 9a for supplying a cooling gas into the cooling cylinder 9 is provided in the lower part of the optical fiber 4a, and the He gas supplied from the cooling gas supply unit 9a cools the optical fiber 4a. . A cooling jacket 10 is provided on the outer circumference of the cooling cylinder 9, and the cooling cylinder 9 is cooled by a cooling medium such as cooling water supplied into the cooling jacket 10.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の光ファイバ心線の製造方法では、ガスの持つ
熱容量が小さいので、線引き速度がより高速化された場
合に対応できない問題点があった。
However, in such a conventional optical fiber core wire manufacturing method, since the heat capacity of the gas is small, there is a problem that it cannot cope with the case where the drawing speed is further increased. .

【0006】本発明の目的は、低コストで、線引き速度
の高速化に対応できる光ファイバ心線の製造方法を提供
することにある。
An object of the present invention is to provide a method for manufacturing an optical fiber core wire which is low in cost and can cope with an increase in drawing speed.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成する本
発明の手段を説明すると、本発明は光ファイバ母材を線
引き加熱炉で加熱しつつ、該光ファイバ母材の加熱溶融
部から光ファイバを線引きし、得られた光ファイバを冷
却した後、該光ファイバに樹脂を被覆して光ファイバ心
線を製造する光ファイバ心線の製造方法において、加熱
されると液化又は気化する微細固体粒子流を前記光ファ
イバに吹き付けて冷却することを特徴とする。
Means for Solving the Problems To explain the means of the present invention for achieving the above object, the present invention is to heat an optical fiber preform in a drawing heating furnace and to generate light from a heating and melting portion of the optical fiber preform. In a method for producing an optical fiber core, which comprises drawing a fiber and cooling the obtained optical fiber, and then coating the optical fiber with a resin to produce an optical fiber core, a fine solid that is liquefied or vaporized when heated. It is characterized in that a particle stream is blown onto the optical fiber to cool it.

【0008】[0008]

【作用】このように加熱されると液化又は気化する微細
固体粒子流を光ファイバに吹き付けると、該微細固体粒
子が光ファイバに近づくに従い該光ファイバの温度で液
滴になったり、昇華して蒸気になったりして相変化しつ
つ光ファイバに接触し、熱を奪い、該光ファイバを冷却
する。即ち、この場合の光ファイバの冷却は、該微細固
体粒子の相変化による冷却と、光ファイバに直接接触す
ることによる熱伝導による冷却とにより行われる。この
際、微細固体粒子がそのまま光ファイバに接触するの
は、該光ファイバの低温部だけであり、確率的には少な
い。
When a stream of fine solid particles which is liquefied or vaporized by being heated in this way is blown onto the optical fiber, the fine solid particles become droplets or sublime at the temperature of the optical fiber as they approach the optical fiber. The vapor comes into contact with the optical fiber while changing its phase by changing to steam, and takes heat to cool the optical fiber. That is, the cooling of the optical fiber in this case is performed by the phase change of the fine solid particles and the heat conduction by directly contacting the optical fiber. At this time, the fine solid particles directly contact the optical fiber only in the low temperature portion of the optical fiber, and the probability is small.

【0009】このようにして冷却を行うと、ガス冷却に
比べて、効率よく冷却が行われ、光ファイバの線引き速
度の高速化に対応することができる。
When the cooling is performed in this manner, the cooling is performed more efficiently than the gas cooling, and it is possible to cope with the increase in the drawing speed of the optical fiber.

【0010】[0010]

【実施例】図1及び図2は、本発明に係る光ファイバ心
線の製造方法を実施する装置の第1実施例を示したもの
である。なお、前述した図3と対応する部分には、同一
符号を付けて示している。
1 and 2 show a first embodiment of an apparatus for carrying out the method of manufacturing an optical fiber according to the present invention. The parts corresponding to those in FIG. 3 described above are designated by the same reference numerals.

【0011】本実施例では、外径測定器8と樹脂被覆器
6との間に2段に微細固体粒子吹付け式の冷却装置
1 ,52 が設けられている。これら微細固体粒子吹付
け式の冷却装置51 ,52 の各段では、光ファイバ4a
の一方の側とその反対側とに各1対の蒸気発生器11が
それぞれ配置されている。各1対の蒸気発生器11は、
これらから噴出される冷却液の蒸気流12が光ファイバ
4aに至る手前で衝突するように、隣接相互間である角
度をなすようにしてそれぞれ配置されている。また、光
ファイバ4aの各側の各1対の蒸気発生器11の間と、
この位置から光ファイバ4aの回りに90℃離れた位置に
は、図2に示すように冷却ガス吹出しノズル13が配置
され、各蒸気流12の衝突箇所に冷却ガス14を吹出す
ようになっている。
In this embodiment, cooling devices 5 1 and 5 2 of fine solid particle spraying type are provided in two stages between the outer diameter measuring device 8 and the resin coating device 6. In each stage of these fine solid particle spraying type cooling devices 5 1 and 5 2 , the optical fiber 4 a is provided.
A pair of steam generators 11 is arranged on one side and the opposite side, respectively. Each pair of steam generators 11,
The vapor streams 12 of the cooling liquid ejected from these are arranged so as to make an angle with each other so as to collide with each other before reaching the optical fiber 4a. In addition, between each pair of steam generators 11 on each side of the optical fiber 4a,
As shown in FIG. 2, a cooling gas blowing nozzle 13 is arranged at a position 90 ° C. away from this position around the optical fiber 4a, and the cooling gas 14 is blown to the collision point of each vapor stream 12. There is.

【0012】本実施例では、光ファイバ母材1を線引き
加熱炉2で線引きして得られた光ファイバ4aを各段の
微細固体粒子吹付け式の冷却装置51 ,52 に導き、各
段毎に該光ファイバ4aを冷却する。この場合、各段の
微細固体粒子吹付け式の冷却装置51 ,52 では、各1
対の蒸気発生器11から噴出される蒸気流12が互いに
衝突し、速度が緩やかとなる。この蒸気流12の衝突箇
所に四方の各冷却ガス吹出しノズル13から冷却ガス1
4が吹込まれる。これにより蒸気流12を構成している
微細な各液滴が、冷却ガス14で冷却されて微細固体粒
子15を作り、微細固体粒子流となる。
In this embodiment, the optical fiber 4a obtained by drawing the optical fiber preform 1 in the drawing heating furnace 2 is introduced into the cooling devices 5 1 , 5 2 of the fine solid particle spraying type of each stage, and The optical fiber 4a is cooled step by step. In this case, in the cooling devices 5 1 , 5 2 of the fine solid particle spraying type of each stage,
The steam streams 12 ejected from the pair of steam generators 11 collide with each other and the speed becomes slow. At the collision point of this vapor flow 12, the cooling gas 1
4 is blown. As a result, each fine droplet forming the vapor flow 12 is cooled by the cooling gas 14 to form the fine solid particles 15, which becomes a fine solid particle flow.

【0013】この冷却液体の微細固体粒子流を光ファイ
バ4aに吹き付けると、微細固体粒子15が光ファイバ
4aに近づくに従い該光ファイバ4aの温度で液滴に戻
ったり、昇華して蒸気になったりして相変化しつつ光フ
ァイバ4aに接触し、熱を奪い、該光ファイバ4aが冷
却される。即ち、この場合の光ファイバ4aの冷却は、
微細固体粒子15の相変化による冷却と、光ファイバ4
aに直接接触することによる熱伝導による冷却とにより
行われる。この際、微細固体粒子15がそのまま光ファ
イバ4aに接触するのは、該光ファイバ4aの低温部だ
けであり、確率的には少ない。
When this fine solid particle flow of the cooling liquid is sprayed onto the optical fiber 4a, as the fine solid particles 15 approach the optical fiber 4a, they return to liquid droplets at the temperature of the optical fiber 4a or sublimate into vapor. Then, the optical fiber 4a comes into contact with the optical fiber 4a while changing its phase, takes heat, and the optical fiber 4a is cooled. That is, the cooling of the optical fiber 4a in this case is
The optical fiber 4 is cooled by the phase change of the fine solid particles 15.
Cooling by heat conduction by directly contacting a. At this time, the fine solid particles 15 directly contact the optical fiber 4a only in the low temperature portion of the optical fiber 4a, and the probability is small.

【0014】この場合、冷却ガス14の温度によって
は、蒸気流12を構成している微細な各液滴が全て微細
固体粒子15に変化するとは限らず、一部が液滴のまま
残ることもある。この液滴でも光ファイバ4aの冷却が
行われることは勿論である。
In this case, depending on the temperature of the cooling gas 14, not all the fine droplets forming the vapor flow 12 are changed to the fine solid particles 15, but some of them may remain as droplets. is there. Needless to say, the optical fiber 4a is also cooled by this droplet.

【0015】このようにして冷却を行うと、ガス冷却に
比べて、効率よく冷却が行われ、光ファイバ4aの線引
き速度の高速化に対応することができる。
When the cooling is performed in this way, the cooling is performed more efficiently than the gas cooling, and it is possible to cope with the increase in the drawing speed of the optical fiber 4a.

【0016】本実施例では、冷却ガス14として断熱膨
脹した空気を用いた。この冷却ガス14の温度は、−30
℃〜−50℃とした。蒸気流12としては、線引き速度が
500m/分程度では、水分を含む(相対湿度40〜60%)
大気を蒸気発生器11からそのまま吹出させて用いた。
線引き速度が1000m/分程度では、高純度の水やアルコ
ールを空気でバブリングした蒸気を用いた。線引き速度
が1000m/分でも、冷却は十分に行え、光ファイバ4a
に所要の厚みに樹脂を被覆できた。これに対し、線引き
速度を700 m/分までしか上げられなかった。
In this embodiment, adiabatically expanded air is used as the cooling gas 14. The temperature of this cooling gas 14 is -30
The temperature was between ℃ and -50 ℃. As for the steam flow 12, the drawing speed is
Containing water at about 500 m / min (relative humidity 40-60%)
The atmosphere was blown out from the steam generator 11 and used.
When the drawing speed was about 1000 m / min, high-purity water or alcohol was bubbled with air. Even if the drawing speed is 1000 m / min, cooling can be sufficiently performed and the optical fiber 4a
The resin could be coated to the required thickness. On the other hand, the drawing speed could only be increased to 700 m / min.

【0017】また、冷却ガス14として液体窒素を用
い、蒸気として水蒸気を用いた場合は、微細固体粒子
(この場合は、氷の粒子)15と液体窒素の液滴,水の
液滴とが発生した。この場合は、1380m/分まで線引き
速度を上げることができた。この場合には、冷却ガス1
4自体が液体粒子を含んだ混相流となっているので、運
動量が大きく、直線性が大きい。このため光ファイバ4
aの近傍まで流れが広がらずに到達するので、冷却効率
が大きく、従って蒸気が少ない量で冷却効果がでた。し
かし蒸気を多量に使用する場合には、光ファイバ4aに
外乱を与えるので、図3に示すように蒸気流12を互い
に反対側から衝突させて、光ファイバ4aに作用する運
動量を小さくして使用した。
When liquid nitrogen is used as the cooling gas 14 and water vapor is used as the vapor, fine solid particles (in this case, ice particles) 15 and liquid nitrogen droplets and water droplets are generated. did. In this case, the drawing speed could be increased to 1380 m / min. In this case, cooling gas 1
Since 4 itself is a multiphase flow containing liquid particles, it has a large momentum and a large linearity. Therefore, the optical fiber 4
Since the flow reaches the vicinity of a without spreading, the cooling efficiency is high, and therefore the cooling effect can be obtained with a small amount of steam. However, when a large amount of steam is used, disturbance is given to the optical fiber 4a. Therefore, as shown in FIG. 3, the steam flows 12 are made to collide from opposite sides to reduce the momentum acting on the optical fiber 4a. did.

【0018】図4は、本発明に係る光ファイバ心線の製
造方法を実施する装置の第2実施例を示したものであ
る。本実施例では、冷却筒9に蒸気発生器11と冷却ガ
ス吹出しノズル13とを図示のように取付け、該冷却筒
9内で微細固体粒子流を形成して光ファイバ4aの冷却
を行う例を示したものである。このようにすると、より
効率よく光ファイバ4aの冷却を行うことができる。な
お、16は冷却筒9の上下で排気をそれぞれ行う排気筒
である。
FIG. 4 shows a second embodiment of an apparatus for carrying out the method of manufacturing an optical fiber according to the present invention. In this embodiment, an example in which the steam generator 11 and the cooling gas blowing nozzle 13 are attached to the cooling cylinder 9 as shown in the figure, and a fine solid particle flow is formed in the cooling cylinder 9 to cool the optical fiber 4a. It is shown. In this way, the optical fiber 4a can be cooled more efficiently. Reference numeral 16 is an exhaust tube that exhausts air above and below the cooling tube 9.

【0019】図5は、本発明に係る光ファイバ心線の製
造方法を実施する装置の第3実施例を示したものであ
る。本実施例では、冷凍機17内に蒸気或いは液体粒子
を配管18で供給し、微細固体粒子15を発生させ、得
られた微細固体粒子15を気流にのせて微細固体粒子流
として保温配管19で光ファイバ4aに吹付けて冷却を
行うようにしている。保温配管19はその外周に断熱材
を巻き、輸送中の微細固体粒子15ができるだけ液化し
ないようにした。従来のHeガスによる冷却では、700
m/分までしか線引き速度を上げることができなかった
が、本実施例の冷凍機17を用いた場合は、1200m/分
まで線引き速度を上げることができた。
FIG. 5 shows a third embodiment of an apparatus for carrying out the method of manufacturing an optical fiber according to the present invention. In this embodiment, vapor or liquid particles are supplied into the refrigerator 17 through the pipe 18 to generate the fine solid particles 15, and the obtained fine solid particles 15 are placed on the air flow to form a fine solid particle flow in the heat insulation pipe 19. The optical fiber 4a is sprayed and cooled. A heat insulating material was wrapped around the heat insulating pipe 19 so that the fine solid particles 15 during transportation were not liquefied as much as possible. 700 with conventional He gas cooling
Although the drawing speed could be increased only up to m / min, when the refrigerator 17 of this example was used, the drawing speed could be increased up to 1200 m / min.

【0020】上記実施例では、加熱されると液化又は気
化する微細固体粒子として氷粒子を用いた例について説
明したが、本発明はこれに限定されるものではなく、例
えばドライアイス粒子やアルコール凍結粒子等も使用す
ることができる。
In the above embodiments, an example was described in which ice particles were used as fine solid particles that liquefy or vaporize when heated, but the present invention is not limited to this. For example, dry ice particles or alcohol freezing. Particles and the like can also be used.

【0021】[0021]

【発明の効果】以上説明したように本発明に係る光ファ
イバ心線の製造方法では、微細固体粒子流を光ファイバ
に吹き付けるので、微細固体粒子が光ファイバに近づく
に従い該光ファイバの温度で液滴になったり、昇華して
蒸気になったりして相変化しつつ光ファイバに接触し、
熱を奪い、該光ファイバを冷却することができる。即
ち、本発明によれば、微細固体粒子の相変化による冷却
と、光ファイバに直接接触することによる熱伝導による
冷却とにより光ファイバを効率よく冷却することがで
き、光ファイバの線引き速度の高速化に対応することが
でき、光ファイバ心線の製造を能率よく行うことができ
る。
As described above, in the method of manufacturing the optical fiber core wire according to the present invention, the fine solid particle stream is blown onto the optical fiber, so that as the fine solid particle approaches the optical fiber, the liquid becomes liquid at the temperature of the optical fiber. It contacts the optical fiber while undergoing a phase change such as a drop or sublimation and vaporization.
It can take heat and cool the optical fiber. That is, according to the present invention, the optical fiber can be efficiently cooled by the cooling due to the phase change of the fine solid particles and the cooling due to the heat conduction by directly contacting the optical fiber, and the drawing speed of the optical fiber is high. The optical fiber core wire can be manufactured efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光ファイバ心線の製造方法を実施
する装置の第1実施例の概略構成を示す縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a first embodiment of an apparatus for carrying out a method for manufacturing an optical fiber according to the present invention.

【図2】第1実施例で用いている冷却装置における冷却
ガス吹出しノズルの配置状態を示す平面図である。
FIG. 2 is a plan view showing an arrangement state of cooling gas blowing nozzles in the cooling device used in the first embodiment.

【図3】本発明で用いる冷却装置における蒸気発生器と
冷却ガス吹出しノズルとの配置状態を示す平面図であ
る。
FIG. 3 is a plan view showing an arrangement state of a steam generator and a cooling gas blowing nozzle in a cooling device used in the present invention.

【図4】本発明に係る光ファイバ心線の製造方法を実施
する装置の第2実施例の概略構成を示す縦断面図であ
る。
FIG. 4 is a vertical sectional view showing a schematic configuration of a second embodiment of an apparatus for carrying out the method of manufacturing an optical fiber according to the present invention.

【図5】本発明に係る光ファイバ心線の製造方法を実施
する装置の第3実施例の概略構成を示す縦断面図であ
る。
FIG. 5 is a vertical cross-sectional view showing a schematic configuration of a third embodiment of an apparatus for carrying out the method for manufacturing an optical fiber according to the present invention.

【図6】従来の光ファイバ心線の製造方法を実施する装
置の概略構成を示す縦断面図である。
FIG. 6 is a vertical cross-sectional view showing a schematic configuration of an apparatus for carrying out a conventional optical fiber core wire manufacturing method.

【符号の説明】[Explanation of symbols]

1 光ファイバ母材 1a 加熱溶融部 2 線引き加熱炉 3 ヒータ 4a 光ファイバ 4 光ファイバ心線 51 ,52 微細固体粒子吹付け式の冷却装置 6 樹脂被覆器 7 樹脂硬化器 8 外径測定器 9 冷却筒 11 蒸気発生器 12 蒸気流 13 冷却ガス吹出しノズル 14 冷却ガス 15 微細固体粒子 17 冷凍機 18 配管 19 保温配管1 Optical fiber base material 1a Heating / melting part 2 Drawing heating furnace 3 Heater 4a Optical fiber 4 Optical fiber core wire 5 1 , 5 2 Cooling device of fine solid particle spraying type 6 Resin coating device 7 Resin curing device 8 Outer diameter measuring instrument 9 Cooling Tube 11 Steam Generator 12 Steam Flow 13 Cooling Gas Blowing Nozzle 14 Cooling Gas 15 Fine Solid Particles 17 Refrigerator 18 Piping 19 Warming Pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ母材を線引き加熱炉で加熱し
つつ、該光ファイバ母材の加熱溶融部から光ファイバを
線引きし、得られた光ファイバを冷却した後、該光ファ
イバに樹脂を被覆して光ファイバ心線を製造する光ファ
イバ心線の製造方法において、加熱されると液化又は気
化する微細固体粒子流を前記光ファイバに吹き付けて冷
却することを特徴とする光ファイバ心線の製造方法。
1. An optical fiber preform is drawn from a heating / melting portion of the optical fiber preform while heating the optical fiber preform in a drawing heating furnace, the obtained optical fiber is cooled, and then a resin is applied to the optical fiber. In a method of manufacturing an optical fiber core wire by coating to manufacture an optical fiber core wire, a fine solid particle flow that is liquefied or vaporized when heated is sprayed onto the optical fiber to cool the optical fiber core wire. Production method.
JP4279811A 1992-10-19 1992-10-19 Production of coated optical fiber Pending JPH06127969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4279811A JPH06127969A (en) 1992-10-19 1992-10-19 Production of coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4279811A JPH06127969A (en) 1992-10-19 1992-10-19 Production of coated optical fiber

Publications (1)

Publication Number Publication Date
JPH06127969A true JPH06127969A (en) 1994-05-10

Family

ID=17616253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4279811A Pending JPH06127969A (en) 1992-10-19 1992-10-19 Production of coated optical fiber

Country Status (1)

Country Link
JP (1) JPH06127969A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018668A (en) * 2011-07-08 2013-01-31 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber
JP2013018669A (en) * 2011-07-08 2013-01-31 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018668A (en) * 2011-07-08 2013-01-31 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber
JP2013018669A (en) * 2011-07-08 2013-01-31 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber

Similar Documents

Publication Publication Date Title
KR100332707B1 (en) Surface cleaning by argon
JP2012530189A (en) Method and apparatus for cooling material by mist spray
JPH08114358A (en) Liquid freezing mixture feed system
JP2004524163A (en) Cold rolling method and rolling stand for metal strip
JPH0436099B2 (en)
KR100543711B1 (en) Heat treatment apparatus
US20020179732A1 (en) Substrate cleaning apparatus
JPH06127969A (en) Production of coated optical fiber
JPS6136131A (en) Manufacture of filled glass preform from hollow preform
CA1329879C (en) Process for the fabrication of glass objects including one cooling step
US3602291A (en) Apparatus for casting metal filaments through an aerosol atmosphere
CN1076009C (en) Tempering method
JPS5871306A (en) Production of powder
JP2547764B2 (en) Optical fiber manufacturing method
US3813260A (en) Method for purging dip forming crucible environment
JP2618424B2 (en) Manufacturing method of optical fiber core
TWI499573B (en) Method and apparatus for coating glass substrate
JPH06115975A (en) Production of optical fiber core wire
JPH05267182A (en) Chemical vapor deposition system
JPH10158026A (en) Manufacture of optical glass fiber
JP6769645B1 (en) Vaporizer
JPH04507232A (en) Method and apparatus for manufacturing hollow glass objects
GB1397513A (en) Process for the production of hollow plastics articles
JP4634592B2 (en) Vaporizer for thin film deposition liquid material
JPH10212131A (en) Method for cooling optical fiber