JPH06122557A - Production of sintered compact of silicon nitride - Google Patents

Production of sintered compact of silicon nitride

Info

Publication number
JPH06122557A
JPH06122557A JP4276306A JP27630692A JPH06122557A JP H06122557 A JPH06122557 A JP H06122557A JP 4276306 A JP4276306 A JP 4276306A JP 27630692 A JP27630692 A JP 27630692A JP H06122557 A JPH06122557 A JP H06122557A
Authority
JP
Japan
Prior art keywords
sintering
sintered body
silicon nitride
spinel
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4276306A
Other languages
Japanese (ja)
Other versions
JP3139646B2 (en
Inventor
Katsutoshi Noda
克敏 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP04276306A priority Critical patent/JP3139646B2/en
Publication of JPH06122557A publication Critical patent/JPH06122557A/en
Application granted granted Critical
Publication of JP3139646B2 publication Critical patent/JP3139646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered compact of silicon nitride keeping flexural strength a fixed level or higher, having improved fracture toughness value and a high Weibull coefficient. CONSTITUTION:In production of a sintered compact of silicon nitride by blending silicon nitride powder with yttrium oxide and spinel as a sintering auxiliary to give mixed powder, molding the mixed powder and sintering the molded article in a non-oxidizing atmosphere, the production consists of a molding process for molding the mixed powder comprising 4-12wt.% sintering auxiliary based on the whole mixed powder, having the ratio of yttrium oxide/spinel of 3-10, into a molded article of a given shape, a sintering process for sintering the molded article at 1,600-1,700 deg.C in a non-oxidizing atmosphere to 98% or higher theoretical density and a heat-treating process for heating the prepared sintered material at 1,750-1,900 deg.C to grow beta-Si3N4 pillar-shaped crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、破壊靱性に優れた窒化
珪素焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body having excellent fracture toughness.

【0002】[0002]

【従来の技術】窒化珪素を主成分とする焼結体は、耐熱
性、耐熱衝撃性、耐触性、耐摩耗性などに優れた特性を
有するので、高温で使用される部品、たとえば、軸受、
メカニカルシール、高温用ベアリング、ノズル、ガスタ
ービン部品などに好適な材料として注目されている。
2. Description of the Related Art Sintered bodies containing silicon nitride as a main component have excellent properties such as heat resistance, thermal shock resistance, touch resistance, and wear resistance, so that they are used at high temperatures, such as bearings. ,
It is attracting attention as a material suitable for mechanical seals, high temperature bearings, nozzles, gas turbine parts and the like.

【0003】しかし、窒化珪素は、これ単独では焼結が
困難であるため、通常焼結助剤を添加して焼結をおこな
う方法が知られている。たとえば、特開昭59−131
574号公報には、窒化珪素粉末70〜94重量%、酸
化イットリウム粉末2重量%以上およびスピネル粉末2
重量%以上で、かつ焼結助剤の酸化イットリウム粉末と
スピネル粉末の合計が6〜30重量%である混合粉末を
成形後、非酸化性雰囲気下で焼結する方法が開示されて
いる。そしてこの方法によれば、液相焼結となりスピネ
ルは窒化珪素内に固溶体として吸収されるので、粒界が
強化されて高強度の焼結体が得られるとしている。
However, since it is difficult to sinter silicon nitride by itself, it is known to add a sintering aid to sinter. For example, JP-A-59-131
No. 574, silicon nitride powder 70 to 94% by weight, yttrium oxide powder 2% by weight or more and spinel powder 2
Disclosed is a method of molding a mixed powder having a weight ratio of not less than yttrium oxide powder and a spinel powder of 6 to 30% by weight and sintering the mixture powder in a non-oxidizing atmosphere. According to this method, since liquid phase sintering is performed and spinel is absorbed as a solid solution in silicon nitride, grain boundaries are strengthened and a high-strength sintered body is obtained.

【0004】[0004]

【発明が解決しようとする課題】上記した従来の製造方
法では、焼結助剤のスピネルが焼結時に液相焼結開始温
度を下げる作用を有し、窒化珪素の焼結が容易となる利
点がある。しかしこのような利点を得るためには、酸化
イットリウムとスピネルとを重量比でほぼ1対1の割合
で用いる必要があるが、このようにすると焼結に必要な
量以上のスピネルが添加されるため、焼結体の曲げ強度
は向上するが、破壊靱性値については必ずしも十分とは
いえなかった。そこで、曲げ強度が高く、かつ破壊靱性
値が向上した窒化珪素焼結体が望まれていた。
In the above-mentioned conventional manufacturing method, the spinel of the sintering aid has an effect of lowering the liquid phase sintering start temperature at the time of sintering, which facilitates the sintering of silicon nitride. There is. However, in order to obtain such an advantage, yttrium oxide and spinel must be used in a weight ratio of about 1: 1. In this case, more spinel than is necessary for sintering is added. Therefore, the bending strength of the sintered body is improved, but the fracture toughness value is not always sufficient. Therefore, a silicon nitride sintered body having a high bending strength and an improved fracture toughness value has been desired.

【0005】本発明は上記の事情に鑑みてなされたもの
で、曲げ強度を一定レベル以上に保持しその上に破壊靱
性値が向上した窒化珪素焼結体とすることを目的とす
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a silicon nitride sintered body having a bending strength maintained at a certain level or more and further having a fracture toughness value improved.

【0006】[0006]

【課題を解決するための手段】本発明者は、焼結助剤の
酸化イットリウムとスピネルとの配合割合および焼結温
度について鋭意検討した。そして酸化イットリウムとス
ピネルとの比率が一定の範囲でかつ窒化珪素への配合量
を特定して焼結して緻密化した後、焼結温度より高い温
度で熱処理することで、高強度を保持して破壊靱性値の
高くなることを発見して本発明を完成したものである。
The present inventor diligently studied the mixing ratio of yttrium oxide as a sintering aid and spinel and the sintering temperature. Then, in the case where the ratio of yttrium oxide and spinel is in a fixed range, the compounding amount in silicon nitride is specified, sintering is performed to densify, and then heat treatment is performed at a temperature higher than the sintering temperature to maintain high strength. The present invention has been completed by discovering that the fracture toughness value becomes high.

【0007】すなわち、本発明の窒化珪素焼結体の製造
方法は、窒化珪素粉末に焼結助剤として酸化イットリウ
ムとスピネルを添加した混合粉末を所定の形状に成形
し、次いで非酸化性雰囲気で焼結する窒化珪素焼結体の
製造方法であって、該焼結助剤の量を全混合粉末の4〜
12重量%とし、かつ酸化イットリウム/スピネルの比
率を3〜10の範囲とした混合粉末を所定形状の成形体
に成形する成形工程と、該成形体を1600〜1700
℃の温度範囲で非酸化性雰囲気中で理論密度の98%以
上に焼結する焼結工程と、得られた焼結体を1750〜
1900℃の範囲で加熱することによりβ−Si3 4
柱状晶を成長させる熱処理工程とを有することを特徴と
する。
That is, in the method for producing a silicon nitride sintered body of the present invention, a mixed powder obtained by adding yttrium oxide and spinel as a sintering aid to silicon nitride powder is molded into a predetermined shape and then in a non-oxidizing atmosphere. A method for producing a sintered silicon nitride sintered body, wherein the amount of the sintering aid is 4 to 10% of the total mixed powder.
A forming step of forming a mixed powder having a yttrium oxide / spinel ratio of 3 to 10 in an amount of 12% by weight into a molded body having a predetermined shape;
Sintering step of sintering to 98% or more of the theoretical density in a non-oxidizing atmosphere in the temperature range of ℃, and the obtained sintered body from 1750 to
Β-Si 3 N 4 by heating in the range of 1900 ° C
And a heat treatment step of growing columnar crystals.

【0008】本発明で窒化珪素に配合する焼結助剤は、
酸化イットリウムとスピネルとからなる。酸化イットリ
ウムのみでは常圧焼結が困難である。そこでスピネルを
添加することで低い温度で液相が形成され常圧でかつ1
600℃〜1700℃の温度範囲で焼結で緻密化が可能
となる。成形工程では、窒化珪素粉末と上記の焼結助剤
粉末とが混合された混合粉末が、通常の成形方法で所定
の形状に成形される。成形方法としては、静水圧加圧成
形、射出成形、泥漿鋳込み成形などの従来から用いられ
ている成形方法が適用できる。
The sintering aid compounded with silicon nitride in the present invention is
It consists of yttrium oxide and spinel. Atmospheric pressure sintering is difficult only with yttrium oxide. Therefore, by adding spinel, a liquid phase is formed at a low temperature, and at a normal pressure and 1
Densification becomes possible by sintering in the temperature range of 600 ° C to 1700 ° C. In the molding step, the mixed powder in which the silicon nitride powder and the above-mentioned sintering aid powder are mixed is molded into a predetermined shape by a normal molding method. As the molding method, conventionally used molding methods such as hydrostatic pressure molding, injection molding, and slurry casting can be applied.

【0009】焼結工程では、成形体を非酸化性雰囲気中
で加熱焼結して緻密化させ理論密度(以下相対密度とし
て表す)が98%以上の焼結体とする。焼結工程は、常
法にしたがって、非酸化性雰囲気下で常圧でおこなうこ
とができる。加熱温度は1600〜1700℃で相対密
度が98%以上になるまで保持する。保持される焼結温
度が1600℃未満では、相対密度が98%以上に焼結
されない。また焼結温度が1700℃を超えると、焼結
とβ−Si3 4 柱状晶の顕著な成長が同時に進行する
ので、β−Si3 4 柱状晶が均一に成長できず焼結体
の強度にばらつきが発生するので好ましくない。
In the sintering step, the molded body is heated and sintered in a non-oxidizing atmosphere to be densified to obtain a sintered body having a theoretical density (hereinafter referred to as relative density) of 98% or more. The sintering step can be carried out at normal pressure in a non-oxidizing atmosphere according to a conventional method. The heating temperature is 1600 to 1700 ° C. and is maintained until the relative density reaches 98% or more. If the held sintering temperature is less than 1600 ° C., the relative density is not sintered to 98% or more. Further, when the sintering temperature exceeds 1700 ° C., the sintering and the remarkable growth of β-Si 3 N 4 columnar crystals proceed at the same time, so that the β-Si 3 N 4 columnar crystals cannot grow uniformly and the sintered body is It is not preferable because the strength varies.

【0010】焼結工程は、1600〜1700℃の温度
で1〜4時間保持して焼結させるのが常法であるが、昇
温速度を十分遅くして昇温途中の1700℃以下の温度
で相対密度が98%以上に焼結することができれば、焼
結温度で一定時間保持しなくても同じ効果が得られる。
焼結工程での相対密度は、98%以上、好ましくは99
%以上である。
In the sintering step, the usual method is to hold at a temperature of 1600 to 1700 ° C. for 1 to 4 hours to sinter, but the temperature rising rate is sufficiently slowed down to a temperature of 1700 ° C. or less during the temperature rising. If the relative density can be sintered to 98% or more, the same effect can be obtained without holding the sintering temperature for a certain time.
The relative density in the sintering step is 98% or more, preferably 99%
% Or more.

【0011】この相対密度が98%以上となった焼結体
は、次に熱処理される。熱処理は、1750〜1900
℃の温度範囲に加熱してなされる。この間に焼結体中で
は、β−Si3 4 柱状晶が成長する。熱処理工程での
処理温度が1750℃未満ではβ−Si3 4 柱状晶が
十分成長せず、得られる焼結体の破壊靱性値が小さく、
ワイブル係数も小さい。一方、処理温度が1900℃を
超えると、β−Si34 柱状晶が成長しすぎて均一性
が失われ、破壊起点となり強度がばらつきワイブル係数
が小さくなる。
The sintered body having a relative density of 98% or more is then heat treated. Heat treatment is 1750 to 1900
It is made by heating in the temperature range of ℃. During this period, β-Si 3 N 4 columnar crystals grow in the sintered body. If the treatment temperature in the heat treatment step is less than 1750 ° C., β-Si 3 N 4 columnar crystals do not grow sufficiently, and the fracture toughness value of the obtained sintered body is small,
The Weibull coefficient is also small. On the other hand, when the treatment temperature exceeds 1900 ° C., β-Si 3 N 4 columnar crystals grow too much, resulting in loss of homogeneity, which becomes a starting point of fracture, resulting in variations in strength and a reduced Weibull coefficient.

【0012】この熱処理により焼結体中のβ−Si3
4 柱状晶の成長は、焼結体が緻密化されており気孔や空
隙などがないため異常成長が抑制されて均一に成長す
る。その結果、得られる焼結体は、緻密でかつβ−Si
3 4 柱状晶が均一に存在している。このことにより得
られる焼結体はい強度を低下させることなく破壊靱性値
を向上させることができ、かつ強度のばらつきも少な
い。
By this heat treatment, β-Si 3 N in the sintered body
In the growth of four columnar crystals, the sintered body is densified and there are no pores or voids, so abnormal growth is suppressed and it grows uniformly. As a result, the obtained sintered body is dense and has β-Si.
3 N 4 columnar crystals are uniformly present. This makes it possible to improve the fracture toughness value without lowering the strength of the sintered body obtained, and the variation in strength is small.

【0013】この焼結助剤の量は、焼結体を形成する粉
末総量中4〜12重量%の範囲である。より好ましくは
5〜10重量%である。焼結助剤の粉末総量が12重量
%を超えると焼結体は焼結助剤により緻密に焼結される
が、粒界の存在が多くなるため破壊靱性が向上しないの
で好ましくない。また焼結助剤の粉末総量が4重量%未
満であると焼結体の相対密度が低下し緻密化せず強度、
破壊靱性が低下するので好ましくない。
The amount of this sintering aid is in the range of 4 to 12% by weight based on the total amount of powder forming the sintered body. It is more preferably 5 to 10% by weight. When the total amount of the sintering aid powder exceeds 12% by weight, the sintered body is densely sintered by the sintering aid, but since the existence of grain boundaries increases, the fracture toughness is not improved, which is not preferable. On the other hand, if the total amount of the powder of the sintering aid is less than 4% by weight, the relative density of the sintered body will be lowered and the sintered body will not be densified.
It is not preferable because the fracture toughness decreases.

【0014】酸化イットリウムとスピネルの比率は、酸
化イットリウム/スピネル=3〜10の範囲である。よ
り好ましくは4〜9である。酸化イットリウムの比率が
大きいと焼結体中にβ−Si3 4 の柱状晶が形成しや
すい。しかし、この酸化イットリウムの比率が10を超
えるとスピネルの量が少なくなりすぎ、緻密な焼結体が
形成できないので好ましくない。またこの酸化イットリ
ウムのスピネルとの比率が3未満となるとβ−Si3
4 の柱状晶が十分形成されないので靱性が向上せず好ま
しくない。
The ratio of yttrium oxide to spinel is in the range of yttrium oxide / spinel = 3-10. More preferably, it is 4-9. If the ratio of yttrium oxide is large, β-Si 3 N 4 columnar crystals are likely to be formed in the sintered body. However, if the ratio of yttrium oxide exceeds 10, the amount of spinel becomes too small and a dense sintered body cannot be formed, which is not preferable. If the ratio of yttrium oxide to spinel is less than 3, β-Si 3 N
Since the columnar crystals of 4 are not sufficiently formed, the toughness is not improved, which is not preferable.

【0015】この焼結体成形用の混合粉末の粒径は、1
700℃以下での焼結性を高めるために1μm以下より
好ましくは0.1〜0.4μmである。粒径が大きいと
焼結性が低下し緻密な焼結が困難となり破壊靱性を向上
させることができないので好ましくない。
The particle size of the mixed powder for molding the sintered body is 1
In order to enhance the sinterability at 700 ° C. or lower, the thickness is preferably 1 μm or less, more preferably 0.1 to 0.4 μm. If the particle size is large, the sinterability is deteriorated, and it becomes difficult to perform dense sintering, and the fracture toughness cannot be improved, which is not preferable.

【0016】[0016]

【作用】本発明の製造方法では、焼結助剤を酸化イット
リウムとスピネルに特定するとともに、その総量を特定
し、かつ酸化イットリウムとスピネルの比率を所定の範
囲とすること、およびその混合粉末で成形された成形体
を1600〜1700℃の範囲で加熱焼結し、焼結体の
相対密度を98%以上とした後、1750〜1900℃
の温度範囲で熱処理される。その結果、得られる窒化珪
素焼結体は、緻密化でβ−Si3 4 柱状晶が均一に成
長したものとなる。
In the manufacturing method of the present invention, the sintering aids are specified to yttrium oxide and spinel, the total amount thereof is specified, and the ratio of yttrium oxide to spinel is set to a predetermined range, and the mixed powder thereof is used. After heat-sintering the formed compact in the range of 1600 to 1700 ° C. to make the relative density of the sintered compact 98% or more, 1750 to 1900 ° C.
Is heat-treated in the temperature range of. As a result, the obtained silicon nitride sintered body is one in which β-Si 3 N 4 columnar crystals are uniformly grown by densification.

【0017】すなわち、一旦緻密に焼結させた焼結体を
焼結温度以上に加熱して熱処理することにより、破壊源
となり強度のばらつきを招く異常粒成長を抑制しながら
β−Si3 4 柱状晶を均一に成長させることができ
る。その結果破壊靱性が大きくなり、加工傷などの外的
欠陥を排除して高強力の窒化珪素焼結体が製造できる。
これは焼結助剤のスピネルの存在が、上記の温度での窒
化珪素の焼結を可能とし、緻密化するとともに常圧で焼
結を可能としている。そして焼結体の緻密化の度合いを
相対密度が98%以上となった後、焼結温度以上の温度
で熱処理されることでで緻密化した焼結体中にβ−Si
3 4 の柱状晶が均一に成長して均質の焼結体が得られ
る。その結果、焼結体は、β−Si3 4 柱状晶により
補強され常温および高温強度を高い状態に維持して破壊
靱性値を大幅に向上させることができる。さらに破壊靱
性値が向上することで焼結体中の気孔などの欠陥および
加工傷などの外的表面欠陥の影響を受けにくくなり、曲
げ強度のばらつきが少なくなりワイブル係数を著しく大
きくすることができる。
That is, β-Si 3 N 4 is produced while suppressing abnormal grain growth which becomes a fracture source and causes variations in strength by heating a sintered body which has been densely sintered to a temperature higher than the sintering temperature. The columnar crystals can be grown uniformly. As a result, the fracture toughness increases, and external defects such as processing scratches can be eliminated to produce a high-strength silicon nitride sintered body.
This is because the presence of spinel, which is a sintering aid, enables the sintering of silicon nitride at the above temperature, densification and sintering at normal pressure. Then, the degree of densification of the sintered body becomes β-Si in the densified sintered body after the relative density becomes 98% or more and is then heat-treated at a temperature higher than the sintering temperature.
Columnar crystals of 3 N 4 grow uniformly, and a homogeneous sintered body is obtained. As a result, the sintered body can be reinforced by the β-Si 3 N 4 columnar crystals and maintained at high room temperature and high temperature strength, and the fracture toughness value can be greatly improved. Further improvement in fracture toughness makes it less susceptible to defects such as pores in the sintered body and external surface defects such as processing scratches, reducing the variation in bending strength and significantly increasing the Weibull coefficient. .

【0018】[0018]

【実施例】以下、実施例により具体的に説明する。 (実施例1)窒化珪素粉末(平均粒径0.2μm、α化
率ほぼ100%)に焼結助剤の酸化イットリウム粉末
(平均粒径0.3μm、純度99.9%)を8重量%と
スピネル粉末(平均粒径0.3μm、純度99.9%)
を2重量%添加し(Y2O3:MgAl2O4の比率4)、これにエ
タノールを加えて窒化珪素製のボールミル中で混合した
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) 8% by weight of silicon nitride powder (average particle size 0.2 μm, α-conversion rate approximately 100%) with yttrium oxide powder (average particle size 0.3 μm, purity 99.9%) as a sintering aid. And spinel powder (average particle size 0.3 μm, purity 99.9%)
Of 2% by weight (Y 2 O 3 : MgAl 2 O 4 ratio 4), ethanol was added thereto and mixed in a silicon nitride ball mill.

【0019】[0019]

【表1】 。次いでエタノールを除去乾燥後、混合粉末を200k
gf/cm2 の圧力で5×6×40mmの角柱形状に加
圧成形した。その成形体を薄ゴムにつめ真空で封入した
後、CIP法で3000kgf/cm2 の圧力で加圧
後、窒素雰囲気中で表1に示す加熱条件(1650℃で
4時間保持)で焼結し相対密度が99.8%の焼結体を
得、この焼結体を1800℃で4時間熱処理した。
[Table 1] . Next, after removing ethanol and drying, 200 k of mixed powder
It was pressure-molded at a pressure of gf / cm 2 into a prism shape of 5 × 6 × 40 mm. The molded body was packed in a thin rubber, sealed in a vacuum, pressurized by a CIP method at a pressure of 3000 kgf / cm 2 , and then sintered in a nitrogen atmosphere under the heating conditions shown in Table 1 (holding at 1650 ° C. for 4 hours). A sintered body having a relative density of 99.8% was obtained, and this sintered body was heat-treated at 1800 ° C. for 4 hours.

【0020】なお、理論密度に対応する相対密度は、n
−ブタノール置換法で求めた嵩密度を理論密度で除して
得た値であり、焼結終了後の相対密度は、同一条件で焼
結した試料を熱処理することなく炉冷却して得た試料に
より求めた。得られた焼結体について破壊靱性値、室温
4点曲げ強度およびワイブル係数を測定した。結果を表
1に示す。
The relative density corresponding to the theoretical density is n
-A value obtained by dividing the bulk density obtained by the butanol substitution method by the theoretical density, and the relative density after the completion of sintering is the sample obtained by cooling the sample sintered under the same conditions without furnace heat treatment. Sought by. The fracture toughness value, room temperature 4-point bending strength, and Weibull coefficient of the obtained sintered body were measured. The results are shown in Table 1.

【0021】曲げ強度は、JIS R 1601に基づ
く室温4点曲げ強度を50本の試料について測定し、平
均強度とワイブル係数を求めた。破壊靱性値は、JIS
R 1607,SEPB法に基づき測定した。熱処理
前に相対密度が99.8%であるので熱処理時には、さ
らに焼結が進行することなく緻密な焼結体中でβ−Si
3 4 の柱状晶が均一に成長し強度が高くばらつきの無
い焼結体となりワイブル係数も51.3と大きな値を示
す。 (実施例2)表1に示すように実施例1の粉末試料を用
いて成形し、昇温速度を2℃/分と遅くして焼結し、焼
結保持時間を無くして相対密度が99.9%の焼結体と
した以外は、実施例1と同じ条件で熱処理をおこなっ
た。
As for the bending strength, room temperature 4-point bending strength based on JIS R 1601 was measured for 50 samples, and the average strength and Weibull coefficient were obtained. Fracture toughness value is JIS
R 1607, measured based on SEPB method. Since the relative density is 99.8% before the heat treatment, the β-Si in the dense sintered body does not progress further during the heat treatment.
A columnar crystal of 3 N 4 grows uniformly and becomes a sintered body having high strength and no variation, and the Weibull coefficient shows a large value of 51.3. (Example 2) As shown in Table 1, the powder sample of Example 1 was used for sintering, the temperature rising rate was slowed down to 2 ° C / min for sintering, and the sintering holding time was eliminated to obtain a relative density of 99. Heat treatment was performed under the same conditions as in Example 1 except that the sintered body was 0.99%.

【0022】得られた焼結体は表1に示すように実施例
1で得た焼結体と同程度の強度およびワイブル係数の値
を示した。 (比較例1)表1に示すように実施例1の試料を、実施
例1と同じ昇温速度で焼結して、実施例2のように17
00度での焼結保持時間を与えないと、1700℃では
焼結が完了しておらず、相対密度は93.0%であっ
た。これを1800℃で4時間熱処理すると、さらに焼
結が進行するとともに、β−Si3 4 柱状晶の顕著な
成長も進行する。したがって、焼結体中には、β−Si
3 4 柱状晶が不均一に存在して強度および破壊靱性値
にばらつきば認められワイブル係数が24.7と低くな
る。
As shown in Table 1, the obtained sintered body exhibited the same strength and Weibull coefficient as those of the sintered body obtained in Example 1. (Comparative Example 1) As shown in Table 1, the sample of Example 1 was sintered at the same temperature rising rate as in Example 1 to give 17 as in Example 2.
If the sintering holding time at 00 degrees was not given, the sintering was not completed at 1700 ° C, and the relative density was 93.0%. When this is heat-treated at 1800 ° C. for 4 hours, the sintering further progresses and the β-Si 3 N 4 columnar crystals also noticeably grow. Therefore, in the sintered body, β-Si
If the 3 N 4 columnar crystals are non-uniformly present and the strength and the fracture toughness values vary, the Weibull coefficient becomes as low as 24.7.

【0023】さらに実施例1と比較例1の焼結体の試料
を空気中で1000℃における曲げ強度を調べた。実施
例の曲げ強度の平均値は1060MPaでワイブル係数
は48.7であった。一方比較例では曲げ強度が980
MPaでワイブル係数は、16.2と小さかった。 (実施例3、4、5)実施例1での焼結助剤の添加量
を、酸化イットリウム粉末9重量%とスピネル粉末1重
量%(Y2O3:MgAl2O4の比率9)に変えて表2に示す焼結
条件および熱処理条件で焼結体の試料を作製し、室温4
点曲げ強度の平均強度とワイブル係数および破壊靱性値
を測定した。結果を表2に示す。
Further, the samples of the sintered bodies of Example 1 and Comparative Example 1 were examined for bending strength at 1000 ° C. in air. The average value of the bending strength of the examples was 1060 MPa and the Weibull coefficient was 48.7. On the other hand, in the comparative example, the bending strength is 980.
The Weibull coefficient at MPa was as small as 16.2. (Examples 3, 4, 5) The addition amount of the sintering aid in Example 1 was changed to 9% by weight of yttrium oxide powder and 1% by weight of spinel powder (Y 2 O 3 : MgAl 2 O 4 ratio 9). Instead, a sample of a sintered body was prepared under the sintering conditions and heat treatment conditions shown in Table 2, and the room temperature was 4
The average strength of the point bending strength, the Weibull coefficient, and the fracture toughness value were measured. The results are shown in Table 2.

【0024】実施例3は焼結条件が昇温速度を2℃/分
とし1700℃で4時間保持して相対密度98.6%の
焼結体とし、熱処理は1800℃で4時間おこなった。
実施例4は昇温速度を2℃/分とし1700℃で8時間
保持して相対密度99.2%の焼結体とし、熱処理は1
800℃で4時間おこなった。実施例5は昇温速度を2
℃/分とし1700℃で4時間保持して相対密度98.
6%の焼結体とし、熱処理は1900℃で4時間おこな
った。
In Example 3, the sintering conditions were a temperature rising rate of 2 ° C./min, and the temperature was maintained at 1700 ° C. for 4 hours to obtain a sintered body having a relative density of 98.6%. The heat treatment was performed at 1800 ° C. for 4 hours.
In Example 4, the temperature rising rate was 2 ° C./min and the temperature was maintained at 1700 ° C. for 8 hours to obtain a sintered body having a relative density of 99.2%.
It was carried out at 800 ° C. for 4 hours. In Example 5, the temperature rising rate was 2
C./min. And held at 1700 ° C. for 4 hours to give a relative density of 98.
A 6% sintered body was used, and heat treatment was performed at 1900 ° C. for 4 hours.

【0025】表2に示すように破壊靱性値は9以上で曲
げ強度も1100MPa以上あり、ワイブル係数も40
以上であり均質な焼結体であった。 (比較例2、3)実施例3と同じ焼結助剤の添加量で表
2に示す焼結条件および熱処理をおこなた。得られた試
料を実施例1と同様に強度を測定した。結果を表2に示
す。
As shown in Table 2, the fracture toughness value is 9 or more, the bending strength is 1100 MPa or more, and the Weibull coefficient is 40.
The above was a homogeneous sintered body. (Comparative Examples 2 and 3) The sintering conditions and heat treatments shown in Table 2 were performed with the same addition amount of the sintering aid as in Example 3. The strength of the obtained sample was measured in the same manner as in Example 1. The results are shown in Table 2.

【0026】比較例2は、昇温速度2℃/分で1700
℃での保持時間なしとした。この際相対密度は94%で
充分焼結されていなかった。これを1800℃で4時間
の熱処理をおこなった。この場合は、熱処理時に焼結と
β−Si3 4 柱状晶の顕著な成長が同時に進行するの
で、β−Si3 4 柱状晶が均一に成長しないで強度が
ばらつきワイブル係数が13.2と低い。
Comparative Example 2 was 1700 at a temperature rising rate of 2 ° C./min.
There was no holding time at ° C. At this time, the relative density was 94%, which was not sufficiently sintered. This was heat-treated at 1800 ° C. for 4 hours. In this case, since the sintering and the remarkable growth of the β-Si 3 N 4 columnar crystals simultaneously proceed during the heat treatment, the β-Si 3 N 4 columnar crystals do not grow uniformly and the strength varies and the Weibull coefficient is 13.2. And low.

【0027】比較例3は昇温速度2℃/分で1700℃
で4時間保持して相対密度が98.6%の焼結体を得
た。この焼結体を1950℃で4時間の熱処理をおこな
った。この場合は、熱処理温度が高いので柱状晶が成長
しすぎて均一性が失われて破壊起点となり、強度がばら
つきワイブル係数は23.1と低い。
Comparative Example 3 has a temperature rising rate of 2 ° C./min and a temperature of 1700 ° C.
After holding for 4 hours, a sintered body having a relative density of 98.6% was obtained. This sintered body was heat-treated at 1950 ° C. for 4 hours. In this case, since the heat treatment temperature is high, the columnar crystals grow too much and the uniformity is lost to serve as a fracture starting point, and the strength varies and the Weibull coefficient is as low as 23.1.

【0028】[0028]

【表2】 (実施例6)実施例1の焼結助剤の添加量を酸化イット
リウム粉末4.5重量%とスピネル粉末0.5重量%
(Y2O3:MgAl2O4の比率9)に変えて表3に示すように昇
温速度を2℃/分、1700℃で8時間保持すると相対
密度は、98.8%であった。これを1800℃で4時
間熱処理して焼結体の試料を作製し、室温4点曲げ強度
の平均強度とワイブル係数および破壊靱性値を測定し
た。結果を表2に示す。破壊靱性値が9.2MPa√m
曲げ強度1190MPaでワイブル係数は42.2であ
り均質で強度の高い焼結体が得られた。 (比較例4)実施例6の試料を用い焼結条件を昇温速度
2℃/分とし、1700℃の保持時間なしに変えた以外
は実施例6と同様の処理を行い、強度などを測定した。
結果を表3に示す。強度は実施例6とほぼ同じでである
が、ワイブル係数が12.1と小さくばらつきが大き
い。
[Table 2] (Example 6) The amount of the sintering aid added in Example 1 was adjusted to 4.5 wt% of yttrium oxide powder and 0.5 wt% of spinel powder.
When the temperature rising rate was changed to 2 ° C./minute and held at 1700 ° C. for 8 hours instead of (Y 2 O 3 : MgAl 2 O 4 ratio 9), the relative density was 98.8%. . This was heat-treated at 1800 ° C. for 4 hours to prepare a sample of a sintered body, and the average strength of room temperature 4-point bending strength, the Weibull coefficient, and the fracture toughness value were measured. The results are shown in Table 2. Fracture toughness value is 9.2 MPa√m
With a bending strength of 1190 MPa and a Weibull coefficient of 42.2, a homogeneous and high-strength sintered body was obtained. (Comparative Example 4) Using the sample of Example 6, the same conditions as in Example 6 were measured except that the sintering conditions were changed to a temperature rising rate of 2 ° C / min and no holding time of 1700 ° C was used, and the strength and the like were measured. did.
The results are shown in Table 3. The strength is almost the same as in Example 6, but the Weibull coefficient is small at 12.1 and the variation is large.

【0029】[0029]

【表3】 (実施例7)実施例1の焼結助剤の添加量を酸化イット
リウム粉末4重量%とスピネル粉末1重量%(Y2O3:MgA
l2O4の比率4)に変えて表4に示す焼結条件および熱処
理条件で焼結体の試料を作製し、室温4点曲げ強度の平
均強度とワイブル係数および破壊靱性値を測定した。結
果を表4に示す。焼結終了時の相対密度が98.8%と
98%以上あるので、熱処理して得られる試料はβ−S
3 4 柱状晶が均一に成長しており高い強度を示しワ
イブル係数も40を超える均質な焼結体が得られる。 (比較例5)実施例7の試料を用い焼結条件を変えた以
外は実施例7と同様の処理を行い、強度などを測定し
た。結果を表4に示す。
[Table 3] (Example 7) 4 wt% yttrium oxide powder added amount of sintering aid and spinel powder 1 wt% of Example 1 (Y 2 O 3: MgA
A sample of a sintered body was prepared under the sintering conditions and heat treatment conditions shown in Table 4 instead of the ratio of l 2 O 4 4), and the average strength of room temperature 4-point bending strength, the Weibull coefficient, and the fracture toughness value were measured. The results are shown in Table 4. Since the relative density at the end of sintering is 98.8% and 98% or more, the sample obtained by heat treatment is β-S.
i 3 N 4 columnar crystals are uniformly grown, exhibiting high strength, and a homogeneous sintered body having a Weibull coefficient of more than 40 can be obtained. (Comparative Example 5) Using the sample of Example 7, the same treatment as in Example 7 was carried out except that the sintering conditions were changed, and the strength and the like were measured. The results are shown in Table 4.

【0030】この場合は焼結助剤の量が少なく、所定の
焼結温度で保持しないと充分焼結が不十分で、焼結終了
後の相対密度が92.9%と98%以下となり、熱処理
段階で焼結の進行と柱状晶の成長が同時に進み柱状晶の
分布が不均一となる。その結果、曲げ強度や破壊靱性値
の平均値は所定の値を示すが、ばらつきが大きくワイブ
ル係数が小さい。 (比較例6)実施例1の焼結助剤の添加量を酸化イット
リウム粉末6重量%とスピネル粉末4重量%(Y2O3:MgA
l2O4の比率2.5)に変えて表4に示す焼結条件および
熱処理条件で焼結体の試料を作製し、室温4点曲げ強度
の平均強度とワイブル係数および破壊靱性値を測定し
た。結果を表4に示す。
In this case, the amount of the sintering aid is small, and the sintering is not sufficiently performed unless it is held at a predetermined sintering temperature, and the relative density after the completion of sintering becomes 92.9% and 98% or less. In the heat treatment stage, the progress of sintering and the growth of columnar crystals proceed at the same time, and the distribution of columnar crystals becomes non-uniform. As a result, the average value of the bending strength and the fracture toughness value shows a predetermined value, but the variation is large and the Weibull coefficient is small. (Comparative Example 6) The amount of the sintering aid added in Example 1 was 6% by weight of yttrium oxide powder and 4% by weight of spinel powder (Y 2 O 3 : MgA).
A sample of the sintered body was prepared under the sintering conditions and heat treatment conditions shown in Table 4 in place of the ratio of l 2 O 4 of 2.5), and the average strength of room temperature 4-point bending strength, the Weibull coefficient and the fracture toughness value were measured. did. The results are shown in Table 4.

【0031】Y2O3:MgAl2O4の比率2.5が3未満である
と、焼結条件および熱処理条件が本発明の範囲内であっ
ても得られる試料の破壊靱性値が8MPa√m以下の
7.6であり、加工傷・ダメージから破壊する低強度と
なりワイブル係数も小さい。
If the ratio of Y 2 O 3 : MgAl 2 O 4 is less than 3, the fracture toughness value of the obtained sample is 8 MPa√, even if the sintering conditions and heat treatment conditions are within the range of the present invention. It is 7.6, which is less than or equal to m, and has a low strength to be destroyed by processing scratches / damages and a small Weibull coefficient.

【0032】[0032]

【表4 】 [Table 4]

【0033】[0033]

【発明の効果】本発明の窒化珪素焼結体の製造方法によ
れは、1700℃までに理論密度の98%以上になるよ
うに緻密に焼結させると焼結体はポアが殆どないため、
その後焼結体を焼結温度以上で熱処理してβ−Si3
4 柱状晶を成長させる際に、ポアに向かって異常成長す
ることがなく、均一に成長させることができ、均質な焼
結体がえられる。その結果、高い曲げ強度を保持して、
破壊靱性値をもつ焼結体が得られる。さらに得られる焼
結体は破壊靱性が大きいので強度のばらつきが少なくワ
イブル係数を高くすることができる。
According to the method for manufacturing a silicon nitride sintered body of the present invention, since the sintered body has almost no pores when it is densely sintered by 1700 ° C. to 98% or more of the theoretical density,
After that, the sintered body is heat-treated at a temperature equal to or higher than the sintering temperature and β-Si 3 N
4 When growing columnar crystals, they can be grown uniformly without abnormal growth toward the pores, and a homogeneous sintered body can be obtained. As a result, while maintaining high bending strength,
A sintered body having a fracture toughness value is obtained. Further, since the obtained sintered body has high fracture toughness, there is little variation in strength and the Weibull coefficient can be increased.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素粉末に焼結助剤として酸化イッ
トリウムとスピネルを添加した混合粉末を所定の形状に
成形し、次いで非酸化性雰囲気で焼結する窒化珪素焼結
体の製造方法であって、 該焼結助剤の量を全混合粉末の4〜12重量%とし、か
つ酸化イットリウム/スピネルの比率を3〜10の範囲
とした混合粉末を所定形状の成形体に成形する成形工程
と、該成形体を1600〜1700℃の温度範囲で非酸
化性雰囲気中で理論密度の98%以上に焼結する焼結工
程と、得られた焼結体を1750〜1900℃の範囲で
加熱することによりβ−Si3 4 柱状晶を成長させる
熱処理工程とを有することを特徴とする窒化珪素焼結体
の製造方法。
1. A method of manufacturing a silicon nitride sintered body, which comprises molding a mixed powder of silicon nitride powder to which yttrium oxide and spinel are added as a sintering aid into a predetermined shape and then sintering the powder in a non-oxidizing atmosphere. And a molding step of molding the mixed powder in which the amount of the sintering aid is 4 to 12% by weight of the total mixed powder and the yttrium oxide / spinel ratio is in the range of 3 to 10 into a molded body having a predetermined shape. A sintering step of sintering the molded body to a temperature of 1600 to 1700 ° C in a non-oxidizing atmosphere to 98% or more of the theoretical density, and heating the obtained sintered body in the range of 1750 to 1900 ° C. And a heat treatment step of growing β-Si 3 N 4 columnar crystals.
JP04276306A 1992-10-14 1992-10-14 Method for producing silicon nitride sintered body Expired - Fee Related JP3139646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04276306A JP3139646B2 (en) 1992-10-14 1992-10-14 Method for producing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04276306A JP3139646B2 (en) 1992-10-14 1992-10-14 Method for producing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH06122557A true JPH06122557A (en) 1994-05-06
JP3139646B2 JP3139646B2 (en) 2001-03-05

Family

ID=17567619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04276306A Expired - Fee Related JP3139646B2 (en) 1992-10-14 1992-10-14 Method for producing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP3139646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851367A (en) * 2021-01-26 2021-05-28 泰晟新材料科技有限公司 Extrusion molding thin-wall silicon nitride pipe fitting and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851367A (en) * 2021-01-26 2021-05-28 泰晟新材料科技有限公司 Extrusion molding thin-wall silicon nitride pipe fitting and preparation method thereof

Also Published As

Publication number Publication date
JP3139646B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
JPS63156070A (en) Silicon nitride base sintered body and manufacture
JP3139646B2 (en) Method for producing silicon nitride sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP2976534B2 (en) Silicon nitride sintered body and method for producing the same
CN112441838B (en) Silicon nitride ceramic with directionally grown surface crystal grains and preparation method thereof
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP2534214B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPH01145380A (en) Production of silicon nitride sintered form
JPH06116037A (en) Production of silicon nitride sintered compact
JP3124866B2 (en) Method for producing silicon nitride based sintered body
KR970005889B1 (en) Process for the preparation of sintered body of silicon nitride
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JPH02307871A (en) Production of ceramic sintered compact
JP2811493B2 (en) Silicon nitride sintered body
JPH11130543A (en) Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact
JPH03164472A (en) Production of silicon nitride sintered body
CN117945763A (en) High-performance silicon nitride ceramic and preparation method and application thereof
CN117209289A (en) Silicon nitride ceramic, composition for preparing silicon nitride ceramic, preparation method and application of silicon nitride ceramic
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH06100376A (en) Sintered beta-sialon and its production
JPH07187797A (en) Production of silicon nitride-based sintered compact
JPH0477363A (en) Manufacture of high strength silicon nitride sintered body in high temperature
JPH0248468A (en) Calcined siliceous nitride compact and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees