JPH06122550A - Production of sintered compact of mullite - Google Patents

Production of sintered compact of mullite

Info

Publication number
JPH06122550A
JPH06122550A JP4273190A JP27319092A JPH06122550A JP H06122550 A JPH06122550 A JP H06122550A JP 4273190 A JP4273190 A JP 4273190A JP 27319092 A JP27319092 A JP 27319092A JP H06122550 A JPH06122550 A JP H06122550A
Authority
JP
Japan
Prior art keywords
powder
alumina
mullite
average particle
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4273190A
Other languages
Japanese (ja)
Inventor
Toichi Takagi
東一 高城
Kazuhiro Aizawa
一裕 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4273190A priority Critical patent/JPH06122550A/en
Publication of JPH06122550A publication Critical patent/JPH06122550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To efficiently produce a sintered compact of mullite having high density, high strength and high toughness. CONSTITUTION:Mixed powder of alumina powder having 0. l-2mum average particle diameter and amorphous silica powder having 0.5 or smaller as long average particle diameter as the alumina powder is molded in a mold in such a way that the amorphous silica powder is mutually formed into a continuous phase and burnt to produce a sintered compact of mullite. Further, 10wt.% or less calculated as oxide of at least one of Pb, Ti, Fe, Co, Cu, Zn, Mn and V based on total amount calculated as oxide of the alumina and silica components is added to the mixed powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度・高靱性を有す
るムライト質焼結体の製造方法に関するものである。ム
ライト質焼結体は、高温での機械的強度が高く、構造材
料として有用であり、例えば各種治具、チューブ、敷き
板などとして応用されている。また、熱膨張係数や誘電
率が小さいことからICパッケージ等の絶縁基板材料と
しても利用が期待されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a mullite sintered body having high strength and high toughness. The mullite sintered body has high mechanical strength at high temperature and is useful as a structural material, and is applied as, for example, various jigs, tubes, laying boards, and the like. Further, since it has a small coefficient of thermal expansion and a low dielectric constant, it is expected to be used as an insulating substrate material for IC packages and the like.

【0002】[0002]

【従来技術】ムライト質焼結体は、破壊靱性値が小さい
ことが実用上大きな障害となっていた。この問題点を解
決するために、例えば、ムライト粉末に3a 族の酸化物
で構成される一種または複数種の複合稀土類酸化物を添
加して緻密な焼結体を得る方法が提案されている(特開
昭63-60153)。
2. Description of the Related Art A mullite-based sintered body has a large obstacle in practical use due to its small fracture toughness value. In order to solve this problem, for example, a method has been proposed in which one or more complex rare earth oxides composed of Group 3a oxides are added to mullite powder to obtain a dense sintered body. (JP-A-63-60153).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記方
法では緻密な焼結体が得られるものの、その焼結体の破
壊靱性値や機械的強度は不十分であった。本発明は、上
記問題点を解決するためになされたものであり、特定の
平均粒径のアルミナ粒子とこのアルミナ粒子の0.5倍
以下の平均粒径を有する非晶質シリカ粉末を非晶質シリ
カ粉末同士が連続相を形成するように成形した成形体を
焼成することにより高密度化を達成し、さらにムライト
質焼結体中に柱状組織を持った微構造を形成することに
より、緻密で破壊靱性値及び機械的強度の優れたムライ
ト質焼結体の製造方法を提供するものである。
However, although a dense sintered body can be obtained by the above method, the fracture toughness value and mechanical strength of the sintered body are insufficient. The present invention has been made in order to solve the above-mentioned problems, and amorphous particles of alumina having a specific average particle diameter and amorphous silica powder having an average particle diameter of 0.5 times or less of the alumina particles are amorphous. The high density is achieved by firing the compact formed by forming the continuous silica powder particles into a continuous phase, and by forming a microstructure with a columnar structure in the mullite sintered compact, The present invention provides a method for producing a mullite sintered body having excellent fracture toughness and mechanical strength.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明の第一
は平均粒径0.1〜2μm のアルミナ粉末及びアルミナ
粉末の粒径の0.5倍以下の平均粒径をもつ非晶質シリ
カ粉末の混合粉末を成形し、焼成することを特徴とする
ムライト質焼結体の製造方法であり、その第二は、前記
製造方法においてアルミナ及びシリカ成分の酸化物換算
の合計重量に対して、Pb、Ti、Fe、Co、Cu、Zn、Mn、V
成分のうち少なくとも1種を酸化物換算で10重量%以
下添加して成形、焼成することを特徴とするものであ
る。
The first aspect of the present invention is to provide an alumina powder having an average particle diameter of 0.1 to 2 μm and an amorphous silica having an average particle diameter of 0.5 times or less the particle diameter of the alumina powder. A method for producing a mullite sintered body, which comprises molding a mixed powder of powders and firing, the second is the total weight in terms of oxide of alumina and silica components in the production method, Pb, Ti, Fe, Co, Cu, Zn, Mn, V
It is characterized in that at least one of the components is added in an amount of 10% by weight or less in terms of oxide and molded and fired.

【0005】以下、本発明についてさらに詳細に説明す
る。本発明でいうアルミナは、必ずしも酸化物(Al
2O3 )である必要はなく実質的に熱処理によって酸化物
となるもの、例えば、水酸化物、オキシ水酸化物及びア
ルミニウムを含む各種塩類などでもよく、酸化物の状態
で、その平均粒径が0.1〜2μm であることが重要で
あり、その化合物の形態に限定されるものではない。ア
ルミナの平均粒径は0.1〜2μm であり、さらに好ま
しくは0.1〜1μm である。これは、0.1μm より
小さいと成形性が低下し、焼結体の緻密化が困難であ
り、2μm より大きいとシリカ成分との反応性が低下
し、最終的にムライト結晶相が形成されにくく、粒界に
ガラス相等の副生が起こり、機械的特性や高温特性が低
下し好ましくないからである。
The present invention will be described in more detail below. Alumina in the present invention does not necessarily mean oxide (Al
2 O 3 ), which may be substantially an oxide by heat treatment, such as hydroxides, oxyhydroxides, and various salts containing aluminum, and the average particle size in the oxide state. Is 0.1 to 2 μm, and is not limited to the form of the compound. The average particle size of alumina is 0.1 to 2 μm, more preferably 0.1 to 1 μm. If it is smaller than 0.1 μm, the formability is lowered, and it is difficult to densify the sintered body, and if it is larger than 2 μm, the reactivity with the silica component is lowered, and finally the mullite crystal phase is hard to be formed. This is because a by-product such as a glass phase occurs at the grain boundaries, and mechanical properties and high temperature properties are deteriorated, which is not preferable.

【0006】また、非晶質シリカはシリカガラスが好ま
しく、この他コロイダルシリカ等のシリカゾルやアルコ
キシドなどから生成する非晶質シリカなどでもよく、そ
の化合物の形態に限定されるものではない。本発明に使
用する非晶質シリカ粉末の平均粒径はアルミナ粉末の平
均粒径の0.5倍以下がであり、さらに0.4倍以下が
好ましい。これは、0.5倍より大きくなると成形体中
で非晶質シリカ粉末同士の連続相が形成しにくく、緻密
な焼結体が得られにくく好ましくないからである。ま
た、0.05倍より小さい場合には成形密度が高くなり
にくいので緻密な焼結体が得られにくくなる。
Further, the amorphous silica is preferably silica glass, and other than this, amorphous silica such as silica sol such as colloidal silica or alkoxide may be used, and the form of the compound is not limited. The average particle size of the amorphous silica powder used in the present invention is 0.5 times or less the average particle size of the alumina powder, and more preferably 0.4 times or less. This is because if it exceeds 0.5 times, a continuous phase of the amorphous silica powders is hard to form in the molded body, and a dense sintered body is hardly obtained, which is not preferable. On the other hand, if it is less than 0.05 times, it is difficult to obtain a dense sintered body because the compacting density is unlikely to increase.

【0007】第二の発明において、Pb、Ti、Fe、Co、C
u、Zn、Mn、V 成分のうち少なくとも1種を添加するた
めの原料としては、これらの成分を含むものであれば特
に限定されないが、金属単体、合金、単独化合物、2種
以上の成分からなる固溶体、複合化合物などが挙げられ
る。具体的には、これらの成分を含有する酸化物、水酸
化物、オキシ水酸化物、炭酸塩、塩化物、硝酸塩、硫酸
塩及びシュウ酸塩、ギ酸塩、酢酸塩等の有機酸塩やアル
コキシドなどが挙げられる。これらの原料が粉末形態の
ものである場合には、粉末粒径が小さく他の原料との均
一混合が容易なものが好ましい。添加量は、アルミナ及
びシリカ成分の酸化物換算の合計重量に対して、Pb、T
i、Fe、Co、Cu、Zn、Mn、V 成分のうち少なくとも1種
を酸化物換算で10重量%以下添加することが好まし
い。10重量%を越えて添加してもその添加効果は向上
しないからである。
In the second invention, Pb, Ti, Fe, Co, C
The raw material for adding at least one of the u, Zn, Mn, and V components is not particularly limited as long as it contains these components, but may be a metal simple substance, an alloy, a single compound, or two or more components. Solid solutions, complex compounds and the like. Specifically, organic acid salts and alkoxides such as oxides, hydroxides, oxyhydroxides, carbonates, chlorides, nitrates, sulfates and oxalates, formates and acetates containing these components. And so on. When these raw materials are in the form of powder, those having a small powder particle size and being easy to uniformly mix with other raw materials are preferable. The addition amount is Pb, T with respect to the total weight of oxides of alumina and silica components.
It is preferable to add at least one of i, Fe, Co, Cu, Zn, Mn and V components in an amount of 10% by weight or less in terms of oxide. This is because the effect of addition is not improved even if it is added in excess of 10% by weight.

【0008】本発明でいうムライトとは、ムライト鉱物
相(結晶相)を含有するものであり、その主相の組成
は、3Al2O3・ 2SiO2 で表されるAl2O3 /SiO2重量比71.8
/28.2のものだけでなく、該重量比65/35 〜80/20 のも
のをいう。また、アルミナ過剰またはシリカ過剰の組成
も含めた広い範囲のアルミナ・シリカ系の組成も含むも
のである。また、アルミナ及びシリカ及び上記添加成分
以外に機械的特性などを向上するための強化材を添加す
ることも可能である。強化材の例としては、粉末形態、
ウイスカー、短繊維、長繊維などがある。組成として
は、B4C 、SiC などの炭化物、Si3N4 、AlN 、BNなどの
窒化物、ZrO2などの酸化物、炭素、各種複合酸化物及び
固溶体などが挙げられる。
[0008] The mullite in the present invention are those containing mullite mineral phase (crystalline phase), the composition of the main phase, Al 2 O 3 / SiO 2 represented by 3Al 2 O 3 · 2SiO 2 Weight ratio 71.8
Not only those having a weight ratio of /28.2 but also those having a weight ratio of 65/35 to 80/20. It also includes a wide range of alumina / silica-based compositions, including compositions with excess alumina or excess silica. In addition to alumina and silica and the above-mentioned additive components, it is possible to add a reinforcing material for improving mechanical properties and the like. Examples of reinforcing materials are powder form,
There are whiskers, short fibers and long fibers. Examples of the composition include carbides such as B 4 C and SiC, nitrides such as Si 3 N 4 , AlN and BN, oxides such as ZrO 2 , carbon, various complex oxides and solid solutions.

【0009】これらの原料から成形体を製造する方法と
しては、先ず上述した特定の粒径をもつ混合粉末を得
る。Pb、Ti、Fe、Co、Cu、Zn、Mn、V 成分のうち少なく
とも1種を添加する場合は、前期混合粉末に添加しても
よい。また、最初から上記の原料粉末と一緒に混合し
て、混合粉末としてもよい。この混合粉末を用いて得ら
れる成形体中で非晶質シリカ粉末同士が連続相を形成す
るように混合することが望ましい。これは非晶質シリカ
粉末同士が連続相を形成することにより、焼成工程での
緻密化が促進されるからである。ここでいう連続相とは
非晶質シリカ粉末がアルミナ粉末の周囲を囲むように存
在し、非晶質シリカ粉末同士が三次元的に連なった状態
を形成していることである。成形体全域でこのような非
晶質シリカ粉末の連続相が存在することが緻密化に有効
であるが、必ずしも全域で連続相になることが必須であ
ることを意味するものではない。また、アルミナ粉末の
存在状態も単独で分散している成形体中に存在している
ばかりでなく、いくつかの粒子が凝集した凝集粉末の状
態で存在する場合もある。
As a method for producing a compact from these raw materials, first, a mixed powder having the above-mentioned specific particle size is obtained. When at least one of Pb, Ti, Fe, Co, Cu, Zn, Mn and V components is added, it may be added to the first-stage mixed powder. Further, it may be mixed with the above-mentioned raw material powder from the beginning to obtain a mixed powder. It is desirable to mix the amorphous silica powders so as to form a continuous phase in a molded body obtained by using this mixed powder. This is because the amorphous silica powders form a continuous phase, which promotes densification in the firing step. The continuous phase here means that the amorphous silica powder exists so as to surround the alumina powder and forms a state in which the amorphous silica powders are three-dimensionally continuous. The presence of such a continuous phase of the amorphous silica powder throughout the compact is effective for densification, but it does not necessarily mean that it is essential to become the continuous phase throughout the compact. In addition, the presence state of the alumina powder is not only present in the molded body dispersed alone, but may be present in the state of agglomerated powder in which some particles are agglomerated.

【0010】混合方法としては一般的に行われるように
ミキサー、ボールミル、振動ミル、ジェットミル、攪拌
型ミル、遊星ミル、ダイノーミル等を用い乾式あるいは
湿式で行なう方法がある。得られた混合粉末が酸化物以
外の物質を含んでいる場合には仮焼を行なうことが好ま
しい。仮焼の条件としては酸化物以外の物質が酸化物と
なるのに充分な温度で且つ焼成温度よりも低い温度を選
択する。具体的には600 〜1100℃程度が好適である。ま
た、仮焼を行なう場合には粉末の粒径を調整するために
仮焼後の解砕を行なってもよい。
As a mixing method, there is a method such as a dry method or a wet method using a mixer, a ball mill, a vibration mill, a jet mill, a stirring mill, a planetary mill, a dyno mill, etc., which is generally used. When the obtained mixed powder contains substances other than oxides, it is preferable to perform calcination. As a condition for calcination, a temperature is selected that is sufficient for substances other than oxides to become oxides and that is lower than the firing temperature. Specifically, about 600 to 1100 ° C is suitable. When calcination is performed, crushing after calcination may be performed in order to adjust the particle size of the powder.

【0011】次に通常の成形方法により成形して成形体
とする。成形方法としては、加圧成形、押し出し成形、
射出成形、鋳込み成形、シート成形などが挙げられる。
また、成形の際に成形を助けるために有機バインダーと
して例えばポリビニルアルコール、エチルセルローズ、
カルボキシエチルセルローズなどや可塑剤として、例え
ばフタル酸ジオクリル、ポリエチレングリコールなど、
分散剤として、例えばグリセリン、オレイン酸エステル
など、溶剤として例えばエチルアルコール、トリクレ
ン、アセトン及び水などを用いることができる。
Next, a molded body is formed by a usual molding method. As the molding method, pressure molding, extrusion molding,
Examples include injection molding, cast molding, and sheet molding.
Moreover, for example, polyvinyl alcohol, ethyl cellulose, as an organic binder to assist the molding at the time of molding,
As carboxyethyl cellulose etc. and plasticizers such as diocryl phthalate, polyethylene glycol,
As the dispersant, for example, glycerin, oleic acid ester and the like can be used, and as the solvent, ethyl alcohol, trichlene, acetone, water and the like can be used.

【0012】本発明において焼成工程は重要である。焼
成工程では、緻密化と結晶化及び柱状組織の形成過程な
ど得られるムライト質焼結体の特性に大きく影響する反
応が進行する。緻密化は1100〜1300℃程度から開始する
ので、この温度領域での昇温速度の制御は重要であり、
昇温速度が大きすぎると焼結体中に欠陥が生成しやす
い。さらに緻密化、結晶化及び柱状組織の発達する最終
焼結温度は、1500〜1800℃が好ましい。これは、1500℃
よりも低い温度では高密度化が充分でなく、1800℃を越
えて焼成すると粒成長が起こり機械的性質の低下をもた
らすためである。
The firing process is important in the present invention. In the firing step, reactions that greatly affect the characteristics of the obtained mullite sintered body, such as the densification and crystallization process and the columnar structure formation process, proceed. Since densification starts from about 1100 to 1300 ° C, it is important to control the heating rate in this temperature range.
If the heating rate is too high, defects are likely to be generated in the sintered body. Further, the final sintering temperature at which densification, crystallization and columnar structure develop is 1500 to 1800 ° C. This is 1500 ℃
This is because the densification is not sufficient at a temperature lower than that, and grain growth occurs when firing above 1800 ° C, resulting in deterioration of mechanical properties.

【0013】[0013]

【実施例】以下、本発明の実施例について具体的に説明
するが、本発明はこれに限定されるものではない。 [実施例1〜20]表1に示す平均粒径(比表面積径)
をもったアルミナ(Al2O3 )粉末と溶融シリカガラス粉
末(アルミナ粉末の粒径に対する粒径比(倍率)も示し
た)及び添加成分(実施例5〜20)としてPb3O4 、Ti
O2、Fe2O3 、CoO 、CuO 、ZnO 、MnO2、V2O5粉末(平均
粒径 3μm 以下)を表1に示すような割合で秤量し、ボ
ールミルを用いて10時間湿式混合した。添加成分の添加
量は、アルミナ及びシリカ成分の酸化物換算の合計重量
に対する重量%で示した。得られたスラリーを乾燥して
混合粉末を得た。
EXAMPLES Examples of the present invention will be specifically described below, but the present invention is not limited thereto. [Examples 1 to 20] Average particle diameter (specific surface area diameter) shown in Table 1
Alumina (Al 2 O 3 ) powder having the above, fused silica glass powder (the particle size ratio (magnification) to the particle size of the alumina powder is also shown), and Pb 3 O 4 , Ti as additive components (Examples 5 to 20)
O 2 , Fe 2 O 3 , CoO, CuO, ZnO, MnO 2 and V 2 O 5 powders (average particle size of 3 μm or less) were weighed at the ratio shown in Table 1 and wet-mixed for 10 hours using a ball mill. . The addition amount of the additive component is shown by weight% with respect to the total weight of the alumina and silica components in terms of oxide. The obtained slurry was dried to obtain a mixed powder.

【0014】この粉末に5重量%のポリビニルアルコー
ル水溶液を粉体重量に対して5重量%加えて造粒した。
造粒粉末を静水圧成形した。その成形体を表1に示す温
度で4時間焼成した。焼結体の相対密度、機械的強度及
び破壊靱性値を表1に示した。尚、平均粒径は比表面積
径をカウンターソーブ(カウンタークロム社製)を用い
て測定した。また、機械的強度は、焼結体から測定用試
料を内周刃式ダイヤモンドカッターで切り出し表面研磨
を行い、JIS R 1601の規定に準じて曲げ強度を測定し、
破壊靱性値は、SENB法(シングル・エッジ・ノッチド・
ビーム法)により測定した。成形体の一部を走査型電子
顕微鏡で観察したところ、何れの実施例の成形体もシリ
カガラス粉末同士が連続した組織が観察された。
5% by weight of an aqueous polyvinyl alcohol solution was added to this powder in an amount of 5% by weight based on the weight of the powder, and the mixture was granulated.
The granulated powder was isostatically pressed. The molded body was fired at the temperature shown in Table 1 for 4 hours. Table 1 shows the relative density, mechanical strength and fracture toughness of the sintered body. The average particle size was measured by measuring the specific surface area with a countersorb (manufactured by Counterchrome Co.). In addition, the mechanical strength is obtained by cutting out a sample for measurement from a sintered body with an inner peripheral blade type diamond cutter and polishing the surface, and then measuring the bending strength according to JIS R 1601.
The fracture toughness value is SENB (single edge notched
Beam method). When a part of the molded body was observed with a scanning electron microscope, the molded body of any of the examples had a structure in which silica glass powders were continuous with each other.

【0015】[0015]

【表1】 [Table 1]

【0016】[比較例1〜11]表2に示す粒径のアル
ミナ粉末及び非晶質シリカ粉末原料を用いた以外実施例
と同じ条件で成形し焼結して評価した結果を表2に示す
が、実施例に比較して特性が劣ることが判明した。比較
例1〜3は本発明の範囲外の粒径のアルミナ粉末及び/
又は非晶質シリカ粉末を使用した場合であり、その他の
比較例は添加物の使用量が本発明の範囲外である場合を
示した。
[Comparative Examples 1 to 11] Table 2 shows the results of molding and sintering under the same conditions as in Examples except that the alumina powder and the amorphous silica powder raw materials having the particle sizes shown in Table 2 were used. However, it was found that the characteristics were inferior to the examples. Comparative Examples 1 to 3 are alumina powder having a particle diameter outside the range of the present invention and /
Alternatively, the case where an amorphous silica powder was used, and other comparative examples showed the case where the amount of the additive used was outside the range of the present invention.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明の方法によれば、使用するアルミ
ナ粉末及び非晶質シリカ粉末の平均粒径を特定し、成形
体中で非晶質シリカ粉末同士が連続相を形成するように
最適化して成形し、さらに添加成分としてPb、Ti、Fe、
Co、Cu、Zn、Mn、V 成分を用いることによって、最も簡
便で低コストのプロセスである粉末混合、成形及び焼成
という工程により、高密度、高強度、高靱性の優れた特
性を有するムライト質焼結体を効率よく製造することが
でき、実用的価値が大きい。
According to the method of the present invention, the average particle diameters of the alumina powder and the amorphous silica powder to be used are specified, and it is optimal that the amorphous silica powders form a continuous phase in the molded body. And mold it, and further add Pb, Ti, Fe, and
By using Co, Cu, Zn, Mn, and V components, the mullite material with excellent characteristics of high density, high strength, and high toughness can be obtained by the steps of powder mixing, molding and firing, which are the simplest and lowest cost processes. A sintered body can be efficiently manufactured and has great practical value.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径0.1〜2μm のアルミナ粉末
及び該アルミナ粉末の粒径の0.5倍以下の平均粒径を
もつ非晶質シリカ粉末の混合粉末を成形した後、焼成す
ることを特徴とするムライト質焼結体の製造方法。
1. A mixed powder of alumina powder having an average particle diameter of 0.1 to 2 μm and amorphous silica powder having an average particle diameter of 0.5 times or less the particle diameter of the alumina powder is molded and then fired. A method for producing a mullite sintered body, comprising:
【請求項2】 アルミナ及びシリカ成分の酸化物換算の
合計重量に対して、Pb,Ti、Fe、Co、Cu、Zn、Mn、V 成
分のうち少なくとも1種を酸化物換算で10重量%以下
添加して成形することを特徴とする請求項1記載のムラ
イト質焼結体の製造方法。
2. At least one of Pb, Ti, Fe, Co, Cu, Zn, Mn, and V components is 10% by weight or less in terms of oxide, based on the total oxide equivalent weight of alumina and silica components. The method for producing a mullite sintered body according to claim 1, wherein the mullite sintered body is added and molded.
JP4273190A 1992-10-12 1992-10-12 Production of sintered compact of mullite Pending JPH06122550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4273190A JPH06122550A (en) 1992-10-12 1992-10-12 Production of sintered compact of mullite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4273190A JPH06122550A (en) 1992-10-12 1992-10-12 Production of sintered compact of mullite

Publications (1)

Publication Number Publication Date
JPH06122550A true JPH06122550A (en) 1994-05-06

Family

ID=17524358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4273190A Pending JPH06122550A (en) 1992-10-12 1992-10-12 Production of sintered compact of mullite

Country Status (1)

Country Link
JP (1) JPH06122550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097412A (en) * 1997-02-07 2000-08-01 Fujitsu Limited Ink jet printer head and method for fabricating the same including a piezoelectric device with a multilayer body having a pair of high rigidity plates provided on the side walls
US20110104469A1 (en) * 2007-11-15 2011-05-05 Riman Richard E Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom
CN114790117A (en) * 2022-03-25 2022-07-26 中国民航大学 Preparation method of oxide fiber-based porous ceramic with hierarchical structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097412A (en) * 1997-02-07 2000-08-01 Fujitsu Limited Ink jet printer head and method for fabricating the same including a piezoelectric device with a multilayer body having a pair of high rigidity plates provided on the side walls
US20110104469A1 (en) * 2007-11-15 2011-05-05 Riman Richard E Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom
US8709960B2 (en) * 2007-11-15 2014-04-29 Rutgers, The State University Of New Jersey Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom
CN114790117A (en) * 2022-03-25 2022-07-26 中国民航大学 Preparation method of oxide fiber-based porous ceramic with hierarchical structure

Similar Documents

Publication Publication Date Title
US5290739A (en) High temperature stabilized mullite-aluminum titanate
CN1280235C (en) Method for producing aluminum titanate sintered compact
EP1559696B1 (en) Aluminum magnesium titanate sintered product, method for producing it and its use
EP1741684B1 (en) Magnesium aluminium titanate crystal structure and method for producing same
KR20100120130A (en) Aluminum magnesium titanate - alumina composite ceramic
JP4844770B2 (en) Method for producing aluminum titanate-based fired body
TW201107268A (en) Method for producing aluminum titanate ceramic body
KR20110053313A (en) Aluminum titanate ceramic manufacturing method
JP5368081B2 (en) Method for producing aluminum titanate-based fired body
EP2546213A1 (en) Green compact and method for producing aluminum titanate sintered body.
JP2010116289A (en) Method for producing aluminum titanate ceramic
JP3279885B2 (en) Method for producing alumina-based sintered body
JPH06122550A (en) Production of sintered compact of mullite
JP6888087B2 (en) Composite ceramic materials, articles, and manufacturing methods
JP4043425B2 (en) Zirconia heat treatment material
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JP2004315293A (en) Zirconia member for heat treatment and method for manufacturing the same
JPH0549627B2 (en)
JP2010138035A (en) Method for producing aluminum titanate-based sintered body
WO2010095615A1 (en) Method for manufacturing aluminum titanate-based sintered bodies
JP2010235333A (en) Method for producing aluminum titanate-based ceramic sintered compact and aluminum titanate-based ceramic sintered compact
JPS63277570A (en) Production of sintered aluminum nitride having high thermal conductivity
JPH08198664A (en) Alumina-base sintered body and its production
JP3719762B2 (en) Refractories for firing ferrite
JP3211908B2 (en) Silicon nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20081011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20091011

LAPS Cancellation because of no payment of annual fees