JPH06127034A - Device for driving piezoelectric element - Google Patents

Device for driving piezoelectric element

Info

Publication number
JPH06127034A
JPH06127034A JP4277296A JP27729692A JPH06127034A JP H06127034 A JPH06127034 A JP H06127034A JP 4277296 A JP4277296 A JP 4277296A JP 27729692 A JP27729692 A JP 27729692A JP H06127034 A JPH06127034 A JP H06127034A
Authority
JP
Japan
Prior art keywords
generating means
piezoelectric
piezoelectric body
power
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4277296A
Other languages
Japanese (ja)
Inventor
Yoshikiyo Futagawa
良清 二川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4277296A priority Critical patent/JPH06127034A/en
Publication of JPH06127034A publication Critical patent/JPH06127034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce an instantaneous current and instantaneous power without being accompanied by the deterioration of printing quality by driving a large number of piezoelectric elements in a time sharing manner by a drive circuit having a simple constitution. CONSTITUTION:Piezoelectric element groups 11a, 11b, 11c, 11d are connected to arbitrary waveform generating means 10a, 10b for generating arbitrary waveforms having a predetermined phase difference and for driving respective groups. By driving the piezoelectric element groups 11a, 11b, 11c, 11d in a time sharing manner, an instantaneous current and instantaneous power can be suppressed low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はインクジエット又はワイ
ヤドットプリンタ等のアクチュエ−タに使用される電歪
効果を有する圧電体の駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric drive device having an electrostrictive effect used in an actuator such as an ink jet or wire dot printer.

【0002】[0002]

【従来の技術】近年、圧電体(PZTの様な電歪効果を有す
るもの)はインクジエットやワイヤドットプリンタ等の
印字ヘッドのアクチュエ−タに盛んに応用されるように
なって来た。例えば、圧電体を駆動する技術をインクジ
エットプリンタに応用した例として特開平2−274554,特
開平3−36036,特開平3−133647を開示した。これを図9
と図10を用いて説明する。
2. Description of the Related Art In recent years, piezoelectric materials (those having an electrostrictive effect such as PZT) have been widely applied to actuators for print heads such as ink jet and wire dot printers. For example, JP-A-2-274554, JP-A-3-36036, and JP-A-3-133647 have been disclosed as examples in which the technique of driving a piezoelectric body is applied to an ink jet printer. Figure 9
Will be described with reference to FIG.

【0003】図9において、1は低インピダンスで所定
の走査電圧Vsを周期的に発生する走査電圧発生手段であ
る。2は圧電体で、3は圧電体2に走査電圧発生手段1
の走査電圧Vsを印加する両方向に通電するゲ−トであ
る。4は走査電圧発生手段1に同期して印字デ−タによ
ってゲ−ト3に制御信号を与える駆動信号発生手段であ
る。
In FIG. 9, reference numeral 1 is a scanning voltage generating means for periodically generating a predetermined scanning voltage Vs with low impedance. Reference numeral 2 is a piezoelectric material, and 3 is a scanning voltage generating means 1 on the piezoelectric material 2.
Is a gate which is energized in both directions for applying the scanning voltage Vs. Reference numeral 4 is a drive signal generating means for applying a control signal to the gate 3 by the print data in synchronization with the scanning voltage generating means 1.

【0004】図10は、図9の回路動作を説明する動作
波形図である。(a)は走査電圧発生手段1が発生する走
査電圧Vsの波形で、走査電圧Vsの上昇過程でインク室を
ゆるやかに拡大させインクを引き込み、走査電圧Vsの下
降過程でインク室を急激に圧縮してインクを突出させる
ために所定の波形を印字周期に合わせて発生させてい
る。(c)はゲ−ト3に(b)に示すタイミングの導通信号を
入力した時の圧電体2に印加される電圧を示すものであ
る。(d)は圧電体2の寄生容量による充放電電流を示
し、印加電圧の変化率によって流れる電流と電流方向、
時間の相違を示している。尚、詳細は省略するが走査電
圧Vsの極性又は波形形状は圧電体の特性により決定され
るものである。
FIG. 10 is an operation waveform diagram for explaining the circuit operation of FIG. (a) is a waveform of the scanning voltage Vs generated by the scanning voltage generating means 1. The ink chamber is gradually expanded and ink is drawn in during the rising process of the scanning voltage Vs, and the ink chamber is rapidly compressed during the falling process of the scanning voltage Vs. In order to eject the ink, a predetermined waveform is generated in synchronization with the printing cycle. (c) shows the voltage applied to the piezoelectric body 2 when the conduction signal at the timing shown in (b) is input to the gate 3. (d) shows the charging / discharging current due to the parasitic capacitance of the piezoelectric body 2, the flowing current and the current direction depending on the change rate of the applied voltage,
It shows the difference in time. Although not described in detail, the polarity or waveform shape of the scanning voltage Vs is determined by the characteristics of the piezoelectric body.

【0005】[0005]

【発明が解決しようとする課題】この様な圧電体をを用
いてインク吐出を行うインクジエットプリンタでは、単
層で構成した圧電体の場合、必要な変位を得るには走査
電圧が100V以上、寄生容量が500pF程度となり、積層で
構成した圧電体の場合は、走査電圧が20V以上、寄生容
量が数十nFとなる。圧電体一個に流入する電流をi、圧
電体の寄生容量をC、走査電圧の時間変化率をdV/dtとす
ると、 i=C×dV/dt であるから、充放電による電力損失PLは、走査電圧の繰
り返し周波吸数をfとすると、 PL=C×V2×f となる。つまり繰り返し周波数fを上げるにつれて電力
損出PLが大きくなる。
In an ink jet printer that discharges ink by using such a piezoelectric material, in the case of a piezoelectric material composed of a single layer, a scanning voltage of 100 V or more is required to obtain a necessary displacement. The parasitic capacitance is about 500 pF, and in the case of a piezoelectric body formed by stacking, the scanning voltage is 20 V or more and the parasitic capacitance is several tens nF. If the current flowing into one piezoelectric body is i, the parasitic capacitance of the piezoelectric body is C, and the time change rate of the scanning voltage is dV / dt, then i = C × dV / dt, so the power loss PL due to charge / discharge is If the repetitive frequency absorption coefficient of the scanning voltage is f, then PL = C × V 2 × f. That is, the power loss PL increases as the repetition frequency f increases.

【0006】ところで昨今、より活字に近い印字、グラ
フィックにおいてはより原画に近い記録ができるプリン
タが求められており、そのために形成するドット密度を
高くすることが必要となる。ドット密度を上げるとアク
チュエ−タの応答周波数を上げないと文字・画像の形成
速度が落ちてしまう訳で、一度に形成するドット数nを
増加させると共に応答周波数fも向上させねばならな
い。従って、全体として益々瞬時電流と電力損失が増加
することになる。具体的に言及すると、同時に圧電体を
駆動すると瞬時電流が数十アンペア、瞬時電力が数百ワ
ットになる程になる。但し、平均電力は数十分の一の数
ワットないしは数十ワットに過ぎない。
By the way, in recent years, there has been a demand for a printer capable of printing closer to the print type and recording closer to the original image in the graphic, and for this reason, it is necessary to increase the dot density to be formed. If the dot density is increased, the character / image forming speed will be reduced unless the response frequency of the actuator is increased. Therefore, the number of dots n formed at one time must be increased and the response frequency f must be improved. Therefore, the instantaneous current and the power loss increase as a whole. More specifically, when the piezoelectric bodies are driven at the same time, the instantaneous current becomes tens of amperes and the instantaneous power becomes hundreds of watts. However, the average power is only several tenths of watts or tens of watts.

【0007】従来技術では圧電体の数の増加又は駆動周
波数の上昇した場合、瞬時電流又は電力が増加して電源
装置の過大な負担と、容量の大きなスイッチ素子が必要
なること、ラインドロップを考慮して配線容量の増加さ
せる必要があること等の問題点を有していた。又、これ
らの問題点により印字条件にバラツキが生じ、印字品質
が損なわれる問題点も発生していた。
In the prior art, when the number of piezoelectric bodies is increased or the driving frequency is increased, the instantaneous current or the power is increased to cause an excessive load on the power supply device, a switch element having a large capacity is required, and line drop is considered. Therefore, there is a problem that it is necessary to increase the wiring capacity. Further, due to these problems, the printing conditions vary, and the printing quality is impaired.

【0008】本発明はこの様な問題を解決するために鑑
みられたもので、その目的とするところは、調整手段を
簡単にした複数の任意波形発生装置を設けて、多数の圧
電体を複数のブロックに分け、各圧電体ブロックへ所定
の波形電圧を印加する電源を各圧電体ブロックごとに複
数設け、かつ各圧電体ブロックの駆動を時分割で実行す
ることで、瞬時電力、又は電流を低減した簡単構成の圧
電体の駆動装置を提供することにある。
The present invention has been conceived in order to solve such a problem. An object of the present invention is to provide a plurality of arbitrary waveform generators having a simple adjusting means and to provide a large number of piezoelectric bodies. By providing multiple power supplies for each piezoelectric block to apply a predetermined waveform voltage to each piezoelectric block, and driving each piezoelectric block in a time-division manner, instantaneous power or current can be obtained. It is an object of the present invention to provide a piezoelectric body driving device having a reduced simple structure.

【0009】[0009]

【課題を解決するための手段】この様な課題を解決する
ために本発明の圧電体の駆動装置は、N×M個の圧電体を
駆動する圧電体の駆動装置に於て、互いに位相の異なる
駆動波形を発生するM個又はM個の整数分の一の任意波形
発生手段と、これらの任意波形発生手段に対応して、前
記N×M個の圧電体をN個を単位とするMグル−プに分割し
て、前記M個、又はM個の整数分の一の任意波形発生手段
の駆動波形を前記N×M個の圧電体に選択的に印加するN
×M個のスイッチ手段と、前記M個又はM個の整数分の一
の任意波形発生手段に発生タイミングを与えるタイミン
グ信号とこのタイミング信号に同期して前記N×Mのスイ
ッチ手段に印字デ−タによる制御信号を与える制御手段
と、を有することを特徴とする。
In order to solve such a problem, a piezoelectric body driving apparatus of the present invention is a piezoelectric body driving apparatus that drives N × M piezoelectric bodies, and Arbitrary waveform generating means for generating M or M integers for generating different drive waveforms, and corresponding to these arbitrary waveform generating means, the N × M piezoelectric bodies in units of N Divide into groups and selectively apply the drive waveform of the M or M integer arbitrary waveform generating means to the N × M piezoelectric bodies.
× M switch means, a timing signal for giving a generation timing to the M or M integer arbitrary waveform generating means, and a printing data to the N × M switch means in synchronization with the timing signal. And a control means for giving a control signal by a computer.

【0010】[0010]

【実施例】図1は本発明の実施例に於ける具体的なブロ
ック構成を示す図である。図は簡単にする為に、圧電体
11を4グル−プに分割して、2個の走査電圧(又は共通
駆動電圧)を発生する2個の波形発生器10で駆動する場
合を図示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a concrete block configuration in an embodiment of the present invention. Piezoelectric body for illustration simplicity
11 illustrates a case where 11 is divided into 4 groups and driven by two waveform generators 10 that generate two scanning voltages (or common driving voltages).

【0011】波形発生器10aと10bは図2(a)と(b)に示す
ように1印字サイクルで2個の谷と山を有して互いに位
相の異なる走査電圧VsaとVsbを発生する。グル−プ分割
した圧電体11a,11b,11c,11dに対応して両方向通電可能
な一方をGNDに接続したスイッチ12a,12b,12c,12dを設け
る。制御部13はライン又はタイミング信号を表すA1とA2
で波形発生器10aと10bに所定のタイミングで走査信号を
発生させ、印字データ線13a,13b,13c,13dに乗せられた
印字デ−タによってスイッチ12a,12b,12c,12dに制御信
号を与える。これによりインクが吐出する。4グル−プ
で吐出タイミングが異なるので、図示していないが印字
ヘッドのインク吐出口は基準となる吐出口に対し印字ヘ
ッド走査方向に印字間隔の1/4ずつずらして配置して
ある。
As shown in FIGS. 2A and 2B, the waveform generators 10a and 10b generate scanning voltages Vsa and Vsb having two troughs and peaks in one printing cycle and having mutually different phases. The switches 12a, 12b, 12c, 12d are provided corresponding to the piezoelectric members 11a, 11b, 11c, 11d divided into groups, and one of which is capable of conducting current in both directions is connected to GND. The control unit 13 uses A1 and A2 that represent line or timing signals.
The waveform generators 10a and 10b generate scanning signals at a predetermined timing, and control signals are applied to the switches 12a, 12b, 12c, 12d by the print data placed on the print data lines 13a, 13b, 13c, 13d. . As a result, ink is ejected. Since the ejection timing differs among the four groups, although not shown, the ink ejection port of the print head is arranged so as to be displaced from the reference ejection port by 1/4 of the printing interval in the print head scanning direction.

【0012】図1の各部の動作又は状態を示すのが図2
である。図2(c),(d),(e),(f) は互いに位相の異なるタ
イミングでスイッチ12a,12b,12c,12dを制御するタイミ
ングを示す。図2(g),(h),(i),(j)は圧電体11a,11b,11
c,11dに流入する電流を表し、位相が異なるので瞬時電
流及び瞬時電力が低減する。但し、消費電力は変わらな
い。
FIG. 2 shows the operation or state of each part in FIG.
Is. 2 (c), (d), (e), and (f) show timings for controlling the switches 12a, 12b, 12c, 12d at timings different from each other. 2 (g), (h), (i), and (j) are piezoelectric bodies 11a, 11b, 11
It represents the current flowing into c and 11d, and since the phases are different, the instantaneous current and instantaneous power are reduced. However, the power consumption does not change.

【0013】図2(k),(l)は系全体として、圧電体11に
流れ込む電流と流れ出る電流をそれぞれ示したものであ
る。
2 (k) and 2 (l) show the current flowing into the piezoelectric body 11 and the current flowing out of the piezoelectric body 11 as a whole.

【0014】それにより、波形発生器10に電力を供給す
る電源は、従来要求された電源よりはるかに小さい瞬時
電流・瞬時電力を供給出来ればよいから従来よりはるか
に安価に構成出来る特徴がある。
As a result, the power supply for supplying power to the waveform generator 10 needs to be able to supply a much smaller instantaneous current / instantaneous power than the power supply conventionally required, and thus has a feature that it can be constructed at a much lower cost than before.

【0015】尚、図1は2個の波形発生器で4時分割駆
動を説明したが、1印字サイクルが例えば10kHzから20k
Hzになった場合は、圧電体駆動時間は10kHzに対し1/
2になり駆動時間が不足するので4個の波形発生器を使
用して位相をずらして、4個の走査電圧を発生させて4
時分割駆動を実行する。
Although FIG. 1 has explained four time division driving with two waveform generators, one printing cycle is, for example, 10 kHz to 20 k.
When it becomes Hz, the piezoelectric body driving time is 1/10 kHz
Since the driving time becomes 2 and the driving time becomes short, the phase is shifted by using 4 waveform generators and 4 scanning voltages are generated to 4
Execute time division drive.

【0016】尚、図1ではスイッチ12の共通端子をGND
に接続しているが、スイッチ12と圧電体11を入れ替えて
スイッチ12の共通端子を波形発生器12に接続してもかま
わない。 両方向性のスイッチ12の構成は相補性のトラ
ンジスタ対の主極を並列接続したものか、又はトランジ
スタの主極にダイオドを併設したものが利用できる。こ
れが所謂トランスファゲ−トである。
In FIG. 1, the common terminal of the switch 12 is connected to GND.
Although the switch 12 and the piezoelectric body 11 may be interchanged, the common terminal of the switch 12 may be connected to the waveform generator 12. The configuration of the bidirectional switch 12 may be one in which the main poles of complementary transistor pairs are connected in parallel, or one in which a diode is added to the main poles of the transistors. This is the so-called transfer gate.

【0017】次に、図3で波形発生器10の具体的回路構
成を説明する。図3で、両方向の定電流源20によりコン
デンサ−21を充電・放電させ、コンテ゛ンサ21に生じる電圧を
所定の走査電圧波形にし、相補性のトランジスタ対より
なるエミッタフォロアの増幅器22にて電力増幅する構成
にしてあるのが1個の波形発生器である。同様に両方向
の定電流源23、コンテ゛ンサ24、相補性のトランジスタ対より
なるエミッタフォロアの増幅器25とで構成されたのが他
方の波形発生器である。OT1とOT2が走査電圧VsaとVsbの
出力端子であり、A1とA2は図1と同じくコンデンサ21、
22への充電・放電方向を切り換える信号端子である。
Next, a specific circuit configuration of the waveform generator 10 will be described with reference to FIG. In FIG. 3, the capacitor 21 is charged / discharged by the bidirectional constant current source 20, the voltage generated in the capacitor 21 is made into a predetermined scanning voltage waveform, and the power is amplified by the amplifier 22 of the emitter follower composed of complementary transistor pairs. The configuration is one waveform generator. Similarly, the other waveform generator is composed of a bidirectional constant current source 23, a capacitor 24, and an emitter follower amplifier 25 composed of complementary transistor pairs. OT1 and OT2 are the output terminals for the scanning voltages Vsa and Vsb, and A1 and A2 are the capacitors 21,
This is a signal terminal for switching the charging / discharging direction to 22.

【0018】コンデンサ−21を充電する定電流源回路
は、抵抗31a、PNP型のトランジスタ30a、参照電圧と抵
抗31aよりの帰還電圧と比較して誤差を増幅して抵抗33a
を介してトランジスタ30aのべ−スに与えるオペアンプ3
4aとにより構成されている。コンデンサ−21を放電する
定電流源回路は、抵抗31b、NPN型のトランジスタ30b、
参照電圧と抵抗31bよりの帰還電圧と比較して誤差を増
幅して抵抗33bを介してトランジスタ30bのべ−スに与え
るオペアンプ34bにより構成されている。定電流値は参
照電圧と抵抗31aと41aの値で決定できる。他方の波形発
生器の停電流回路は、全く同様なものであるので説明は
省略する。
The constant current source circuit for charging the capacitor 21 has a resistor 31a, a PNP type transistor 30a, a reference voltage and a feedback voltage from the resistor 31a, and an error to amplify the error.
Operational amplifier 3 applied to the base of transistor 30a via
4a and. The constant current source circuit that discharges the capacitor-21 is a resistor 31b, an NPN transistor 30b,
It is composed of an operational amplifier 34b which amplifies the error by comparing the reference voltage with the feedback voltage from the resistor 31b and gives it to the base of the transistor 30b via the resistor 33b. The constant current value can be determined by the reference voltage and the values of the resistors 31a and 41a. Since the current stopping circuit of the other waveform generator is exactly the same, its explanation is omitted.

【0019】この様に定電流源を構成すれば、抵抗31a,
41aと31b,41bに発生する電圧は参照電圧と同じになり、
トランジスタ30a,40aと30b,40bに流れる電流は一定とな
る。両方向の定電流源20、23の方向切替はタイミング信
号A1,A2に入力する信号論理を変えることで行う。
If the constant current source is constructed in this way, the resistors 31a,
The voltage generated on 41a, 31b and 41b becomes the same as the reference voltage,
The currents flowing through the transistors 30a, 40a and 30b, 40b are constant. The direction switching of the bidirectional constant current sources 20 and 23 is performed by changing the signal logic input to the timing signals A1 and A2.

【0020】参照電圧は電源VP-GND間に直列接続した可
変抵抗器50a、抵抗51、可変抵抗器50bによりつくり、信
号線52aと52bで各定電流源のオペアンプに配る。本発明
では定電流源の数を増加させても、参照電圧電源は1組
でよく、各定電流源の電流精度は抵抗31a、41aと31b、4
1bの精度により決まり、各定電流源間のバラツキはな
い。又、コ ンデンサ−21と24の精度も数%以下に揃え
られるので走査電圧VsaとVsbの傾斜角も数%以下に出
来、全ての圧電体がほぼ同じように駆動されることにな
る。これが所定以上のバラツキがあると、インク吐出の
スピ−ドとタイミングが変化して印字品質が劣化してし
まうことになる。
The reference voltage is generated by a variable resistor 50a, a resistor 51 and a variable resistor 50b connected in series between the power source VP and GND, and distributed to the operational amplifier of each constant current source by the signal lines 52a and 52b. In the present invention, even if the number of constant current sources is increased, one set of reference voltage power sources may be used, and the current accuracy of each constant current source is resistors 31a, 41a and 31b, 4.
It is determined by the accuracy of 1b, and there is no variation between constant current sources. Further, since the accuracy of the capacitors 21 and 24 can be adjusted to several percent or less, the inclination angles of the scanning voltages Vsa and Vsb can be set to several percent or less, and all the piezoelectric bodies are driven in substantially the same manner. If the variation is more than a predetermined value, the speed and timing of ink ejection will change and the print quality will deteriorate.

【0021】図3の各部の動作波形又は状態を示すのが
図4である。図4(a)〜(e)が波形発生器10aについての
図であり、図4(f)〜(j)が波形発生器10bについての図
である。図4で、1印字サイクル=(t1+t2)×2としてあ
る。(a)と(f)はコンデンサ−21と24の充放電電圧又は走
査電圧VsaとVsbを示しいる。(b)と(g)はタイミング信号
A1とA2で、(c)と(h)は時間幅τ2でコンデンサ−21と24
を放電させる放電電流を示している。(d)と(i)は信号A1
とA2の逆相タイミング信号で、(e)と(j)は時間幅τ1で
コンデンサ−21と24を充電する充電電流を示している。
FIG. 4 shows operation waveforms or states of the respective parts of FIG. 4 (a) to 4 (e) are diagrams of the waveform generator 10a, and FIGS. 4 (f) to 4 (j) are diagrams of the waveform generator 10b. In FIG. 4, one printing cycle = (t1 + t2) × 2. (a) and (f) show the charging / discharging voltage of the capacitors 21 and 24 or the scanning voltages Vsa and Vsb. (b) and (g) are timing signals
In A1 and A2, (c) and (h) are time width τ2 and capacitors -21 and 24
Shows the discharge current for discharging the. (d) and (i) are signals A1
(E) and (j) are the anti-phase timing signals of A2 and A2, respectively, and show the charging current for charging the capacitors -21 and 24 in the time width τ1.

【0022】次に、図5に定電流源の構成をIC化(集積
回路)容易な別の実施例を説明する。図5も図3と同じ
く2個の両方向の定電流源を構成する場合で説明する。
図5は所謂カレントミラによる構成である。P型のFET
(電界効果型トランジスタ)62、65a、70aの特性をほぼ同
じものにすれば、ドレインとゲ−トとを直結したFET62
のドレイン電圧をFET65aと70aのゲ−トに接続するとFET
65a、70aのドレイン電流は数%以下のバラツキで可変抵
抗器63とFET62で決まる電流で規制されて定電流源とな
る。同様に、N型のFET64、65b、70bの特性をほぼ同じも
のにすれば、可変抵抗器61とFET61で決まる電流でFET65
bと70bのドレイン電流は定電流となる。信号A1、A2は、
レベル変換器67、72でレベル変換してインバタ68、73を
介してトランスファゲ−ト66a、71aの制御電極と、直接
トランスファゲ−ト66b、71bの制御極に与えられ、信号
A1、A2の論理により充電または放電用定電流源を能動状
態とさせる。図5において、IC化容易な点線枠60以後
は図3と同じであるが、増幅器22と24をシンボルで表し
てある。尚、トランジスタ特性を揃えることは同一シリ
コンウエハ上では容易なことである。
Next, another embodiment in which the constitution of the constant current source is easily integrated into an IC (integrated circuit) will be described with reference to FIG. Similarly to FIG. 3, FIG. 5 will be described in the case of forming two bidirectional constant current sources.
FIG. 5 shows a so-called current mirror configuration. P-type FET
(Field effect transistor) If the characteristics of 62, 65a, and 70a are made to be almost the same, FET62 in which the drain and the gate are directly connected
If the drain voltage of is connected to the gates of FETs 65a and 70a,
The drain currents of 65a and 70a are regulated by a current determined by the variable resistor 63 and the FET 62 with a variation of several% or less, and serve as a constant current source. Similarly, if the characteristics of the N-type FETs 64, 65b, and 70b are made to be almost the same, the FET 65 is generated by the current determined by the variable resistor 61 and the FET 61.
The drain currents of b and 70b are constant currents. The signals A1 and A2 are
Level conversion is performed by the level converters 67 and 72, and the signals are given to the control electrodes of the transfer gates 66a and 71a and the control electrodes of the transfer gates 66b and 71b directly via the inverters 68 and 73, respectively.
The constant current source for charging or discharging is activated by the logic of A1 and A2. In FIG. 5, the parts after the dotted frame 60, which is easy to integrate into an IC, are the same as those in FIG. It is easy to make the transistor characteristics uniform on the same silicon wafer.

【0023】次に、図3と図5の定電流源による波形発
生器は少ないとはいえ、調整箇所があるので、これを除
去するディジタルで波形発生器を構成する実施例を図6
〜8で説明する。
Next, although there are few waveform generators using the constant current source shown in FIGS. 3 and 5, there are adjustment points.
~ 8 will be described.

【0024】図6は波形発生器の基本ユニット90を表
し、91はクロック,93はクロック91を分周する分周器で
ある。94は分周器93よりの出力をカウントする加減算の
カウンタである。データ線92に分周器93の分周比の変
更、カウンタ94のカウント開始と休止を制御するデータ
をのせ、分周器3、カウンタ94にデータをラッチさせ
る。
FIG. 6 shows a basic unit 90 of the waveform generator, 91 is a clock, and 93 is a frequency divider for dividing the clock 91. Reference numeral 94 is an addition / subtraction counter that counts the output from the frequency divider 93. Data for changing the frequency division ratio of the frequency divider 93 and data for controlling the start and stop of counting of the counter 94 are placed on the data line 92, and the frequency divider 3 and the counter 94 are made to latch the data.

【0025】95はカウンタ94の各ビットデ−タを電源電
圧Vpにレベル変換するレベル変換器である。96はレベル
変換された各ビットデ−タをD/A(ディジタルーアナ
ログ)変換するD/A変換器である。OTはアナログに変
換された出力又は出力端子である。この出力OTの波形を
示すのが図7である。時間幅τ1 が加算カウントで時間
幅τ2が減算カウントであり、これらの時間幅の変更は
分周器93の分周比を変えて実行する。カウント休止区間
はカウンタ94の最高値と最低値であり、休止区間は図示
してないが別の手段で決める。
Reference numeral 95 is a level converter for converting the level of each bit data of the counter 94 into the power supply voltage Vp. A D / A converter 96 performs D / A (digital-analog) conversion on each bit data whose level has been converted. OT is an output or output terminal converted into analog. FIG. 7 shows the waveform of this output OT. The time width τ1 is an addition count and the time width τ2 is a subtraction count, and these time widths are changed by changing the division ratio of the frequency divider 93. The counting pause section is the maximum value and the minimum value of the counter 94, and the pause section is determined by another means although not shown.

【0026】尚、カウンタ94の容量は3ビット以上程度
あればよく、出力OTの階段状は電力増幅する前でコンデ
ンサ−で平滑にすればよい。
The capacity of the counter 94 may be about 3 bits or more, and the stepped shape of the output OT may be smoothed by a capacitor before power amplification.

【0027】図8が図6の基本ユニット90を2個用いて
波形形成部100となし、波形発生器を構成した例を示
す。コンデンサ−101aと101bは平滑用コンデンサ−であ
る。制御部102は図1の制御部13とクロック91の発生、
データ線92の制御信号の発生以外は同じである。波形形
成部100はIC化容易であるばかりでなく、当然ディジタ
ル制御だから基本ユニット間にバラツキはないという効
果を有している。
FIG. 8 shows an example in which two basic units 90 shown in FIG. 6 are used as the waveform forming section 100 to form a waveform generator. The capacitors 101a and 101b are smoothing capacitors. The controller 102 generates the clock 91 and the controller 13 of FIG.
It is the same except for the generation of the control signal on the data line 92. The waveform forming section 100 is not only easy to be integrated into an IC, but naturally has the effect that there is no variation between the basic units because it is digitally controlled.

【0028】[0028]

【発明の効果】以上述べた本発明の構成によれば、簡単
構成の複数の波形発生器の位相のずれた走査電圧に同期
して多数の圧電体をグル−プ分けして駆動することにな
るから、瞬時電流と瞬時電力が低減出来ること、又、駆
動条件のバラツキが僅少で多数ノズルでも印字品質の劣
化をもたらせない、同時に大容量素子が不要になるから
コスト低減にもなる等その効果は絶大である。
According to the above-described structure of the present invention, a large number of piezoelectric bodies are grouped and driven in synchronization with the phase-shifted scanning voltages of a plurality of waveform generators having a simple structure. Therefore, it is possible to reduce the instantaneous current and the instantaneous power. Also, there is little variation in the driving conditions so that the printing quality is not deteriorated even with a large number of nozzles. At the same time, the large-capacity element is not required and the cost is reduced. The effect is tremendous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に於ける具体的なブロック構成
を示す図。
FIG. 1 is a diagram showing a specific block configuration according to an embodiment of the present invention.

【図2】図1の各部の動作タイミングと動作波形を示す
図。
FIG. 2 is a diagram showing operation timings and operation waveforms of respective parts in FIG.

【図3】本発明に用いる波形発生器の具体的な回路構成
を示す図。
FIG. 3 is a diagram showing a specific circuit configuration of a waveform generator used in the present invention.

【図4】図3の動作波形を示す図。FIG. 4 is a diagram showing operation waveforms in FIG.

【図5】本発明に用いる波形発生器の他の具体的な回路
構成を示す図。
FIG. 5 is a diagram showing another specific circuit configuration of the waveform generator used in the present invention.

【図6】本発明に用いる波形発生器の構成をデジタルで
実行した基本ユニットの構成を示す図。
FIG. 6 is a diagram showing a configuration of a basic unit in which the configuration of the waveform generator used in the present invention is digitally executed.

【図7】図6の基本ユニットの出力波形を示す図。FIG. 7 is a diagram showing an output waveform of the basic unit shown in FIG.

【図8】図6の基本ユニットを用いて波形発生器を構成
した例を示す図。
8 is a diagram showing an example in which a waveform generator is configured using the basic unit of FIG.

【図9】従来技術による実施例を示す図。FIG. 9 is a diagram showing an example of a conventional technique.

【図10】図9の動作波形を示す図。FIG. 10 is a diagram showing operation waveforms in FIG. 9.

【符号の説明】[Explanation of symbols]

1…走査電圧発生手段 4…駆動信号発生手段 2、11a、11b、11c、11d…圧電体 10a、10b…波形発生器 20、23、60…定電流源 90…基本ユニット 100…波形形成部 34a、34b、44a、44b…オペアンプ 66a、66b、71a、71b…トランスファゲ−ト 12a、12b、12c、12d…両方向のスイッチ 13、102…制御部 22、25…増幅器 67、72、95…レベル変換器 93…分周器 94…カウンタ 96…D/A変換器 21、24…コンデンサ− Vp…電源電圧 GND…接地 Vs、Vsa、Vsb…走査電圧 OT、OT1、OT2…出力端子 A1、A2…タイミング信号 1 ... Scan voltage generating means 4 ... Drive signal generating means 2, 11a, 11b, 11c, 11d ... Piezoelectric bodies 10a, 10b ... Waveform generators 20, 23, 60 ... Constant current source 90 ... Basic unit 100 ... Waveform forming section 34a , 34b, 44a, 44b ... Operational amplifiers 66a, 66b, 71a, 71b ... Transfer gates 12a, 12b, 12c, 12d ... Bidirectional switches 13, 102 ... Control section 22, 25 ... Amplifiers 67, 72, 95 ... Level conversion Unit 93… Divider 94… Counter 96… D / A converter 21, 24… Capacitor − Vp… Power supply voltage GND… Ground Vs, Vsa, Vsb… Scan voltage OT, OT1, OT2… Output terminals A1, A2… Timing signal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B41J 2/30 H01L 41/09 9211−2C B41J 3/10 114 D 9274−4M H01L 41/08 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location B41J 2/30 H01L 41/09 9211-2C B41J 3/10 114 D 9274-4M H01L 41/08 K

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 N×M個の圧電体を駆動する圧電体の駆動
装置に於て、 互いに位相の異なる駆動波形を発生するM個又はM個の整
数分の一の任意波形発生手段と、 これらの任意波形発生手段に対応して前記N×M個の圧電
体をN個を単位とするMグル−プに分割して、前記M個又
はM個の整数分の一の任意波形発生手段の駆動波形を前
記N×M個の圧電体に選択的に印加するN×M個のスイッチ
手段と、 前記M個又はM個の整数分の一の任意波形発生手段に発生
タイミングを与えるタイミング信号とこのタイミング信
号に同期して前記N×Mのスイッチ手段に印字デ−タによ
る制御信号を与える制御手段と、よりなることを特徴と
する圧電体の駆動装置。
1. A piezoelectric body driving device for driving N × M piezoelectric bodies, wherein M or M arbitrary waveform generating means for generating driving waveforms having mutually different phases, Corresponding to these arbitrary waveform generating means, the N × M piezoelectric bodies are divided into M groups with N as a unit, and the M or M integer fractional arbitrary waveform generating means N × M switch means for selectively applying the drive waveform of the N × M piezoelectric body, and a timing signal for giving the generation timing to the M or M integer waveform division means And a control means for applying a control signal based on print data to the N × M switch means in synchronism with the timing signal.
【請求項2】 前記M個又はM個の整数分の一の任意波形
発生手段が、 両方向の定電流源対と、 該両方向の定電流源よりの電流で充放電するコンデンサ
−と、 該コンデンサ−の充放電電圧を電力増幅する電力増幅手
段とより構成されることを特徴とする請求項1記載の圧
電体の駆動装置。
2. The M or M integer-arbitrary arbitrary waveform generating means, a bidirectional constant current source pair, a capacitor for charging and discharging with a current from the bidirectional constant current source, and the capacitor. 2. The piezoelectric body drive device according to claim 1, further comprising a power amplification means for power-amplifying the charge / discharge voltage of −.
【請求項3】 前記M個又はM個の整数分の一の任意波形
発生手段が、 カウンタと、 該カウンタの入力クロックを変調する変調手段と、 前記カウンタの出力デ−タをディジタル−アナログ変換
するD/A変換器と、 該D/A変換器のアナログ量を電力増幅する電力増幅手
段とより構成されることを特徴とする請求項1記載の圧
電体の駆動装置。
3. The M or M integer arbitrary waveform generating means, a counter, a modulating means for modulating an input clock of the counter, and digital-analog conversion of output data of the counter. 2. The piezoelectric body driving apparatus according to claim 1, further comprising: a D / A converter for performing power conversion, and power amplification means for power-amplifying an analog amount of the D / A converter.
JP4277296A 1992-10-15 1992-10-15 Device for driving piezoelectric element Pending JPH06127034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4277296A JPH06127034A (en) 1992-10-15 1992-10-15 Device for driving piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4277296A JPH06127034A (en) 1992-10-15 1992-10-15 Device for driving piezoelectric element

Publications (1)

Publication Number Publication Date
JPH06127034A true JPH06127034A (en) 1994-05-10

Family

ID=17581563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4277296A Pending JPH06127034A (en) 1992-10-15 1992-10-15 Device for driving piezoelectric element

Country Status (1)

Country Link
JP (1) JPH06127034A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268754A (en) * 2006-03-30 2007-10-18 Fuji Xerox Co Ltd Driving device for liquid droplet discharging head, driving method, and liquid droplet discharging device
US7441853B2 (en) 2004-08-27 2008-10-28 Fujifilm Corporation Image forming apparatus and drive control method for liquid ejection head
JP2017512688A (en) * 2014-04-30 2017-05-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Piezoelectric printhead assembly
JPWO2017145743A1 (en) * 2016-02-24 2018-12-13 コニカミノルタ株式会社 Inkjet recording apparatus and inkjet head driving method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7441853B2 (en) 2004-08-27 2008-10-28 Fujifilm Corporation Image forming apparatus and drive control method for liquid ejection head
JP2007268754A (en) * 2006-03-30 2007-10-18 Fuji Xerox Co Ltd Driving device for liquid droplet discharging head, driving method, and liquid droplet discharging device
JP2017512688A (en) * 2014-04-30 2017-05-25 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Piezoelectric printhead assembly
US9855746B2 (en) 2014-04-30 2018-01-02 Hewlett-Packard Development Company, L.P. Piezoelectric printhead assembly
US10112390B2 (en) 2014-04-30 2018-10-30 Hewlett-Packard Development Company, L.P. Piezoelectric fluid ejection assembly
JPWO2017145743A1 (en) * 2016-02-24 2018-12-13 コニカミノルタ株式会社 Inkjet recording apparatus and inkjet head driving method
US10821724B2 (en) 2016-02-24 2020-11-03 Konica Minolta, Inc. Inkjet recording device and inkjet head driving method

Similar Documents

Publication Publication Date Title
CA1129477A (en) Circuit arrangement for controlling recording nozzles in ink-mosaic recording devices
US7625056B2 (en) Device and method for driving jetting head
JP4992447B2 (en) Capacitive load drive circuit and image forming apparatus
US20110261097A1 (en) Driver circuit for driving a print head of an inkjet printer
US7852127B2 (en) Driving circuit for capacitive load and fluid injecting device
US7880515B2 (en) Driving circuit for capacitive load and fluid injecting device
JPH06127034A (en) Device for driving piezoelectric element
JP4123736B2 (en) Inkjet printer and drive circuit
US7884850B2 (en) Image forming apparatus
JP3711447B2 (en) Ink jet printer head drive apparatus and drive method
JP3757808B2 (en) Ink jet printer head drive apparatus and drive method
JPWO2002034528A1 (en) Waveform generation circuit, inkjet head driving circuit, and inkjet recording apparatus
JPH0584902A (en) Method for driving ink jet type printing head
JPH11320872A (en) Capacitive load drive circuit and ink-jet recording apparatus
JP2007130834A (en) Drive circuit for piezoelectric element and liquid ejector
JP4124646B2 (en) Waveform generation circuit, inkjet head drive circuit, and inkjet recording apparatus
JPH0218054A (en) Multiplexer circuit
JPH04316851A (en) Drive circuit of ink jet multinozzle head
US20030214543A1 (en) Head driving device of liquid jetting apparatus and method of driving the same
JP2003246060A (en) Head driving device for inkjet printer
JP2007143277A (en) Drive circuit for piezoelectric elements and liquid discharging device
JPH03133647A (en) Driver in ink jet printer
JP3156393B2 (en) Driving method of inkjet head
JPH04290585A (en) Piezo driving circuit
JP2002307675A (en) Head driving device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250