JPH06123222A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH06123222A
JPH06123222A JP4269836A JP26983692A JPH06123222A JP H06123222 A JPH06123222 A JP H06123222A JP 4269836 A JP4269836 A JP 4269836A JP 26983692 A JP26983692 A JP 26983692A JP H06123222 A JPH06123222 A JP H06123222A
Authority
JP
Japan
Prior art keywords
exhaust gas
heating chamber
internal combustion
combustion engine
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4269836A
Other languages
Japanese (ja)
Inventor
Yasuyuki Motozuka
靖之 本塚
Yu Fukuda
祐 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4269836A priority Critical patent/JPH06123222A/en
Publication of JPH06123222A publication Critical patent/JPH06123222A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/202Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means using microwaves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To provide an exhaust emission control device excellent in reliability by heating the emission control device and thereby raising its temperature efficiently within an extremely short time utilizing microwave energy, in order to purify exhaust emission of a gasoline engine, and purifing harmful materials generated in a large amount at the time of cold start of an engine. CONSTITUTION:A heating chamber 9, which feeds power through a waveguide 14 and a coaxial antenna, is fixed between an exhaust manifold 2 and a muffler 8 using a microwave generating high frequency oscillator 12, a purifing means, which is a substance to be heated and supports a heating unit and also a catalyst when required, is fitted to a ceramics carrier, microwave is applied to the purifing means, the substance to be heated, and heat is applied to the purifing means, the substance to be heated, uniformly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車などの冷温始動時
(以後コールドスタート時と呼ぶ)に内燃機関から排出
される排気ガス中の炭化水素、一酸化炭素などの有害物
質を除去する浄化手段を排気管の途中に設置しマイクロ
波エネルギと内燃機関から排出される排気ガス温度を利
用して加熱昇温させ、触媒を早期に活性化させ排気ガス
を浄化する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a purifying means for removing harmful substances such as hydrocarbons and carbon monoxide in exhaust gas discharged from an internal combustion engine at cold start of an automobile (hereinafter referred to as cold start). The present invention relates to a device for purifying exhaust gas by arranging the exhaust gas in the middle of the exhaust pipe to heat and raise the temperature by utilizing microwave energy and exhaust gas temperature discharged from the internal combustion engine.

【0002】[0002]

【従来の技術】大気汚染の発生源の一つとして自動車か
ら排出される汚染物質が問題視され、1965年初めか
ら徐々に自動車排気ガスの規制が実施されてきた。近
年、世界各国ではこのような大気汚染物質の排出規制が
強化される動きにあり、とくに自動車の排気ガスに関す
る規制は従来の濃度規制から総量規制へ移行され、規制
値自体も大幅な削減となっている。
2. Description of the Related Art Pollutants emitted from automobiles are regarded as a problem as one of the sources of air pollution, and automobile exhaust gas regulations have been gradually implemented since the beginning of 1965. In recent years, regulations on the emission of such air pollutants have been tightened in various countries around the world, and in particular, the regulations on automobile exhaust gas have been changed from the conventional concentration regulations to the total amount regulations, and the regulation values themselves have also been significantly reduced. ing.

【0003】自動車の中でもガソリン車は排気ガス中に
含まれる炭化水素、一酸化炭素、窒素酸化物の排出規制
の強化が行われる。これら汚染物質の浄化方法として複
合渦流燃焼、希薄燃焼などのエンジン燃焼方式や触媒に
よる後処理方式などがあるが、現在は技術的にも経済的
にも優れている触媒による後処理方式が実用化されてい
る。この後処理方式に用いられる触媒体としては炭化水
素、一酸化炭素を酸化し、無害な炭酸ガス、水蒸気に変
換する酸化触媒と、空燃比を理論空燃比付近に制御する
ことにより炭化水素、一酸化炭素の酸化と窒素化物の還
元を同時に行い、無害な炭酸ガス、水蒸気、窒素に変換
する三元触媒があり、この三元触媒は主として乗用車に
搭載されている。
Among automobiles, gasoline cars are subject to stricter emission restrictions on hydrocarbons, carbon monoxide, and nitrogen oxides contained in exhaust gas. As methods for cleaning these pollutants, there are engine combustion methods such as complex eddy current combustion and lean combustion, and post-treatment methods with catalysts. Currently, post-treatment methods with catalysts, which are technically and economically superior, are put into practical use. Has been done. The catalyst used in this post-treatment system includes hydrocarbons, oxidation catalysts that oxidize carbon monoxide and convert them into harmless carbon dioxide gas and water vapor, and hydrocarbons by controlling the air-fuel ratio near the theoretical air-fuel ratio. There is a three-way catalyst that simultaneously oxidizes carbon oxides and reduces nitrites and converts them into harmless carbon dioxide, water vapor, and nitrogen, and these three-way catalysts are mainly installed in passenger cars.

【0004】図9は自動車に搭載されている従来の排ガ
ス浄化装置を示す。同図において、1はエンジン、2は
排気マニホールド、3は排気管、4は酸素センサ、5は
三元触媒体、6は触媒体を収納する容器、7は排気温度
センサ、8はマフラーであり、従来の排ガス浄化装置は
三元触媒体5と容器6から構成され、三元触媒5は排気
マニホールド2に接続された排気管3の途中に配置され
ている。三元触媒体5は特公昭52−3358号公報に
開示されているように、シリカ、アルミナ、マグネシア
を主成分とするコーディエライトのセラミックハニカム
構造体からなる担体に表面積の大きいアルミナなどの微
粒子からなるコーティング層を設け、このコーティング
層に白金、パラジウム、ロジウムなどの貴金属微粒子を
担持して構成されている。
FIG. 9 shows a conventional exhaust gas purifying apparatus mounted on an automobile. In the figure, 1 is an engine, 2 is an exhaust manifold, 3 is an exhaust pipe, 4 is an oxygen sensor, 5 is a three-way catalyst, 6 is a container for accommodating the catalyst, 7 is an exhaust temperature sensor, and 8 is a muffler. The conventional exhaust gas purifying apparatus comprises a three-way catalyst body 5 and a container 6, and the three-way catalyst 5 is arranged in the middle of an exhaust pipe 3 connected to an exhaust manifold 2. As disclosed in Japanese Examined Patent Publication No. 52-3358, the three-way catalyst body 5 is a carrier made of a cordierite ceramic honeycomb structure containing silica, alumina, and magnesia as main components, and fine particles such as alumina having a large surface area. A coating layer made of is provided, and fine particles of precious metal such as platinum, palladium, and rhodium are supported on the coating layer.

【0005】上記構成においてエンジン1が始動すると
燃焼による排気ガスは排気マニホールド2を通り排気管
3の途中に設けられた排気ガス浄化装置である三元触媒
体5に導かれる。この排気ガスは三元触媒体5のハニカ
ム構造を構成する各々のセルを通過して排気管3より大
気に排出される。この時、空燃比は酸素センサ4により
理論空燃比付近に制御され、排気ガス中に含まれる炭化
水素、一酸化炭素、窒素酸化物は三元触媒体5の酸化、
還元反応により無害な炭酸ガス、水蒸気、窒素に変換さ
れる。しかし、上記反応が起こるためには三元触媒体5
を触媒として機能する温度に昇温させる必要がある。こ
の三元触媒体5は排気ガスの熱によって加熱されるがコ
ールドスタート時は触媒として機能する温度に到達する
のに約1分かかり、それまでは有害な排気ガスが大気に
排出されることになる。
In the above structure, when the engine 1 is started, the exhaust gas due to combustion is guided through the exhaust manifold 2 to the three-way catalyst body 5 which is an exhaust gas purifying device provided in the middle of the exhaust pipe 3. This exhaust gas passes through each cell forming the honeycomb structure of the three-way catalyst body 5 and is exhausted to the atmosphere from the exhaust pipe 3. At this time, the air-fuel ratio is controlled near the stoichiometric air-fuel ratio by the oxygen sensor 4, and hydrocarbons, carbon monoxide, and nitrogen oxides contained in the exhaust gas oxidize the three-way catalyst body 5,
It is converted into harmless carbon dioxide, water vapor, and nitrogen by the reduction reaction. However, in order for the above reaction to occur, the three-way catalyst body 5
Needs to be heated to a temperature at which it functions as a catalyst. This three-way catalyst 5 is heated by the heat of the exhaust gas, but it takes about 1 minute to reach the temperature that functions as a catalyst at the cold start, and harmful exhaust gas is discharged to the atmosphere until then. Become.

【0006】上記有害な排気ガスの排出を低減するため
に、三元触媒体5の前面に三元触媒体5より容積の小さ
いメタルハニカム(触媒を担持したもの、または触媒を
担持しないもの−−この場合は後方側の三元触媒体を急
速加熱する)を配置し、これを電気ヒータ、バーナなど
の加熱手段を用いて急速加熱し、触媒として機能する温
度に到達する時間を短縮する方法が検討されているがま
だ実用レベルに至っていない。
In order to reduce the emission of the harmful exhaust gas, a metal honeycomb having a volume smaller than that of the three-way catalyst body 5 (one carrying a catalyst or one carrying no catalyst-- In this case, the rear side three-way catalyst body is rapidly heated), and this is rapidly heated using a heating means such as an electric heater or a burner to shorten the time to reach the temperature that functions as a catalyst. It is being examined, but it has not reached the practical level yet.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記従来
の構成において、前述したように触媒体は排気ガスによ
って加熱されるため触媒として機能する温度に到達する
のに約1〜2分かかる。この状況は現在の排気ガス規制
をクリアしているものの、今後さらに強化される排気ガ
ス規制に対しては上記コールドスタート時の排気ガス中
の有害物質の排出量(特にオゾン層を破壊する炭化水
素)が問題になり、現状の排気ガス浄化装置で排気ガス
規制をクリアすることは困難であった。
However, in the above-mentioned conventional structure, it takes about 1 to 2 minutes to reach the temperature at which the catalyst functions as a catalyst because the catalyst is heated by the exhaust gas as described above. Although this situation has cleared the current exhaust gas regulations, the emission amount of harmful substances in the exhaust gas at the cold start (especially hydrocarbons that deplete the ozone layer) will be ) Became a problem, and it was difficult to meet the exhaust gas regulations with the current exhaust gas purification device.

【0008】また従来の三元触媒体の前面に配置したメ
タルハニカムをバーナで加熱する方法は加熱範囲が狭
く、短時間でメタルハニカム全体を触媒として機能する
温度にすることは困難であるとともに、バーナの加熱手
段からも炭化水素が発生するという課題があった。
In the conventional method of heating the metal honeycomb arranged on the front surface of the three-way catalyst body with the burner, the heating range is narrow, and it is difficult to bring the entire metal honeycomb to a temperature at which it functions as a catalyst in a short time. There is a problem that hydrocarbons are also generated from the heating means of the burner.

【0009】またバーナの代わりに電気ヒータを用いる
方法は大電力(大電流)を必要とし、駆動電源を自動車
電源から供給することが実用的に困難であり、また耐久
性や信頼性がないという課題があった。
Further, the method of using an electric heater instead of the burner requires a large amount of electric power (a large amount of electric current), it is practically difficult to supply a driving power source from an automobile power source, and it is not durable or reliable. There were challenges.

【0010】本発明は上記課題を解決するもので、マイ
クロ波によって排気ガス中に含まれる有害物質を分解す
る浄化手段を効率よく急速加熱し、コールドスタート時
の排気ガス中の有害物質を低減するとともに、マイクロ
波を発生させるための駆動電力を自動車のバッテリ電源
で十分に供給できる装置を提供することを目的としたも
のである。
The present invention solves the above-mentioned problems, and efficiently and rapidly heats a purification means for decomposing harmful substances contained in exhaust gas by microwaves to reduce harmful substances in exhaust gas at cold start. At the same time, it is an object of the present invention to provide a device capable of sufficiently supplying drive power for generating microwaves with a battery power source of an automobile.

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するため、内燃機関の排気ガスを排出する排気管の途中
に設けられた加熱室と前記加熱室に直交して取りつけれ
た導波管と前記導波管内に直交して取りつけられたダイ
ポールアンテナが、加熱室に向かって対称に凸出し、被
加熱物である浄化手段は前記加熱室の略センタに設置し
該ダイポールアンテナに対して対称形にかつ離して配置
する構成としている。
In order to achieve the above object, the present invention has a heating chamber provided in the middle of an exhaust pipe for discharging exhaust gas of an internal combustion engine and a waveguide mounted orthogonal to the heating chamber. A dipole antenna mounted orthogonally to the inside of the waveguide and the waveguide protrudes symmetrically toward the heating chamber, and the purifying means that is the object to be heated is installed substantially at the center of the heating chamber, and is attached to the dipole antenna. It is arranged symmetrically and apart.

【0012】また内燃機関の排気ガスを排出する排気管
の途中に設けられた加熱室と、直径が75±5mm、体積
が80±20ccの被加熱物である浄化手段が前記加熱室
の略センタに設置する構成としている。
The heating chamber provided in the middle of the exhaust pipe for discharging the exhaust gas of the internal combustion engine, and the purifying means, which is the object to be heated, having a diameter of 75 ± 5 mm and a volume of 80 ± 20 cc, are substantially the center of the heating chamber. It is configured to be installed in.

【0013】また内燃機関の排気ガスを排出する排気管
の途中に設けられた加熱室と前記加熱室に直交して取り
つけられた導波管と前記導波管内に直交して取りつけら
れたマイクロ波エネルギを取り出す直交部分とマイクロ
波エネルギを放射する部分で構成されたダイポールアン
テナの放射する部分は被加熱物に対してマイクロ波の導
波管内の進行に対して前後で非対称の形状の構成として
いる。
Further, a heating chamber provided in the middle of an exhaust pipe for discharging exhaust gas of an internal combustion engine, a waveguide mounted orthogonal to the heating chamber, and a microwave mounted orthogonal to the inside of the waveguide. The radiating portion of the dipole antenna, which is composed of the orthogonal portion for extracting energy and the portion for radiating microwave energy, has a configuration asymmetrical with respect to the object to be heated before and after the traveling of the microwave in the waveguide. .

【0014】また内燃機関の排気ガスを排出する排気管
の途中に設けられた加熱室と前記加熱室に給電するダイ
ポールアンテナの電波を放射する部分の先端径は少なく
とも被加熱物の直径と略同じか、小さめとした構成とし
ている。また内燃機関の排気ガスを排出する排気管の途
中に設けられた直径が85〜100mm、長さがダイポー
ルアンテナの放射部と浄化手段の距離が略5mm、浄化手
段と加熱室の端面距離が略5mm、アンテナの放射部の直
径が65±5mmの構成の加熱室と被加熱物である浄化手
段が前記加熱室の略センタに設置した構成としている。
Further, the tip diameters of the heating chamber provided in the middle of the exhaust pipe for discharging the exhaust gas of the internal combustion engine and the portion of the dipole antenna that feeds the heating chamber for radiating radio waves are at least approximately the same as the diameter of the object to be heated. Or, it has a smaller structure. Further, the diameter provided in the middle of the exhaust pipe for discharging the exhaust gas of the internal combustion engine is 85 to 100 mm, the length is a distance between the radiating portion of the dipole antenna and the purifying means is about 5 mm, and the end face distance between the purifying means and the heating chamber is substantially. The heating chamber having a diameter of 5 mm and the radiating portion of the antenna having a diameter of 65 ± 5 mm, and the cleaning means as the object to be heated are installed in the approximate center of the heating chamber.

【0015】[0015]

【作用】本発明は上記構成によって、ガソリン車のエン
ジンが始動すると高温の排気ガスが排出し、ほぼ同時
(エンジン始動の略10秒前も含む)にマイクロ波エネ
ルギが導波管を通って加熱室に対して対称形に設けられ
たダイポールアンテナを経由して加熱室に給電され、前
記加熱室に収納されている排気ガス中の有害物質を分解
する浄化手段(発熱体)と触媒が短時間で加熱される。
すなわち前記浄化手段はマイクロ波を効率的に吸収する
電波吸収材を用いているので極めて短時間で排気ガス中
に含まれる有害物質である炭化水素や一酸化炭素を除去
する温度に昇温し、酸化による分解反応が起こり、無害
である水蒸気と炭酸ガスに変換され排気管から大気に放
出される。また浄化手段は小さくすると昇温効率は向上
するが被毒による能力の減少や触媒の空間速度値(Sp
sce Velocity値、略してSV値)が大きく
なり分解除去能力が減少するため70〜120ccがSV
値の限界でかつ有効である。
According to the present invention, when the engine of a gasoline car is started, high-temperature exhaust gas is discharged, and microwave energy is heated through the waveguide at substantially the same time (including about 10 seconds before engine start). Power is supplied to the heating chamber via a dipole antenna symmetrically arranged with respect to the chamber, and the purification means (heating element) and the catalyst for decomposing harmful substances in the exhaust gas stored in the heating chamber and the catalyst are in a short time. Is heated in.
That is, since the purification means uses a radio wave absorber that efficiently absorbs microwaves, the temperature is raised to a temperature at which hydrocarbons and carbon monoxide that are harmful substances contained in exhaust gas are removed in an extremely short time, A decomposition reaction occurs due to oxidation, and it is converted into harmless water vapor and carbon dioxide, which are released from the exhaust pipe to the atmosphere. Further, if the purifying means is made smaller, the temperature raising efficiency is improved, but the capacity is decreased due to poisoning and the space velocity value (Sp
sce Velocity value (SV value for short) becomes large and the decomposition and removal capacity decreases, so 70-120cc is SV
It is a limit of value and effective.

【0016】また、浄化手段を効率よく昇温させるため
に浄化手段の軸流方向から導波管を通してマイクロ波エ
ネルギを供給する構成としているがマイクロ波の性質上
完全に均一に昇温しない、すなわちダイポールアンテナ
の放射部に対して高周波発振器の付いている反対側のマ
イクロ波が強く温度がより高くなる、これを改善するた
めにダイポールアンテナの形状を対称形から一部非対称
すなわち放射する部分の長さ(径)を他の部分より長く
するか短くする、または放射部のT字形やL字形の先端
部の長さを変えることにより改善することができる。
Further, in order to efficiently raise the temperature of the purifying means, microwave energy is supplied from the axial direction of the purifying means through the waveguide, but the temperature of the microwave does not rise completely uniformly, that is, The microwave on the opposite side of the radiating part of the dipole antenna with the high-frequency oscillator is stronger and the temperature becomes higher. To improve this, the shape of the dipole antenna is changed from symmetrical to partially asymmetrical, that is, the length of the radiating part. This can be improved by making the diameter (diameter) longer or shorter than other portions, or changing the length of the T-shaped or L-shaped tip of the radiating portion.

【0017】同様に浄化手段を効率よく均一に昇温させ
るためにダイポールアンテナのマイクロ波エネルギを放
射する部分は複数個以上とすることによりきめ細かい発
熱昇温することができる。
Similarly, in order to efficiently and uniformly raise the temperature of the purifying means, a fine heat generation temperature can be obtained by providing a plurality of portions of the dipole antenna that radiate microwave energy.

【0018】また、ダイポールアンテナのマイクロ波エ
ネルギを放射する部分の先端径は浄化手段の外径と略同
じか小さめが有効である。理由はマイクロ波の放射はア
ンテナの先端から発射されるため直接照射され部分が反
射波の重畳効果となりより多く電波に曝されるためと思
われる。しかしアンテナの放射部の直径が全周的に小さ
くなると給電の整合が取れず効率が悪くなり昇温が悪く
なる。
Further, it is effective that the tip diameter of the portion of the dipole antenna that radiates microwave energy is substantially the same as or smaller than the outer diameter of the purifying means. The reason seems to be that the microwave radiation is emitted from the tip of the antenna and is directly irradiated, and the portion is exposed to more radio waves due to the superposition effect of reflected waves. However, if the diameter of the radiating part of the antenna becomes small all around, the feeding cannot be matched, resulting in poor efficiency and poor temperature rise.

【0019】また加熱室の形状は実験結果から直径が9
0mmの時、長さがダイポールアンテナの放射部と浄化手
段の距離が略5mm、浄化手段と加熱室の端面距離が5m
m、ダイポールアンテナの放射部の直径が略65±5mm
が昇温が最良であった(図9)。以上説明したように前
記浄化手段にマイクロ波を効率よく吸収する電波吸収材
を用いることによって電波吸収材と触媒のみを昇温させ
ることができ、担体は誘電体損失の小さい材料を使用す
ることによりマイクロ波を吸収せず、マイクロ波エネル
ギの発生すなわち昇温させるための消費電力を少なくす
ることができるので、マイクロ波発生源の駆動電源を自
動車電源のバッテリから十分に供給することができる。
また前記装置を三元触媒体の前方に設置することにより
前記浄化手段は三元触媒体の昇温手段としても有効であ
ることはゆうまでもない。
The shape of the heating chamber has a diameter of 9 from the experimental results.
When the length is 0 mm, the distance between the radiation part of the dipole antenna and the cleaning means is approximately 5 mm, and the distance between the cleaning means and the end face of the heating chamber is 5 m.
m, the diameter of the radiation part of the dipole antenna is approximately 65 ± 5 mm
Was the best to raise the temperature (Fig. 9). As described above, it is possible to raise the temperature of only the radio wave absorber and the catalyst by using the radio wave absorber that efficiently absorbs microwaves in the purification means, and the carrier is made of a material with small dielectric loss. Since the microwaves are not absorbed and the power consumption for generating the microwave energy, that is, for raising the temperature can be reduced, the drive power source of the microwave generation source can be sufficiently supplied from the battery of the vehicle power source.
Further, it goes without saying that by installing the device in front of the three-way catalyst body, the purification means is also effective as a temperature raising means for the three-way catalyst body.

【0020】[0020]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1〜図8において同一番号は同一部品名
を表す、1はエンジン、2は排気マニホールド、3は内
燃機関の排気ガスを排出する排気管、4は空燃比を制御
するための酸素センサ、5は三元触媒体、6は三元触媒
体5を保持する容器、7は三元触媒体5が昇温している
ことをチェックする温度センサ、8はマフラ、9は加熱
室、10は加熱室9内に収納された被加熱物で排気ガス
が通過する間に排気ガス中に含まれる有害物質である炭
化水素や一酸化炭素を分解する浄化手段、11は加熱室
10内に浄化手段11を支持するための支持部材で低誘
電体材料で構成されている、この支持部材11は浄化手
段10の外周と加熱室9の内壁との間の断熱機能も兼ね
ている。12は加熱室9に給電するマイクロ波エネルギ
を発生させる高周波発振器、13は高周波発振器12を
冷却するファンモータ、14は高周波発振器12から発
生したマイクロ波を加熱室9に伝送する導波管である。
15、16は伝送されたマイクロ波エネルギを被加熱物
に照射するダイポールアンテナA,Bで15は電波を導
波管から取り出す部分、16はその電波を発射させる部
分である、17は加熱室9を構成する排気ガス通過部A
であり、排気ガスを通す為のパンチング孔を有する金属
板から構成されている。18は加熱室9を構成する排気
ガス通過部Bであり、多数のパンチング孔を有する金属
板(またはメタルハニカム)により構成される。エンジ
ン1から排出された高温排気ガスは図1の矢印で示した
方向からマニホールド2を流れ、浄化手段10に流入す
る。流入した排気ガスに含まれる炭化水素や一酸化炭素
の有害物質は浄化手段10で浄化され、浄化された排気
ガスは排気管3よりマフラー8を通り大気に排出され
る。
1 to 8, the same numbers represent the same parts names, 1 is an engine, 2 is an exhaust manifold, 3 is an exhaust pipe for discharging exhaust gas of an internal combustion engine, and 4 is oxygen for controlling an air-fuel ratio. A sensor, 5 is a three-way catalyst body, 6 is a container holding the three-way catalyst body 5, 7 is a temperature sensor for checking that the temperature of the three-way catalyst body 5 is raised, 8 is a muffler, 9 is a heating chamber, Reference numeral 10 is a heating object housed in the heating chamber 9, and purification means for decomposing hydrocarbons and carbon monoxide which are harmful substances contained in the exhaust gas while the exhaust gas passes through. 11 is inside the heating chamber 10. The supporting member for supporting the purifying unit 11 is made of a low dielectric material. The supporting member 11 also has a heat insulating function between the outer periphery of the purifying unit 10 and the inner wall of the heating chamber 9. Reference numeral 12 is a high-frequency oscillator that generates microwave energy to feed the heating chamber 9, 13 is a fan motor that cools the high-frequency oscillator 12, and 14 is a waveguide that transmits the microwave generated from the high-frequency oscillator 12 to the heating chamber 9. .
Reference numerals 15 and 16 denote dipole antennas A and B for irradiating the object to be heated with the transmitted microwave energy, 15 denotes a portion for extracting a radio wave from the waveguide, 16 denotes a portion for emitting the radio wave, and 17 denotes a heating chamber 9 Exhaust gas passage part A
And is composed of a metal plate having a punching hole for passing exhaust gas. Reference numeral 18 denotes an exhaust gas passage portion B that constitutes the heating chamber 9, and is constituted by a metal plate (or metal honeycomb) having a large number of punching holes. The high temperature exhaust gas discharged from the engine 1 flows through the manifold 2 from the direction shown by the arrow in FIG. The harmful substances such as hydrocarbons and carbon monoxide contained in the inflowing exhaust gas are purified by the purifying means 10, and the purified exhaust gas is discharged from the exhaust pipe 3 to the atmosphere through the muffler 8.

【0022】図3は第2の改善案でありダイポールアン
テナB16から放出されるマイクロ波が対称になるよう
に考慮されているが加熱室9の寸法構造によりどうして
も完全な対称になりにくく高周波発振器12の反対側が
強く(温度が高く)なる。それを簡単に解決するために
対称形であるところのマイクロ波の放出部ダイポールア
ンテナB16の形を非対称にすることにより解決でき
る。実験ではダイポールアンテナB16に対して高周波
発信器の反対側の半径を5〜8mm小さくすると浄化手段
はほぼ均一に昇温したが浄化手段の形状(大きさ)によ
り逆になることも考えられる。図4はダイポールアンテ
ナ16Bの放出部のバリエーション案である。
FIG. 3 is a second improvement plan, and it is considered that the microwaves emitted from the dipole antenna B16 are symmetrical. However, due to the dimensional structure of the heating chamber 9, it is difficult to achieve perfect symmetry. The other side of becomes stronger (higher temperature). In order to solve it easily, it can be solved by making the shape of the microwave emission dipole antenna B16, which is symmetrical, asymmetric. In the experiment, if the radius on the opposite side of the high-frequency oscillator with respect to the dipole antenna B16 is reduced by 5 to 8 mm, the temperature of the purifying means rises almost uniformly, but it may be reversed depending on the shape (size) of the purifying means. FIG. 4 is a variation plan of the emitting portion of the dipole antenna 16B.

【0023】図5は本発明の加熱室の要部の断面斜視図
である。図6は本発明の発熱効率のすぐれた加熱室構成
であり、要部の基本寸法を表している。被加熱物である
浄化手段10の直径が68mm、厚み28mm(102cc)
のとき加熱室9の直径が90mm、長さが60mm、ダイポ
ールアンテナB16の放射部の直径が70mm、また被加
熱物である浄化手段10の直径が68mm、厚み20mm
(73cc)のとき加熱室9の直径が90mm、長さが55
mm、ダイポールアンテナB16の放射部の直径が60m
m、また被加熱物である浄化手段10の直径が68mm、
厚み14mm(51cc)のとき加熱室9の直径が90mm、
長さが50mm、ダイポールアンテナB16の放射部の直
径が60〜65mm、の時の状態がもっとも良く発熱し
た。前記同一条件で加熱室の直径のみを90mmより小さ
くすると効率が段々悪くなり85mmになると約20%悪
化した(ある条件下で100℃温度上昇したものが80
℃程度になる)。しかし加熱室の直径を90mmより大き
くしても効率は良くならなかった。更にまた直径を90
mmで長さを長くしても良くはならなかった。
FIG. 5 is a sectional perspective view of the main part of the heating chamber of the present invention. FIG. 6 shows a heating chamber configuration of the present invention having excellent heat generation efficiency, and shows the basic dimensions of essential parts. The diameter of the purification means 10, which is the object to be heated, is 68 mm and the thickness is 28 mm (102 cc)
At that time, the diameter of the heating chamber 9 is 90 mm, the length is 60 mm, the diameter of the radiating portion of the dipole antenna B16 is 70 mm, and the diameter of the purification means 10 which is the object to be heated is 68 mm and the thickness is 20 mm.
When (73cc), the heating chamber 9 has a diameter of 90mm and a length of 55.
mm, the diameter of the radiation part of the dipole antenna B16 is 60 m
m, and the diameter of the purification means 10 which is an object to be heated is 68 mm,
When the thickness is 14 mm (51 cc), the diameter of the heating chamber 9 is 90 mm,
When the length was 50 mm and the diameter of the radiating portion of the dipole antenna B16 was 60 to 65 mm, the best heat was generated. Under the same conditions, if the diameter of the heating chamber is smaller than 90 mm, the efficiency gradually deteriorates, and if the diameter becomes 85 mm, the efficiency deteriorates by about 20% (80 ° C. under a certain condition.
℃). However, the efficiency did not improve even if the diameter of the heating chamber was made larger than 90 mm. Furthermore, the diameter is 90
Increasing the length in mm didn't help.

【0024】図7は図6の構成に於ける温度上昇をグラ
フに表したものである。図8Aは本発明の排気ガス浄化
装置に用いられる浄化手段10の外観を示したものであ
る。浄化手段10の担体としては図8Bに示すようにセ
ラミックの隔壁19より形成される多数の連通孔を有す
るハニカム構造体が適用される。このハニカム構造体か
らなる担体はアルミナ、シリカ、ジルコニアなどのセラ
ミック繊維からなる多孔質シートのコルゲート加工やア
ルミナ、シリカ、マグネシアを主成分とするゴーディエ
ライトのセラミック粉末の押し出し成形による加工によ
って造られる。そして上述のハニカム構造体からなる担
体にマイクロ波を吸収する発熱体(電波吸収材)20や
触媒21を担持して浄化を促進する。上記の構成とする
ことにより浄化手段10がマイクロ波により均一に加熱
昇温し、浄化を行うと同時に触媒反応により発生した熱
が図1、図2に示す下流の三元触媒体をも早期に昇温さ
せるとともに自動車のバッテリで非常に効率のよい排気
ガス浄化装置を提供できる。
FIG. 7 is a graph showing the temperature rise in the structure of FIG. FIG. 8A shows the appearance of the purifying means 10 used in the exhaust gas purifying apparatus of the present invention. As the carrier of the purifying means 10, a honeycomb structure having a large number of communication holes formed by ceramic partition walls 19 is applied as shown in FIG. 8B. The carrier made of this honeycomb structure is made by corrugating a porous sheet made of ceramic fibers such as alumina, silica, zirconia or by extrusion of ceramic powder of godierite mainly containing alumina, silica, magnesia. . Then, the carrier composed of the above-mentioned honeycomb structure carries a heating element (radio wave absorber) 20 for absorbing microwaves and a catalyst 21 to promote purification. With the above configuration, the purifying means 10 uniformly heats and raises the temperature by the microwaves, and at the same time, the heat generated by the catalytic reaction is applied to the downstream three-way catalytic body shown in FIGS. 1 and 2 at an early stage. It is possible to provide an exhaust gas purifying device that is extremely efficient in raising the temperature and using the battery of the automobile.

【0025】[0025]

【発明の効果】以上説明したように、本発明の排気ガス
浄化装置は、導波管を設けダイポールアンテナによりマ
イクロ波を均一に発熱体に照射し浄化装置のみを加熱昇
温すると同時に排気ガスの温度により重畳されるため非
常に効率良く短時間で触媒が活性化温度になり排ガスを
浄化すると同時に更にこの反応熱が加わり、下流の三元
触媒をも早期に昇温させ活性化温度になり排ガスを浄化
するため、特にエンジンのコールドスタート時に多く発
生する炭化水素の浄化に効果がある。またマイクロ波の
消費電力が少なくて済み、現行のバッテリで排気ガス浄
化装置を装着することができるきわめて有用な発明であ
る。
As described above, in the exhaust gas purifying apparatus of the present invention, the waveguide is provided and the dipole antenna uniformly irradiates the heating element with microwaves to heat and raise the temperature of the purifying apparatus at the same time. Since it is superposed by temperature, the catalyst reaches the activation temperature very efficiently and in a short time to purify the exhaust gas, and at the same time, the heat of this reaction is further applied, and the temperature of the downstream three-way catalyst is also raised early to reach the activation temperature and the exhaust gas is exhausted. It is effective for purifying hydrocarbons that are often generated when the engine cold starts. Further, the power consumption of microwaves is small, and the present invention is a very useful invention in which the exhaust gas purifying device can be mounted on the existing battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に於ける全体の構成図FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

【図2】同要部の拡大断面図FIG. 2 is an enlarged sectional view of the main part.

【図3】同ダイポールアンテナ部の断面図FIG. 3 is a sectional view of the dipole antenna unit.

【図4】同ダイポールアンテナ部のマイクロ波エネルギ
の放射部の断面図
FIG. 4 is a cross-sectional view of a microwave energy radiation part of the dipole antenna part.

【図5】同加熱室の要部の一部断面斜視図FIG. 5 is a partial cross-sectional perspective view of a main part of the heating chamber.

【図6】同加熱室の詳細寸法図[Fig. 6] Detailed dimensional drawing of the heating chamber

【図7】同加熱室の温度特性を示す図FIG. 7 is a diagram showing temperature characteristics of the heating chamber.

【図8】A 同浄化手段の拡大斜視図 B 同浄化手段の隔壁の拡大図FIG. 8 is an enlarged perspective view of the purifying unit B. An enlarged view of a partition wall of the purifying unit.

【図9】従来例の実施例の全体の構成図FIG. 9 is an overall configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

3 排気管 9 加熱室 10 浄化手段(被加熱物) 12 高周波発振器 14 導波管 15 ダイポールアンテナA 16 ダイポールアンテナB 3 Exhaust pipe 9 Heating chamber 10 Purifying means (object to be heated) 12 High frequency oscillator 14 Waveguide 15 Dipole antenna A 16 Dipole antenna B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気ガスを排出する排気管の途
中に設けられた加熱室と前記加熱室に取りつけれた導波
管と前記導波管内に取りつけられたダイポールアンテナ
が、加熱室に向かって凸出し、被加熱物である浄化手段
が前記加熱室の略センタに設置され、該ダイポールアン
テナに対して離して配置すると同時に、前記加熱室に給
電する高周波発振器により発生するマイクロ波エネルギ
による熱と排気ガス温度によって、前記被加熱物である
浄化手段を昇温し、排気ガス中に含まれる有害物質を除
去する構成とした内燃機関用排気ガス浄化装置。
1. A heating chamber provided in the middle of an exhaust pipe for discharging exhaust gas of an internal combustion engine, a waveguide attached to the heating chamber, and a dipole antenna attached to the waveguide are provided in the heating chamber. A purifying means, which is an object to be heated, is installed substantially at the center of the heating chamber and is arranged apart from the dipole antenna, and at the same time, microwave energy generated by a high-frequency oscillator feeding the heating chamber is used. An exhaust gas purifying apparatus for an internal combustion engine configured to raise the temperature of the purifying means, which is the object to be heated, by heat and exhaust gas temperature to remove harmful substances contained in the exhaust gas.
【請求項2】内燃機関の排気ガスを排出する排気管の途
中に設けられた加熱室と直径が75±5mm、体積が80
±20ccの被加熱物である浄化手段が前記加熱室の略
センタに設置され前記加熱室に給電する高周波発振器に
より発生するマイクロ波エネルギによる熱と排気ガス温
度によって、前記被加熱物である浄化手段を昇温し、排
気ガス中に含まれる有害物質を分解する構成とした内燃
機関用排気ガス浄化装置。
2. A heating chamber provided in the middle of an exhaust pipe for exhausting exhaust gas from an internal combustion engine and having a diameter of 75 ± 5 mm and a volume of 80.
The purification means, which is an object to be heated of ± 20 cc, is a purification means which is the object to be heated by the heat and the exhaust gas temperature by the microwave energy generated by the high-frequency oscillator that is installed in the approximate center of the heating chamber and supplies power to the heating chamber. An exhaust gas purifying device for an internal combustion engine, which is configured to raise the temperature of the exhaust gas and decompose harmful substances contained in the exhaust gas.
【請求項3】内燃機関の排気ガスを排出する排気管の途
中に設けられた加熱室と前記加熱室にとりつけられた導
波管と前記導波管内に排気ガスの流れに沿って取りつけ
られたマイクロ波エネルギを取り出す部分とマイクロ波
エネルギを放射する部分で構成されたダイポールアンテ
ナのマイクロ波エネルギを放射する部分は被加熱物に対
してマイクロ波の導波管内の進行に対して前後で非対称
の形状にした請求項1記載の内燃機関用排気ガス浄化装
置。
3. A heating chamber provided in the middle of an exhaust pipe for discharging exhaust gas of an internal combustion engine, a waveguide mounted in the heating chamber, and a waveguide mounted in the waveguide along the flow of the exhaust gas. The microwave energy radiating portion of the dipole antenna composed of a portion for extracting microwave energy and a portion for radiating microwave energy is asymmetric with respect to the traveling of microwaves in the waveguide with respect to the object to be heated. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, which has a shape.
【請求項4】マイクロ波エネルギを放射する部分は、複
数個の放射状アームを持った請求項3記載の内燃機関用
排気ガス浄化装置。
4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein the portion that radiates microwave energy has a plurality of radial arms.
【請求項5】マイクロ波エネルギを放射する部分は、放
射状アームの先端がT字型またはL字型とした請求項3
または請求項4記載の内燃機関用排気ガス浄化装置。
5. The portion for radiating microwave energy has a T-shaped or L-shaped tip of a radial arm.
Alternatively, the exhaust gas purifying apparatus for an internal combustion engine according to claim 4.
【請求項6】内燃機関の排気ガスを排出する排気管の途
中に設けられた加熱室と前記加熱室に給電するダイポー
ルアンテナの電波を放射する部分の先端径は少なくとも
被加熱物の直径と略同じか小さめとした請求項5記載の
内燃機関用排気ガス浄化装置。
6. The diameter of the tip of the heating chamber provided in the middle of the exhaust pipe for discharging the exhaust gas of the internal combustion engine and the portion of the dipole antenna that feeds the heating chamber for radiating radio waves is at least approximately the diameter of the object to be heated. The exhaust gas purifying device for an internal combustion engine according to claim 5, wherein the exhaust gas purifying device is the same or smaller.
【請求項7】内燃機関の排気ガスを排出する排気管の途
中に設けられた直径が85〜100mm、長さがダイポー
ルアンテナの放射部と浄化手段の距離が略5mm、浄化手
段と加熱室の端面距離が略5mm、ダイポールアンテナの
放射部の直径が65±5mmの構成の加熱室と前記加熱室
に取りつけれたダイポールアンテナが、加熱室に向かっ
て凸出し、被加熱物である浄化手段が前記加熱室に設置
され、前記ダイポールアンテナに対して対称形かつ離し
て配置すると同時に、前記加熱室に給電する高周波発振
器により発生するマイクロ波エネルギによる熱と排気ガ
ス温度によって前記被加熱物である浄化手段を昇温し、
排気ガス中に含まれる有害物質を除去する構成とした内
燃機関用排気ガス浄化装置。
7. A diameter provided in the middle of an exhaust pipe for discharging exhaust gas of an internal combustion engine is 85 to 100 mm, a length is a distance between a radiating portion of a dipole antenna and a purifying means is about 5 mm, and the purifying means and a heating chamber are A heating chamber having an end face distance of about 5 mm and a diameter of the radiation portion of the dipole antenna of 65 ± 5 mm, and a dipole antenna attached to the heating chamber are projected toward the heating chamber, and purification means that is an object to be heated is provided. The object to be heated is installed in the heating chamber and is symmetrically arranged with respect to the dipole antenna, and at the same time, at the same time, the object to be heated is purified by the heat of the microwave energy generated by the high frequency oscillator feeding the heating chamber and the exhaust gas temperature. Heating up the means,
An exhaust gas purification device for an internal combustion engine configured to remove harmful substances contained in exhaust gas.
JP4269836A 1992-10-08 1992-10-08 Exhaust emission control device for internal combustion engine Pending JPH06123222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4269836A JPH06123222A (en) 1992-10-08 1992-10-08 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4269836A JPH06123222A (en) 1992-10-08 1992-10-08 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06123222A true JPH06123222A (en) 1994-05-06

Family

ID=17477864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4269836A Pending JPH06123222A (en) 1992-10-08 1992-10-08 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06123222A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010011562A (en) * 1999-07-23 2001-02-15 박세창 Quick Heating Catalytic Converter
KR20030060606A (en) * 2002-01-10 2003-07-16 임연섭 Catalytic apparatus for reducing of exhaust pollution gas
KR100448735B1 (en) * 1997-10-29 2005-01-17 현대자동차주식회사 Device for promoting activation of catalyst early by generating ultra high frequency according to temperature of catalyst and generating heat with vibration of catalyst atom
JP2009097359A (en) * 2007-10-15 2009-05-07 Takumi:Kk Microwave heating device for exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448735B1 (en) * 1997-10-29 2005-01-17 현대자동차주식회사 Device for promoting activation of catalyst early by generating ultra high frequency according to temperature of catalyst and generating heat with vibration of catalyst atom
KR20010011562A (en) * 1999-07-23 2001-02-15 박세창 Quick Heating Catalytic Converter
KR20030060606A (en) * 2002-01-10 2003-07-16 임연섭 Catalytic apparatus for reducing of exhaust pollution gas
JP2009097359A (en) * 2007-10-15 2009-05-07 Takumi:Kk Microwave heating device for exhaust gas

Similar Documents

Publication Publication Date Title
JP5311105B2 (en) Exhaust gas purification equipment
JP2009036199A5 (en)
JP2009243470A (en) Exhaust emission control device
JPH07189661A (en) Promoting method of heating of solid catalyst
JP6142144B2 (en) Heating device
JPH06123222A (en) Exhaust emission control device for internal combustion engine
CN211448802U (en) Automobile exhaust multi-effect purification device based on microwave heat and non-heat effect catalysis
JP2012154247A (en) Exhaust gas treatment device
JP2910373B2 (en) Exhaust gas purification device for internal combustion engine
JPH06248935A (en) High-frequency heating element having catalytic function
JPH10288027A (en) High frequency heating catalyst
JPH0568894A (en) Exhaust gas purifier
JP2822690B2 (en) Exhaust gas purification device for internal combustion engine
JP4296844B2 (en) Electric heating type catalyst equipment
JPH0549939A (en) Apparatus for purifying exhaust gas
JP2850645B2 (en) Exhaust gas purification device for internal combustion engine
JP2004084638A (en) Treatment method and apparatus for engine exhaust gas
JP2019048268A (en) Vehicular exhaust gas purification apparatus
JPH07222912A (en) Exhaust gas purifying device for vehicle
US6185932B1 (en) Quick-heating catalytic converter
JP2830562B2 (en) High frequency heating element
JPH05202736A (en) Exhaust emission control device for internal combustion engine
JPH05231139A (en) Exhaust emission control device for internal combustion engine and exhaust purifying method
JP2000104538A (en) Exhaust emission control system
JP2017141803A (en) Exhaust emission control device of internal combustion engine