JPH06123708A - Foreign material inspector - Google Patents
Foreign material inspectorInfo
- Publication number
- JPH06123708A JPH06123708A JP4296636A JP29663692A JPH06123708A JP H06123708 A JPH06123708 A JP H06123708A JP 4296636 A JP4296636 A JP 4296636A JP 29663692 A JP29663692 A JP 29663692A JP H06123708 A JPH06123708 A JP H06123708A
- Authority
- JP
- Japan
- Prior art keywords
- foreign matter
- inspected
- scattered light
- pixels
- image pickup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は異物検査装置に関し、特
に、半導体素子の製造の際に使用されるレチクル(フォ
トマスクとも言う)回路形成面を保護するために設けら
れたペリクル膜上の異物の有無を検査する際に好適に用
いられる異物検査装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foreign matter inspection apparatus, and more particularly, to a foreign matter on a pellicle film provided to protect a reticle (also called a photomask) circuit forming surface used in the manufacture of semiconductor elements. The present invention relates to a foreign matter inspection apparatus that is preferably used when inspecting the presence or absence of a foreign matter.
【0002】[0002]
【従来の技術】一般に、IC等の半導体素子は、レチク
ル上に形成された回路パターンを露光装置によってレジ
ストが塗布されたウエハ上に転写することによって製造
される。この際、レチクル上にごみ等の異物が存在する
と、回路パターンと共に異物も転写され、半導体素子製
造の歩留を低下させる原因となる。2. Description of the Related Art Generally, a semiconductor element such as an IC is manufactured by transferring a circuit pattern formed on a reticle onto a wafer coated with a resist by an exposure device. At this time, if foreign matter such as dust exists on the reticle, the foreign matter is transferred together with the circuit pattern, which causes a reduction in the yield of semiconductor device manufacturing.
【0003】このため、半導体素子の製造工程におい
て、レチクル上の異物の有無を検査することは必要不可
欠となっており、従来より種々の異物検査装置が提案さ
れている。また、レチクルのパターン形成面を保護する
ために、ペリクル膜と呼ばれる保護膜をフレームに張設
したものをパターン形成面に設けることが多い。このペ
リクル膜上に異物が存在する場合も転写される回路パタ
ーンに欠陥が生じることになるため、パターン形成面だ
けでなくペリクル膜上の異物の検査も必要不可欠であ
る。Therefore, it is indispensable to inspect the presence or absence of foreign matter on the reticle in the process of manufacturing a semiconductor element, and various foreign matter inspection apparatuses have been proposed conventionally. Further, in order to protect the pattern forming surface of the reticle, a protective film called a pellicle film is often provided on the frame and provided on the pattern forming surface. Even if foreign matter is present on the pellicle film, defects will occur in the transferred circuit pattern. Therefore, it is essential to inspect the foreign matter on the pellicle film as well as on the pattern formation surface.
【0004】従来、ペリクル膜上の異物検査に用いられ
ている装置の例としては、例えば、特開昭57−805
46号に開示されているようなものがある。以下、従来
の装置の構成を図8を参照して説明する。図において、
半導体レーザ等の光源1から出射された光ビームはコリ
メートレンズ2によって縦長の平行ビーム3とされ、ペ
リクル膜面5(被検面)上にほぼ水平(例えば89 程
度の入射角)で入射される。これによってペリクル膜5
表面には帯状の照明領域4が形成される。An example of an apparatus conventionally used for inspecting foreign matter on a pellicle film is, for example, Japanese Patent Laid-Open No. 57-805.
No. 46 is disclosed. Hereinafter, the configuration of the conventional device will be described with reference to FIG. In the figure,
A light beam emitted from a light source 1 such as a semiconductor laser is made into a vertically long parallel beam 3 by a collimator lens 2 and is incident on a pellicle film surface 5 (surface to be inspected) substantially horizontally (for example, an incident angle of about 89). . Thereby, the pellicle film 5
A strip-shaped illumination area 4 is formed on the surface.
【0005】ペリクル膜5はペリクルフレームに張設さ
れた状態でレチクル6上に載置されている。レチクル6
はレチクルステージ(図示せず)上に載置されており、
図中矢印10の方向(帯状の照明領域4の長手方向と直
交する方向)に移動可能となっている。レチクルステー
ジを矢印10の方向に移動させることによって、ペリク
ル膜5全面が光ビーム3によって走査される。The pellicle film 5 is placed on the reticle 6 while being stretched over the pellicle frame. Reticle 6
Is mounted on a reticle stage (not shown),
It is movable in the direction of arrow 10 in the figure (direction orthogonal to the longitudinal direction of the strip-shaped illumination area 4). By moving the reticle stage in the direction of arrow 10, the entire surface of the pellicle film 5 is scanned by the light beam 3.
【0006】ペリクル膜5の帯状照明領域4から発した
側方散乱光は、帯状照明領域4の長手方向と略直交する
方向からペリクル膜5を小さな角度で見込むレンズ7に
よって受光され、撮像素子9上に集光される。この撮像
素子9は、帯状照明領域4の長手方向に配列された複数
の画素を有する一次元イメージセンサからなり、各画素
に入射した光がそれぞれ独立に光電変換される。The side scattered light emitted from the strip-shaped illumination region 4 of the pellicle film 5 is received by the lens 7 which looks at the pellicle film 5 at a small angle from a direction substantially orthogonal to the longitudinal direction of the strip-shaped illumination region 4, and the image pickup element 9 is provided. Focused on top. The image pickup device 9 is composed of a one-dimensional image sensor having a plurality of pixels arranged in the longitudinal direction of the strip-shaped illumination area 4, and the light incident on each pixel is independently photoelectrically converted.
【0007】上記のような構成の装置において、撮像素
子9からの出力信号とレチクルステージの位置に関する
情報に基づいて異物の存在する位置を検知することがで
きる。また、異物の大きさと散乱光の強度との間には一
般に相関関係があるため、撮像素子9の出力信号の強度
から異物の大きさを推定することも可能である。In the apparatus having the above structure, the position where the foreign matter exists can be detected based on the output signal from the image pickup device 9 and the information regarding the position of the reticle stage. Further, since the size of the foreign matter and the intensity of scattered light generally have a correlation, it is possible to estimate the size of the foreign matter from the intensity of the output signal of the image sensor 9.
【0008】[0008]
【発明が解決しようとする課題】しかし、上記のような
従来の異物検査装置においては、以下に説明するような
問題があった。即ち、被検面からの散乱光を検出するた
めに用る撮像素子(一次元イメージセンサ)には、入射
光の光電変換を行う感光部の他に光電変換を行わない不
感帯(電荷転送部等)が存在し、同じ大きさの異物であ
っても被検面上の場所が異なれば、イメージセンサ上で
の集光位置が異なるため、その結果として、異物の存在
位置によって感度差が生じるという問題があった。以下
この点について図6、7を参照して具体的に説明する。However, the conventional foreign matter inspection apparatus as described above has the following problems. That is, in the image pickup device (one-dimensional image sensor) used for detecting the scattered light from the surface to be inspected, in addition to the photosensitive section that photoelectrically converts incident light, a dead zone (charge transfer section, etc.) that does not perform photoelectric conversion. ) Exists, and even if foreign matters of the same size are located in different locations on the surface to be inspected, the condensing position on the image sensor will differ, resulting in a difference in sensitivity depending on the location of the foreign matter. There was a problem. Hereinafter, this point will be specifically described with reference to FIGS.
【0009】まず、図6(a)では、ビームスポット3
2は撮像素子の画素31aのほぼ中央に集光されてお
り、この場合の信号強度は図6(b)に示されるように
画素31aに対応する位置にピークが現れる。一方、図
7(a)では、ビームスポット32は撮像素子の画素3
1aと31bの中間、即ち不感帯部分にビームスポット
中心が位置するように集光されている。この場合の信号
強度は図7(b)に示されるように、画素31aと31
bの中間に対応する位置に図6(b)よりも強度が低く
く半値幅が大きいピークが現れる。First, in FIG. 6A, the beam spot 3
No. 2 is condensed in the substantially center of the pixel 31a of the image sensor, and the signal intensity in this case has a peak at a position corresponding to the pixel 31a as shown in FIG. 6B. On the other hand, in FIG. 7A, the beam spot 32 is the pixel 3 of the image sensor.
The light is focused such that the center of the beam spot is located in the dead zone, that is, between 1a and 31b. The signal strength in this case is as shown in FIG.
A peak whose intensity is lower and whose half value width is larger than that in FIG. 6B appears at a position corresponding to the middle of b.
【0010】図6と図7を比較すれば明らかなように、
従来の異物検査装置では、同じ異物であっても異物の存
在する位置によって撮像素子からの出力信号強度が異な
ってしまい、精度の高い検査を行うことができなかっ
た。As is clear from comparing FIG. 6 and FIG.
In the conventional foreign matter inspection apparatus, even if the foreign matter is the same, the output signal intensity from the image pickup element varies depending on the position where the foreign matter exists, and it is not possible to perform highly accurate inspection.
【0011】本発明は、係る点に鑑みてなされたもので
あり、異物の存在位置による感度差を低減することがで
き、精度の高い異物検査を実現できる装置を提供するこ
とを目的とするものである。The present invention has been made in view of the above point, and an object of the present invention is to provide an apparatus capable of reducing the difference in sensitivity due to the position of existence of foreign matter and realizing highly accurate foreign matter inspection. Is.
【0012】[0012]
【課題を解決するための手段】請求項1の異物検査装置
は、被検面に対して光ビームをほぼ水平に照射して前記
被検面に帯状の照明領域を形成する照射光学系と、前記
被検面の前記帯状の照明領域から発する散乱光を集光す
る集光光学系と、前記帯状の照明領域の少なくとも長手
方向に沿って所定のピッチで配列された複数の画素を有
し、前記集光された散乱光を検出する撮像手段とを備
え、該撮像手段からの出力信号に基づいて前記被検面上
の異物の有無を検査する異物検査装置において、上記の
課題を達成するために、前記集光された前記散乱光の集
光位置と前記複数の画素とを前記画素の配列方向に沿っ
て相対的に偏位させる偏位手段を有し、前記集光位置と
前記複数の画素とが相対的に偏位された状態にて前記異
物の有無を検査するものである。According to a first aspect of the present invention, there is provided a foreign matter inspection apparatus, which comprises an irradiation optical system for irradiating a surface to be inspected with a light beam substantially horizontally to form a strip-shaped illumination area on the surface to be inspected. A condensing optical system for condensing scattered light emitted from the strip-shaped illumination region of the surface to be inspected, and a plurality of pixels arranged at a predetermined pitch along at least the longitudinal direction of the strip-shaped illumination region, In order to achieve the above object, in a foreign matter inspection device, which comprises an image pickup means for detecting the condensed scattered light, and inspects the presence or absence of a foreign matter on the surface to be inspected based on an output signal from the image pickup means. Further comprising a displacement means for relatively displacing the condensing position of the condensed scattered light and the plurality of pixels along the arrangement direction of the pixels, and the condensing position and the plurality of pixels. Inspecting for the presence of the foreign matter in a state in which the pixel is relatively displaced Than it is.
【0013】請求項2の異物検査装置における前記偏位
手段による偏位量は、前記撮像手段の前記複数の画素の
ピッチの略1/2である。In the foreign matter inspection apparatus according to the second aspect, the deviation amount by the deviation means is approximately 1/2 of the pitch of the plurality of pixels of the image pickup means.
【0014】請求項3の異物検査装置における前記偏位
手段は、前記被検面、前記集光光学系、前記撮像手段の
うちの少なくとも一つを前記複数の画素のピッチに応じ
た量だけ移動させる移動手段有するものである。The deviation means in the foreign matter inspection apparatus according to claim 3 moves at least one of the surface to be inspected, the condensing optical system, and the imaging means by an amount according to the pitch of the plurality of pixels. It has a moving means.
【0015】請求項4の異物検査装置は、被検面に対し
て光ビームをほぼ水平に照射して前記被検面に帯状の照
明領域を形成する照射光学系と、前記被検面の前記帯状
の照明領域から発する散乱光を集光する集光光学系と、
前記帯状の照明領域の少なくとも長手方向に沿って所定
のピッチで配列された複数の画素を有し、前記集光され
た散乱光を検出する撮像手段とを備え、該撮像手段から
の出力信号に基づいて前記被検面上の異物の有無を検査
する異物検査装置において、上記の課題を達成するため
に、前記集光光学系を介した前記散乱光を分割する分割
手段を有すると共に、前記分割された散乱光の出射側に
複数の前記撮像手段を備え、かつ、該複数の撮像手段の
前記画素は、それぞれ前記画素のピッチ方向に沿って所
定量偏位しているものである。According to a fourth aspect of the foreign matter inspection apparatus, an irradiation optical system for irradiating the surface to be inspected with a light beam substantially horizontally to form a strip-shaped illumination region on the surface to be inspected, and the surface of the surface to be inspected. A condensing optical system that condenses scattered light emitted from a band-shaped illumination area,
An image pickup unit having a plurality of pixels arranged at a predetermined pitch along at least the longitudinal direction of the strip-shaped illumination region, and detecting the condensed scattered light; and an output signal from the image pickup unit. In order to achieve the above-mentioned object, a foreign matter inspection device for inspecting the presence or absence of a foreign matter on the surface to be inspected has a dividing means for dividing the scattered light through the condensing optical system, and the division A plurality of the image pickup means is provided on the emission side of the scattered light thus obtained, and the pixels of the plurality of image pickup means are displaced by a predetermined amount along the pitch direction of the pixels.
【0016】[0016]
【作用】本発明の作用を前述した図6、図7を参照して
説明する。まず、被検面上のある位置Pに異物が存在す
るとき、異物からの散乱光が図6(a)のように画素3
1aの中央に集光されるとする。一方、同じ被検面上の
別の位置Qに異物が存在するとき、異物からの散乱光は
図7(a)のように画素31aと画素31bの間の不感
帯に集光されるとする。この状態では、先に述べたよう
に、位置Pと位置Qに存在する異物が同一のものであっ
ても、位置Pの異物の検出信号の方位置Qより強くな
る。The operation of the present invention will be described with reference to FIGS. First, when a foreign substance is present at a certain position P on the surface to be inspected, the scattered light from the foreign substance is generated by the pixel 3 as shown in FIG.
It is assumed that the light is focused on the center of 1a. On the other hand, when a foreign substance is present at another position Q on the same surface to be inspected, the scattered light from the foreign substance is focused in the dead zone between the pixels 31a and 31b as shown in FIG. 7A. In this state, as described above, even if the foreign matter existing at the positions P and Q is the same, the detection signal of the foreign matter at the position P becomes stronger than the position Q.
【0017】そこで、請求項1の発明では、被検面から
の散乱光の集光位置と撮像手段の複数の画素とを画素の
配列方向に沿って相対的に偏位させる偏位手段を設け、
集光位置と撮像手段の複数の画素とが相対的に偏位され
た状態にて異物検査を行う構成としている。即ち、図
6、7の例で説明すれば、散乱光の集光位置と撮像手段
の複数の画素とを画素の配列方向に沿って画素ピッチの
約1/2だけ相対的に偏位させることことによって、位
置Pに存在する異物からの散乱光が図7(a)のように
撮像手段の不感帯に集光され、位置Qに存在する異物か
らの散乱光が図6(a)のように画素中央に集光される
状態で検査を行うことができる。従って、集光位置と撮
像手段の複数の画素とを偏位させる前と後の両方で異物
検査を行い、信号強度の大きい方を最終的な検出信号と
して採用すれば、位置Pと位置Qにある異物が同一であ
る場合に、両者は同じ信号レベルで検出されることにな
る。Therefore, in the first aspect of the present invention, there is provided the displacing means for relatively displacing the condensing position of the scattered light from the surface to be inspected and the plurality of pixels of the image pickup means along the arrangement direction of the pixels. ,
The foreign substance inspection is performed in a state in which the light collecting position and the plurality of pixels of the image pickup unit are relatively deviated. That is, referring to the examples of FIGS. 6 and 7, the condensing position of the scattered light and the plurality of pixels of the image pickup means are relatively displaced by about ½ of the pixel pitch along the arrangement direction of the pixels. As a result, the scattered light from the foreign matter present at the position P is focused on the dead zone of the image pickup means as shown in FIG. 7A, and the scattered light from the foreign matter present at the position Q is shown in FIG. 6A. The inspection can be performed while the light is focused on the center of the pixel. Therefore, if the foreign matter inspection is performed both before and after the deviation of the light-condensing position and the plurality of pixels of the image pickup means, and the one having the larger signal strength is adopted as the final detection signal, the position P and the position Q are selected. If a foreign substance is the same, both will be detected at the same signal level.
【0018】また、請求項4の発明では、集光光学系を
介した被検面からの散乱光を分割を設けると共に、分割
された散乱光の出射側にそれぞれ撮像手段を設け、各撮
像手段の画素がそれぞれ画素の配列方向に沿って所定量
偏位するように撮像手段の位置を設定する構成としてい
る。具体的には、分割された各散乱光の集光位置と画素
の位置関係を撮像手段間で約1/2画素ピッチ偏位させ
ておけば、図6と図7の両方の状態で検査を行うことと
なり、信号強度の大きい方を検出信号として採用するこ
とで、請求項1と同様に位置による感度差の問題を解消
することができる。Further, according to the invention of claim 4, the scattered light from the surface to be inspected through the condensing optical system is divided, and an image pickup means is provided on the outgoing side of the divided scattered light. The position of the image pickup device is set so that each pixel is displaced by a predetermined amount along the pixel arrangement direction. Specifically, if the positional relationship between the condensing position of each divided scattered light and the pixel is deviated by about 1/2 pixel pitch between the image pickup means, the inspection can be performed in both states of FIG. 6 and FIG. By adopting the one with the larger signal strength as the detection signal, the problem of the sensitivity difference due to the position can be solved as in the first aspect.
【0019】[0019]
【実施例】以下、本発明の実施例を図面を参照して説明
する。まず図1は、本発明の第1の実施例による異物検
査装置の概略構成を示す斜視図である。図において、半
導体レーザ等の光源1から出射された光ビームはコリメ
ートレンズ2によって縦長の平行ビーム3とされ、ペリ
クル膜5(被検面)上にほぼ水平(例えば89 程度の
入射角)に入射される。これによってペリクル膜5表面
には帯状の照明領域4が形成される。Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 is a perspective view showing a schematic configuration of a foreign matter inspection apparatus according to a first embodiment of the present invention. In the figure, a light beam emitted from a light source 1 such as a semiconductor laser is made into a vertically long parallel beam 3 by a collimator lens 2 and is incident on a pellicle film 5 (inspection surface) substantially horizontally (for example, an incident angle of about 89). To be done. As a result, the strip-shaped illumination area 4 is formed on the surface of the pellicle film 5.
【0020】この際、光ビーム3の入射角は89 に限
定されるものでないことは言うまでもないが、入射角が
小さくなるとペリクル膜5を透過する光が増大し、ペリ
クル膜5を透過した光がレチクル6上のパターンで反射
されて撮像手段9(後述)で受光されるという不都合が
生じる。従って、レチクル6上のパターンとペリクル膜
5上の異物の誤検出を避けるためには、光ビーム3はほ
ぼ水平に近い状態で入射させることが好ましい。At this time, it goes without saying that the incident angle of the light beam 3 is not limited to 89. However, when the incident angle becomes small, the light transmitted through the pellicle film 5 increases and the light transmitted through the pellicle film 5 increases. There is an inconvenience that it is reflected by the pattern on the reticle 6 and is received by the image pickup means 9 (described later). Therefore, in order to avoid erroneous detection of the pattern on the reticle 6 and the foreign matter on the pellicle film 5, it is preferable that the light beam 3 be incident in a state of being substantially horizontal.
【0021】ペリクル膜5はペリクルフレームに張設さ
れた状態でレチクル6上に載置されている。レチクル6
はレチクルステージ(図示せず)上に載置されており、
図中矢印10の方向(帯状の照明領域4の長手方向と直
交する方向)に移動可能となっている。レチクルステー
ジを矢印10の方向に移動させることによって、ペリク
ル膜5全面が光ビームによって走査される。本実施例で
は、レチクル6は搬送装置(図示せず)から異物検査装
置に受け渡され、図中奥側から順に異物検査が行われる
(レチクルステージは順次10bの方向に移動)。そし
て、帯状照明領域4がびペリクル膜5の紙面手前側の端
に達すると、今度はレチクルステージが反対方向(図中
10aの方向)に移動して検査が行われ、2回目の検査
が終了すると、レチクル6は搬送装置に受け渡される。The pellicle film 5 is placed on the reticle 6 while being stretched on the pellicle frame. Reticle 6
Is mounted on a reticle stage (not shown),
It is movable in the direction of arrow 10 in the figure (direction orthogonal to the longitudinal direction of the strip-shaped illumination area 4). By moving the reticle stage in the direction of arrow 10, the entire surface of the pellicle film 5 is scanned with the light beam. In this embodiment, the reticle 6 is transferred from the transport device (not shown) to the foreign substance inspection device, and the foreign substance inspection is sequentially performed from the back side in the drawing (the reticle stage is sequentially moved in the direction of 10b). When the strip-shaped illumination area 4 reaches the end of the pellicle film 5 on the front side of the drawing, the reticle stage moves in the opposite direction (the direction 10a in the figure) to perform the inspection, and the second inspection ends. Then, the reticle 6 is delivered to the transport device.
【0022】ペリクル膜5の帯状照明領域4から発した
側方散乱光は、帯状照明領域4の長手方向と略直交する
方向からペリクル膜5を小さな角度で見込む集光レンズ
7によって受光され、撮像素子9上に集光される。この
撮像素子9は、帯状照明領域の長手方向に配列された複
数の画素を有する一次元イメージセンサからなり、各画
素に入射した光がそれぞれ独立に光電変換される。The side scattered light emitted from the strip-shaped illumination area 4 of the pellicle film 5 is received by the condenser lens 7 which looks at the pellicle film 5 at a small angle from a direction substantially orthogonal to the longitudinal direction of the strip-shaped illumination area 4, and an image is picked up. It is focused on the element 9. The image pickup device 9 is composed of a one-dimensional image sensor having a plurality of pixels arranged in the longitudinal direction of the strip-shaped illumination area, and the light incident on each pixel is independently photoelectrically converted.
【0023】また、本実施例では、撮像素子9には、撮
像素子9を画素の配列方向(図中矢印13の方向)に所
定量移動させるための移動手段16(15,14につい
ては後述)が設けられている。なお、撮像素子9の画素
の縦方向(画素の配列方向と直交する方向)の長さは特
に限定されるのもではないが、被検面(ペリクル膜5)
に凹凸がある場合、散乱光の集光位置は画素の縦方向に
変動するため、この変動量に見合った長さとすることが
望ましい。Further, in this embodiment, the image pickup device 9 has a moving means 16 (15, 14 will be described later) for moving the image pickup device 9 by a predetermined amount in the pixel arrangement direction (direction of arrow 13 in the drawing). Is provided. The length of the pixels of the image sensor 9 in the vertical direction (direction orthogonal to the pixel arrangement direction) is not particularly limited, but the surface to be inspected (pellicle film 5).
When there is unevenness, the light-condensing position of scattered light fluctuates in the vertical direction of the pixel. Therefore, it is desirable to set the length to match the fluctuation amount.
【0024】次に、上述した異物検査装置を用いた異物
検査方法について説明する。まず、レチクルステージを
矢印10のb方向に送りながら、上述した1回目の検査
を行う。このとき、撮像素子9の出力信号から得られる
異物の有無、存在位置、大きさに関する情報をメモリ
(図示せず)に記憶しておく。Next, a foreign matter inspection method using the above-mentioned foreign matter inspection apparatus will be described. First, the first inspection described above is performed while the reticle stage is moved in the direction of arrow b. At this time, information regarding the presence / absence of foreign matter, the existing position, and the size obtained from the output signal of the image sensor 9 is stored in a memory (not shown).
【0025】そして、1回目の検査終了後、移動手段1
6によって撮像素子9を約1/2画素ピッチに相当する
分だけ矢印13の方向に移動させる。即ち、、散乱光の
集光位置と撮像素子9の画素の位置関係を画素の配列方
向に約1/2画素ピッチだけ偏位させた状態とする。After the first inspection, the moving means 1
6, the image sensor 9 is moved in the direction of arrow 13 by an amount corresponding to about 1/2 pixel pitch. That is, the positional relationship between the condensing position of scattered light and the pixels of the image sensor 9 is deviated by about ½ pixel pitch in the pixel arrangement direction.
【0026】続いて、この状態で、レチクルステージを
矢印10のaの方向(1回目の検査と逆方向)に送りな
がら2回目の検査を行う。2回目の検査についても1回
目と同様に異物の有無、存在位置、大きさに関する情報
をメモリ(図示せず)に記憶しておく。この際、異物の
存在位置については、撮像素子9の移動量(1/2画素
ピッチ)を補正した位置を求めておく。Subsequently, in this state, the second inspection is performed while the reticle stage is moved in the direction of arrow a (the direction opposite to the first inspection). As for the second inspection, information about presence / absence of foreign matter, existing position, and size is stored in a memory (not shown) as in the first inspection. At this time, with respect to the position of the foreign matter, a position in which the movement amount (1/2 pixel pitch) of the image sensor 9 is corrected is obtained.
【0027】2回目の検査終了後、1回目の検出結果と
2回目の検出結果を比較し、信号強度(異物の大きさに
関する情報)については、両者のうちの大きい方を採用
する。このようにすれば、1回目の検査で前述の図7の
ような状態で散乱光が検出されたとしても、撮像素子9
を1/2画素ピッチ偏位させた2回目の検査では図6の
状態で散乱光が検出されることになり、異物の存在位置
によらず異物の大きさを正確に推定できる。After the completion of the second inspection, the first detection result and the second detection result are compared, and the larger one of the two is adopted as the signal strength (information regarding the size of the foreign matter). By doing so, even if scattered light is detected in the state as shown in FIG. 7 in the first inspection, the image sensor 9
In the second inspection in which is shifted by 1/2 pixel pitch, scattered light will be detected in the state of FIG. 6, and the size of the foreign matter can be accurately estimated regardless of the position where the foreign matter exists.
【0028】さて、上記の実施例では、移動手段16に
よって撮像素子9を移動させているが、図1に示されて
いるように、移動手段14によってレチクルステージを
矢印11の方向に移動させても良いものである。また、
移動手段15によって集光レンズ7を光軸に対して傾け
る(矢印12)ことによっても散乱光の集光位置と撮像
素子9の画素との位置関係を偏位させることができる。
即ち、撮像素子9、集光レンズ7、ペリクル膜5(被検
面)のうちの少なくとも一つを相対的に移動させれば良
い。In the above embodiment, the image pickup device 9 is moved by the moving means 16, but the moving means 14 moves the reticle stage in the direction of arrow 11 as shown in FIG. Is also good. Also,
By tilting the condenser lens 7 with respect to the optical axis by the moving means 15 (arrow 12), the positional relationship between the condensing position of scattered light and the pixels of the image sensor 9 can be deviated.
That is, at least one of the image pickup device 9, the condenser lens 7, and the pellicle film 5 (test surface) may be moved relatively.
【0029】また、上記の実施例では、異物検査を2回
行い、1回目と2回目で散乱光の集光位置と撮像素子9
の相対的な位置関係を変えているが、電歪素子などを用
いて撮像素子9(又は、レンズ7、レチクルステージ)
を1/2画素ピッチに相当する振幅で高速振動させる構
成としても良い。このときの振動速度がレチクルステー
ジの矢印10方向への移動速度よりも十分に高速であれ
ば、振幅内の最大強度をとることで1回の検査で位置に
よる感度差のない異物検査を行うことができる。Further, in the above embodiment, the foreign matter inspection is performed twice, and at the first time and the second time, the condensing position of the scattered light and the image pickup element 9 are taken.
The relative positional relationship of the image pickup element 9 (or the lens 7 and the reticle stage) is changed by using an electrostrictive element or the like.
May be vibrated at a high speed with an amplitude corresponding to a 1/2 pixel pitch. If the vibration speed at this time is sufficiently higher than the moving speed of the reticle stage in the direction of arrow 10, the maximum strength within the amplitude is taken to perform the foreign matter inspection without the sensitivity difference depending on the position in one inspection. You can
【0030】次に、図2は本発明の第2実施例による異
物検査装置の構成を示す平面図である。本実施例の装置
は、照射光学系(光源1、コリメータレンズ2)、集光
レンズ7、レチクルステージ等の構成は図1の装置と同
様であり、重複する説明は省略する。本実施例におい
て、集光レンズ7を経た散乱光はビームスプリッター1
7で分割される。そして、ビームスプリッター17を透
過した散乱光は撮像素子(一次元イメージセンサ)9a
上に、ビームスプリッター17で反射された散乱光は撮
像素子(一次元イメージセンサ)9b上にそれぞれ集光
される。撮像素子9aと9bとは、画素の配列方向に所
定量偏位されている。Next, FIG. 2 is a plan view showing the structure of a foreign matter inspection apparatus according to the second embodiment of the present invention. The apparatus of the present embodiment has the same configuration as the irradiation optical system (light source 1, collimator lens 2), condenser lens 7, reticle stage, and the like of the apparatus of FIG. In this embodiment, the scattered light that has passed through the condenser lens 7 is the beam splitter 1.
Divided by 7. Then, the scattered light transmitted through the beam splitter 17 is imaged by the image sensor (one-dimensional image sensor) 9a.
The scattered light reflected by the beam splitter 17 is collected on the image pickup device (one-dimensional image sensor) 9b. The image pickup devices 9a and 9b are deviated by a predetermined amount in the pixel array direction.
【0031】このような構成の装置において、撮像素子
9aと9bとを例えば1/2画素ピッチ偏位させておけ
ば、一方の撮像素子9aで前述の図6の状態で散乱光を
検出しているとき、もう一方の撮像素子9bでは図7の
状態で散乱光を検出することになり、撮像素子9aと9
bの出力信号のうち信号強度の大きい方を採用すること
で、異物の位置による感度差を低減することができる。In the apparatus having such a configuration, if the image pickup devices 9a and 9b are displaced by, for example, 1/2 pixel pitch, one of the image pickup devices 9a detects scattered light in the state shown in FIG. While the other image pickup device 9b detects scattered light in the state of FIG. 7, the other image pickup devices 9a and 9b
It is possible to reduce the difference in sensitivity depending on the position of the foreign matter by adopting one of the output signals of b having the larger signal strength.
【0032】次に、図3は、本発明の第3実施例による
異物検査装置の構成を示す斜視図であり、図4は図3の
装置の平面図である。本実施例の装置は、基本的な構成
は図1の装置と同様であり、偏位手段として平行平面板
8を設けた点が第1の実施例とは異なる。図において、
集光レンズ7と撮像素子9との間に平行平面板8が斜設
されており、集光レンズ7の光軸回りに回転可能となっ
ている。即ち、図4に示されるように、平行平面板8を
回転させることによって、集光レンズ7からの散乱光の
光路を図中21から22のように変えることができ、散
乱光の集光位置を撮像素子9の画素の配列方向に偏位さ
せることが可能である。Next, FIG. 3 is a perspective view showing the structure of a foreign matter inspection apparatus according to a third embodiment of the present invention, and FIG. 4 is a plan view of the apparatus of FIG. The device of the present embodiment is basically the same as the device of FIG. 1, and differs from the device of the first embodiment in that a parallel plane plate 8 is provided as a displacement means. In the figure,
A plane parallel plate 8 is obliquely provided between the condenser lens 7 and the image sensor 9, and is rotatable around the optical axis of the condenser lens 7. That is, as shown in FIG. 4, by rotating the plane-parallel plate 8, the optical path of the scattered light from the condenser lens 7 can be changed from 21 to 22 in the figure, and the scattered light collecting position can be changed. Can be displaced in the pixel array direction of the image sensor 9.
【0033】従って、前述した第1実施例と同様にレチ
クルステージを送りながら1回目の検査を行った後、平
行平面板8を所定量回転させてレチクルステージを逆方
向に移動させながら2回目の検査を行い、撮像素子9か
らの出力信号のうち信号強度の大きい方を採用するよう
にすれば、被検面上の位置による感度差を低減させるこ
とができる。また、平行平面板8に電歪素子などを取り
付けて高速で振動させ、振幅内の最大強度に基づいて異
物の大きさを判断するようにしても良い。この場合は、
1回の検査で位置による感度差のない異物検査を行うこ
とが可能である。Therefore, after performing the first inspection while feeding the reticle stage as in the first embodiment, the parallel plane plate 8 is rotated by a predetermined amount to move the reticle stage in the opposite direction, and then the second time. If the inspection is performed and one of the output signals from the image pickup device 9 having a larger signal strength is adopted, the difference in sensitivity due to the position on the surface to be inspected can be reduced. Alternatively, an electrostrictive element or the like may be attached to the plane parallel plate 8 to vibrate at high speed, and the size of the foreign matter may be determined based on the maximum strength within the amplitude. in this case,
It is possible to perform a foreign matter inspection without a difference in sensitivity depending on the position with a single inspection.
【0034】但し、図3、4に示した装置においては、
撮像素子9上での散乱光の集光位置の偏位量は角度の関
数となるから、集光レンズ7を通る主光線が傾いている
場合には、軸上以外では周辺にいくにしたがって集光位
置の偏位量が大きくなるといった問題が生じ、偏位量の
制御が困難となる。また、散乱光の集光位置の撮像素子
9の画素の縦方向(帯状照明領域の長手方向と直交する
方向)の変動も大きくなる。このため、図3、4の装置
では、集光レンズ7を像側テレセントリック系とすると
共に、画素の縦方向の寸法を十分長くとることが望まし
い。However, in the apparatus shown in FIGS.
Since the deviation amount of the scattered light on the image pickup element 9 at the focusing position is a function of the angle, when the chief ray passing through the focusing lens 7 is inclined, it is gathered as it goes to the periphery except on the axis. There arises a problem that the deviation amount of the light position becomes large, and it becomes difficult to control the deviation amount. Further, the variation in the vertical direction (direction orthogonal to the longitudinal direction of the band-shaped illumination region) of the pixels of the image pickup device 9 at the scattered light condensing position also becomes large. For this reason, in the apparatus shown in FIGS. 3 and 4, it is desirable that the condenser lens 7 is an image-side telecentric system and the dimension of the pixel in the vertical direction is sufficiently long.
【0035】また、集光レンズ7が像側テレセントリッ
ク光学系でない場合には、例えば、図5に示すように、
図3、4に示した平行平面板8の代わりに、集光レンズ
7の絞り(出射瞳)に対して同心であるレンズ形状のコ
ンセントリックレンズ8aを設けても良い。このコンセ
ントリックレンズ8aは、図中点Cを中心に、図中矢印
方向に揺動可能に設けられている。そして、撮像素子9
上の散乱光の集光位置を移動させる際には、コンセント
リックレンズ8aを図中矢印方向に傾ける。When the condenser lens 7 is not an image side telecentric optical system, for example, as shown in FIG.
Instead of the plane parallel plate 8 shown in FIGS. 3 and 4, a lens-shaped concentric lens 8a that is concentric with the diaphragm (exit pupil) of the condenser lens 7 may be provided. The concentric lens 8a is provided so as to be swingable in the direction of the arrow in the figure with a point C in the figure as the center. Then, the image sensor 9
When moving the condensing position of the upper scattered light, the concentric lens 8a is tilted in the direction of the arrow in the figure.
【0036】なお、上記の実施例では、散乱光の集光位
置と画素との相対的な偏位量を1/2画素として説明し
たが、偏位量は1/2画素に限定されるものではなく、
例えば1/4画素ピッチとしても良いものである。ま
た、上記の実施例では、撮像素子として1次元イメージ
センサを用いているが、場合によっては2次元イメージ
センサを用いて、直交する2方向について散乱光の集光
位置と画素を相対的に偏位させて検査するようにしても
良い。また、撮像素子9の出力信号処理についても、必
ずしも最大強度をとるようにする必要はなく、例えば1
回目と2回目の検査の検出信号の平均を求め、この値に
基づいて異物の大きさを推定するようにしても良い。更
に、上記の説明では、ペリクル膜上の検査を例にとって
説明したが、本発明の装置はレチクル自体の異物検査や
その他の被検面の検査に応用できるものである。In the above embodiment, the relative deviation amount between the condensing position of scattered light and the pixel is explained as 1/2 pixel, but the deviation amount is limited to 1/2 pixel. not,
For example, a quarter pixel pitch may be used. Further, in the above-described embodiment, the one-dimensional image sensor is used as the image pickup element, but in some cases, the two-dimensional image sensor is used to relatively disperse the condensing position of scattered light and the pixel in two orthogonal directions. It may be arranged to inspect it. Also, regarding the output signal processing of the image sensor 9, it is not always necessary to obtain the maximum intensity, and, for example, 1
It is also possible to obtain the average of the detection signals of the second and second inspections and estimate the size of the foreign matter based on this value. Further, in the above description, the inspection on the pellicle film has been described as an example, but the apparatus of the present invention can be applied to the foreign matter inspection of the reticle itself and other inspections of the surface to be inspected.
【0037】[0037]
【発明の効果】以上のように本発明による異物検査装置
は、被検面からの散乱光の集光位置と撮像手段の複数の
画素とが相対的に偏位された状態にて異物の有無を検査
するように構成されているので、被検面上の位置による
感度差を低減することができ、高精度の異物検査を行う
ことが可能である。As described above, in the foreign matter inspection apparatus according to the present invention, the presence / absence of foreign matter is detected in a state in which the condensing position of scattered light from the surface to be inspected and the plurality of pixels of the image pickup means are relatively deviated. Since it is configured to inspect, the difference in sensitivity due to the position on the surface to be inspected can be reduced, and highly accurate foreign matter inspection can be performed.
【図1】本発明の第1の実施例による異物検査装置の概
略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a foreign matter inspection device according to a first embodiment of the present invention.
【図2】本発明の第2の実施例による異物検査装置の概
略構成を示す平面図である。FIG. 2 is a plan view showing a schematic configuration of a foreign matter inspection device according to a second embodiment of the present invention.
【図3】本発明の第3の実施例による異物検査装置の概
略構成を示す斜視図である。FIG. 3 is a perspective view showing a schematic configuration of a foreign matter inspection device according to a third embodiment of the present invention.
【図4】図3の異物検査装置の平面図である。4 is a plan view of the foreign matter inspection device of FIG.
【図5】本発明の第3の実施例の変形例を示す平面図で
ある。FIG. 5 is a plan view showing a modification of the third embodiment of the present invention.
【図6】(a)は被検面からの散乱光が画素の中心に集
光している様子を示す模式図であり、(b)は(a)の
場合における信号強度分布を示すグラフである。6A is a schematic diagram showing how scattered light from a surface to be inspected is condensed at the center of a pixel, and FIG. 6B is a graph showing a signal intensity distribution in the case of FIG. 6A. is there.
【図7】(a)は被検面からの散乱光が画素と画素の間
の不感帯部に集光している様子を示す模式図であり、
(b)は(a)の場合における信号強度分布を示すグラ
フである。FIG. 7A is a schematic diagram showing how scattered light from a surface to be inspected is condensed in a dead zone between pixels,
(B) is a graph showing a signal intensity distribution in the case of (a).
【図8】従来の異物検査装置を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing a conventional foreign matter inspection device.
1…光源、2…コリメータレンズ、3…光ビーム、4…
帯状照明領域、5…ペリクル膜(被検面)、6…レチク
ル、7…集光レンズ、8…平行平面板、9,9a,9b
…撮像素子、14,15,16…移動手段、17…ビー
ムスプリッター、31a,31b,31c…画素、32
…ビームスポット。1 ... Light source, 2 ... Collimator lens, 3 ... Light beam, 4 ...
Strip-shaped illumination region, 5 ... Pellicle film (surface to be inspected), 6 ... Reticle, 7 ... Condensing lens, 8 ... Parallel plane plate, 9, 9a, 9b
... image pickup device, 14, 15, 16 ... moving means, 17 ... beam splitter, 31a, 31b, 31c ... pixel, 32
… Beam spot.
Claims (4)
射して前記被検面に帯状の照明領域を形成する照射光学
系と、 前記被検面の前記帯状の照明領域から発する散乱光を集
光する集光光学系と、 前記帯状の照明領域の少なくとも長手方向に沿って所定
のピッチで配列された複数の画素を有し、前記集光され
た散乱光を検出する撮像手段とを備え、 該撮像手段からの出力信号に基づいて前記被検面上の異
物の有無を検査する異物検査装置において、 前記集光された前記散乱光の集光位置と前記複数の画素
とを前記画素の配列方向に沿って相対的に偏位させる偏
位手段を有し、 前記集光位置と前記複数の画素とが相対的に偏位された
状態にて前記異物の有無を検査することを特徴とする異
物検査装置。1. An irradiation optical system which irradiates a light beam to a surface to be inspected substantially horizontally to form a belt-like illumination area on the surface to be inspected, and scattering emitted from the belt-like illumination area on the surface to be inspected. A condensing optical system that condenses light, and an imaging unit that has a plurality of pixels arranged at a predetermined pitch along at least the longitudinal direction of the strip-shaped illumination region, and that detects the condensed scattered light. In a foreign matter inspection device for inspecting the presence or absence of a foreign matter on the surface to be inspected based on an output signal from the imaging means, the condensing position of the condensed scattered light and the plurality of pixels are A displacement unit that relatively displaces along the pixel arrangement direction, and inspects the presence or absence of the foreign matter in a state where the condensing position and the plurality of pixels are relatively displaced. Characteristic foreign matter inspection device.
手段の前記複数の画素のピッチの略1/2であることを
特徴とする請求項1の異物検査装置。2. The foreign matter inspection apparatus according to claim 1, wherein the deviation amount by the deviation unit is approximately ½ of the pitch of the plurality of pixels of the imaging unit.
光学系、前記撮像手段のうちの少なくとも一つを前記複
数の画素のピッチに応じた量だけ移動させる移動手段有
することを特徴とする請求項1の異物検査装置。3. The displacing means includes a moving means for moving at least one of the surface to be inspected, the condensing optical system, and the imaging means by an amount corresponding to a pitch of the plurality of pixels. The foreign matter inspection device according to claim 1.
射して前記被検面に帯状の照明領域を形成する照射光学
系と、 前記被検面の前記帯状の照明領域から発する散乱光を集
光する集光光学系と、 前記帯状の照明領域の少なくとも長手方向に沿って所定
のピッチで配列された複数の画素を有し、前記集光され
た散乱光を検出する撮像手段とを備え、 該撮像手段からの出力信号に基づいて前記被検面上の異
物の有無を検査する異物検査装置において、 前記集光光学系を介した前記散乱光を分割する分割手段
を有すると共に、 前記分割された散乱光の出射側に複数の前記撮像手段を
備え、 かつ、該複数の撮像手段の前記画素は、それぞれ前記画
素のピッチ方向に沿って所定量偏位していることを特徴
とする請求項1の異物検査装置。4. An irradiation optical system for irradiating a light beam to a surface to be inspected substantially horizontally to form a belt-like illumination area on the surface to be inspected, and scattering emitted from the belt-like illumination area on the surface to be inspected. A condensing optical system that condenses light, and an imaging unit that has a plurality of pixels arranged at a predetermined pitch along at least the longitudinal direction of the strip-shaped illumination region, and that detects the condensed scattered light. In a foreign matter inspection apparatus for inspecting the presence or absence of a foreign matter on the surface to be inspected based on an output signal from the image pickup means, the foreign matter inspection apparatus has a dividing means for dividing the scattered light through the condensing optical system, A plurality of image pickup means is provided on the emission side of the divided scattered light, and the pixels of the plurality of image pickup means are each deviated by a predetermined amount along the pitch direction of the pixels. The foreign matter inspection device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4296636A JPH06123708A (en) | 1992-10-09 | 1992-10-09 | Foreign material inspector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4296636A JPH06123708A (en) | 1992-10-09 | 1992-10-09 | Foreign material inspector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06123708A true JPH06123708A (en) | 1994-05-06 |
Family
ID=17836113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4296636A Pending JPH06123708A (en) | 1992-10-09 | 1992-10-09 | Foreign material inspector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06123708A (en) |
-
1992
- 1992-10-09 JP JP4296636A patent/JPH06123708A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6608676B1 (en) | System for detecting anomalies and/or features of a surface | |
TWI449898B (en) | Observation device, inspection device and inspection method | |
US8072592B2 (en) | Reticle defect inspection apparatus and reticle defect inspection method | |
JPH0580497A (en) | Surface state inspecting device | |
JPH075115A (en) | Surface condition inspection apparatus | |
JPH05332943A (en) | Surface state inspection device | |
JPS6352696B2 (en) | ||
JP3048168B2 (en) | Surface condition inspection apparatus and exposure apparatus having the same | |
US5602639A (en) | Surface-condition inspection method and apparatus including a plurality of detecting elements located substantially at a pupil plane of a detection optical system | |
JPH0735698A (en) | Image reader, surface state inspecting apparatus and exposure device using the same | |
JP4961615B2 (en) | Photomask inspection method and apparatus | |
JP2539182B2 (en) | Foreign matter inspection method on semiconductor wafer | |
JP3135063B2 (en) | Comparative inspection method and apparatus | |
JP3223483B2 (en) | Defect inspection method and device | |
JPH09145631A (en) | Surface foreign matter detector | |
JPH0562882A (en) | Measuring method for focusing position | |
JP4106836B2 (en) | Inspection device | |
JPH06123708A (en) | Foreign material inspector | |
JP3316829B2 (en) | Comparative inspection method and device | |
JP4654408B2 (en) | Inspection apparatus, inspection method, and pattern substrate manufacturing method | |
JP6893842B2 (en) | Pattern inspection method and pattern inspection equipment | |
JPH0731129B2 (en) | Semiconductor wafer particle detector | |
JPH0979991A (en) | Pattern inspection device, defect inspection device, and pattern inspection method | |
JPH06258235A (en) | Surface inspection device | |
JP2004198199A (en) | Defect inspection device |