JPH06122516A - Production of inorganic oxide particle - Google Patents

Production of inorganic oxide particle

Info

Publication number
JPH06122516A
JPH06122516A JP4272962A JP27296292A JPH06122516A JP H06122516 A JPH06122516 A JP H06122516A JP 4272962 A JP4272962 A JP 4272962A JP 27296292 A JP27296292 A JP 27296292A JP H06122516 A JPH06122516 A JP H06122516A
Authority
JP
Japan
Prior art keywords
reaction
inorganic oxide
particles
oxide particles
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4272962A
Other languages
Japanese (ja)
Other versions
JP2915224B2 (en
Inventor
Ryuichi Hashimoto
竜一 橋本
Seiji Kaneyasu
政二 兼安
Takashi Maehara
喬 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP4272962A priority Critical patent/JP2915224B2/en
Publication of JPH06122516A publication Critical patent/JPH06122516A/en
Application granted granted Critical
Publication of JP2915224B2 publication Critical patent/JP2915224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Silicon Polymers (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce inorganic oxide particles having controlled particle diameter by hydrolyzing an organometallic compound while controlling the electrical conductivity of a reaction liquid composed of a hydrolysis catalyst, water, an electrolyte and a solvent at the start of the reaction. CONSTITUTION:A solvent such as methanol is incorporated with a hydrolysis catalyst such as ammonia water in an amount to get a water-content of 0.1-30wt.% and a catalyst content of 1-10wt.% based on the hydrolyzing object. An electrolyte substance such as NaOH is added to the obtained mixture at a liquid temperature of 0-60 deg.C to adjust the electrical conductivity to 0-10ms/cm at the start of the reaction. A methanol solution of a hydrolyzable organometallic compound expressed by the formula M(OR)m or MRn(OR)k-n [(m) is 1-4; (k) is 1-4; n<k; R is alkyl; M is metallic element such as Na, K, Ca, Al, Ti or Zr] is dropped to the above product to synthesize inorganic oxide particles such as SiO2 particles. The particles are separated by filtration, washed and dried to obtain inorganic oxide particles having particle diameter of 0.1-10mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無機酸化物粒子の製造
法に関し、詳しくは無機酸化物粒子の製造における粒子
径の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing inorganic oxide particles, and more particularly to a method for controlling particle diameter in producing inorganic oxide particles.

【0002】[0002]

【従来の技術】従来より無機酸化物粒子、例えばシリカ
粒子径の制御方法として以下の方法が知られている。
2. Description of the Related Art The following method has been known as a method for controlling the diameter of inorganic oxide particles such as silica particles.

【0003】例えば、シリカ種粒子を予め合成しそのシ
リカ種粒子を成長させることにより粒子径を制御する方
法(特開昭63ー112411)、あるいは水及びアン
モニア濃度を一定に維持し粒子径を制御する方法(特開
昭63ー310714)などが知られている。しかしな
がらこれらの方法では、製造工程が複雑と同時に再現性
が悪いという問題点があった。
For example, a method of controlling the particle size by previously synthesizing silica seed particles and growing the silica seed particles (Japanese Patent Laid-Open No. 63-112411), or controlling the particle size by keeping water and ammonia concentrations constant. The method (Japanese Patent Laid-Open No. 63-310714) and the like are known. However, these methods have a problem that the manufacturing process is complicated and the reproducibility is poor at the same time.

【0004】一方、加水分解反応で使用する塩酸濃度及
び反応温度を変えて粒子径を制御する方法(特開平3ー
159911)も知られている。しかしながらこの方法
では反応時間が長くかかり、反応を短時間に終えようと
するとシリカ粒子が凝集して塊状となり、単分散性の均
一なシリカ粒子を得ることはできない。
On the other hand, a method of controlling the particle size by changing the concentration of hydrochloric acid used in the hydrolysis reaction and the reaction temperature (Japanese Patent Laid-Open No. 159911) is also known. However, in this method, the reaction time is long, and when the reaction is attempted to be completed in a short time, the silica particles aggregate to form a lump, and it is not possible to obtain uniform monodisperse silica particles.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、任意
の粒子径の無機酸化物粒子を制御よく安定的に製造する
製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing inorganic oxide particles having an arbitrary particle size in a controlled and stable manner.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記従来
の技術が持つ問題を解決し、任意の粒子径の無機酸化物
粒子を制御よく安定的に製造できる方法について鋭意研
究を行って来た。その結果、加水分解反応液の反応開始
時の電気伝導度を制御することによって粒子径を制御で
きることを見い出し、本発明を完成するに至った。
[Means for Solving the Problems] The inventors of the present invention have conducted earnest research on a method for solving the problems of the above-mentioned conventional techniques and for producing inorganic oxide particles having an arbitrary particle size in a controlled and stable manner. I came. As a result, they have found that the particle size can be controlled by controlling the electric conductivity of the hydrolysis reaction liquid at the start of the reaction, and have completed the present invention.

【0007】即ち、本発明は、加水分解触媒、水、電解
質物質、及び溶媒よりなる反応液中で加水分解可能な有
機金属化合物を加水分解して無機酸化物粒子を製造する
際に、反応液の反応開始時の電気伝導度を制御すること
によって粒子径を制御することを特徴とする無機酸化物
粒子の製造方法であり、又、他の発明は、アンモニア、
水、電解質物質、及びアルコールよりなる反応液中でア
ルコキシシランを加水分解してシリカ粒子を製造する際
に、反応液の反応開始時の電気伝導度(以下、開始時伝
導度という)を制御することによって粒子径を制御する
ことを特徴とするシリカ粒子の製造方法である。
That is, the present invention provides a method for producing inorganic oxide particles by hydrolyzing a hydrolyzable organometallic compound in a reaction solution comprising a hydrolysis catalyst, water, an electrolyte substance and a solvent. Is a method for producing inorganic oxide particles, which is characterized by controlling the particle size by controlling the electrical conductivity at the start of the reaction, and another invention is ammonia,
When the alkoxysilane is hydrolyzed in a reaction liquid consisting of water, an electrolyte substance, and alcohol to produce silica particles, the electric conductivity at the start of the reaction of the reaction liquid (hereinafter, referred to as start-up conductivity) is controlled. This is a method for producing silica particles, which is characterized by controlling the particle size.

【0008】以下、本発明の無機酸化物粒子径を制御で
きる無機酸化物粒子の製造方法について具体的に説明す
る。
The method for producing the inorganic oxide particles of the present invention, which can control the diameter of the inorganic oxide particles, will be specifically described below.

【0009】本発明の無機酸化物粒子の製造は、溶媒、
加水分解触媒、水、電解質物質よりなる反応液中で加水
分解可能な有機金属化合物(以下、有機金属化合物とも
いう)を加水分解することによって行われる。
The production of the inorganic oxide particles of the present invention is carried out with a solvent,
It is carried out by hydrolyzing an organometallic compound (hereinafter, also referred to as an organometallic compound) which can be hydrolyzed in a reaction liquid composed of a hydrolysis catalyst, water and an electrolyte substance.

【0010】通常、無機酸化物粒子の粒子径は、反応に
用いる有機金属化合物量を変える方法で制御するが、本
発明の方法では反応液の開始時伝導度によって粒子径を
制御可能である。つまり反応に係る時間を変えることな
く容易に粒子径の制御が可能である。
Usually, the particle size of the inorganic oxide particles is controlled by a method of changing the amount of the organometallic compound used in the reaction, but in the method of the present invention, the particle size can be controlled by the conductivity at the start of the reaction solution. In other words, the particle size can be easily controlled without changing the reaction time.

【0011】本発明において、粒子径とは無機酸化物粒
子を走査型電子顕微鏡で観察し、粒子の長手方向の直径
を測定し、その平均の直径を算出したものを言う。
In the present invention, the particle size means a value obtained by observing the inorganic oxide particles with a scanning electron microscope, measuring the diameter of the particles in the longitudinal direction, and calculating the average diameter.

【0012】本発明の電気伝導度は、反応液の電気抵抗
の逆数で定義され、単位 S/cm(=1/ohm)で
表される。溶液の電気抵抗は、溶存する化学種によって
電気抵抗の変化割合が違うため一概に言えないが、溶存
するイオンの量によって変化する。また電気伝導度は、
反応液中のイオン濃度、反応液の組成、反応液温度にも
依存して変化する。
The electric conductivity of the present invention is defined by the reciprocal of the electric resistance of the reaction solution, and is represented by the unit S / cm (= 1 / ohm). The electrical resistance of a solution cannot be generally stated because the rate of change in electrical resistance varies depending on the dissolved chemical species, but it varies depending on the amount of dissolved ions. The electrical conductivity is
It also changes depending on the ion concentration in the reaction solution, the composition of the reaction solution, and the temperature of the reaction solution.

【0013】尚、電気伝導度の測定はいかなる方法を用
いても良いが、白金電極、ホーイストンブリッジ等より
構成される市販の電気伝導度計(例えば東亜電波工業製
CM−11P)によって測定すればよい。
Any method may be used to measure the electric conductivity, but the electric conductivity may be measured by a commercially available electric conductivity meter (for example, CM-11P manufactured by Toa Denpa Kogyo Co., Ltd.) which is composed of a platinum electrode, a Hoystone bridge, and the like. Good.

【0014】本発明における開始時伝導度とは、溶媒、
加水分解触媒、水、電解質物質よりなる反応液を調製
し、かつ適宜選択された反応温度に達した時の反応液の
電気伝導度のことを言う。
The starting conductivity in the present invention means a solvent,
It refers to the electric conductivity of a reaction liquid when a reaction liquid composed of a hydrolysis catalyst, water, and an electrolyte substance is prepared and the reaction temperature is appropriately selected.

【0015】この開始時伝導度の制御は反応液中のどの
成分を用いて行っても良いが、少量で電気伝導度を大き
く変化し得る電解質物質が反応液の組成を大きく崩すこ
とがないので好ましく使用される。即ち、溶媒、加水分
解触媒、及び水の混合液を予め反応温度に保ち、電気伝
導度を測定しながら電解質物質を目的電気伝導度に達す
るまで加える方法が好適で簡便である。
The control of the conductivity at the start may be performed by using any component in the reaction solution, but since the electrolyte substance which can greatly change the electric conductivity in a small amount does not greatly deteriorate the composition of the reaction solution. Preferably used. That is, a method of keeping a mixed solution of a solvent, a hydrolysis catalyst, and water at a reaction temperature in advance and adding an electrolyte substance until the target electric conductivity is reached while measuring the electric conductivity is suitable and simple.

【0016】反応液の開始時伝導度で無機酸化物粒子径
は決定されるが、使用する反応容器、反応容量、有機金
属化合物類の添加速度等の合成条件によって異なる場合
もあるため、使用する所定の合成条件で予め開始時伝導
度と無機酸化物粒子径との検量線を求めておくことが好
ましい。この検量線を用いれば反応液の開始時伝導度で
無機酸化物粒子径を更に精度よく且つ再現性高く任意の
粒径に制御できる。
The inorganic oxide particle size is determined by the conductivity at the start of the reaction solution, but it may be changed depending on the reaction conditions used, the reaction volume, the addition rate of the organometallic compound, and other synthesis conditions, and therefore it is used. It is preferable to previously obtain a calibration curve of the conductivity at the start and the particle size of the inorganic oxide under a predetermined synthesis condition. By using this calibration curve, the particle size of the inorganic oxide particles can be controlled to a desired particle size more accurately and with high reproducibility by the starting conductivity of the reaction solution.

【0017】本発明で使用する溶媒としては、反応原料
である有機金属化合物を溶解することができ、水と一定
の割合で均一に混合できるものであれば、特に制限され
ないが、一般に容易に入手可能な例えばメタノール、エ
タノール、isoープロパノール、エチレングリコール
等のアルコールがが好適に用いられる。また2種以上の
溶媒を混合して用いてもよい。
The solvent used in the present invention is not particularly limited as long as it can dissolve the organometallic compound as the reaction raw material and can be mixed uniformly with water at a constant ratio, but is generally easily available. Possible alcohols such as methanol, ethanol, iso-propanol and ethylene glycol are preferably used. Further, two or more kinds of solvents may be mixed and used.

【0018】本発明において、加水分解触媒および水を
使用する。これらはそれぞれ単一で用いても良く、また
両者を予め混合した溶液を用いても良い。反応液中の水
の含有量は、用いる有機金属化合物や溶媒の種類等によ
って異なり一概に限定することができないが、一般に
0.1〜30重量%の範囲から選べば好適である。加水
分解触媒の含有量も、用いる有機金属化合物や溶媒の種
類等によって異なり一概に限定することができないが、
1〜10重量%の範囲にすることが好ましい。反応液に
おける水および加水分解触媒の濃度が上記した各範囲よ
り低い場合には、粒子径の成長が遅くなり、均一粒子径
の無機酸化物粒子が得られない。また、上記した範囲よ
り高い場合には、粒子径の成長が早くなるが均一粒子径
の無機酸化物粒子が得られない。
In the present invention, a hydrolysis catalyst and water are used. Each of these may be used alone, or a solution prepared by previously mixing both may be used. The content of water in the reaction solution varies depending on the type of organic metal compound and solvent used and cannot be unconditionally limited, but it is generally preferable to select from the range of 0.1 to 30% by weight. The content of the hydrolysis catalyst also varies depending on the type of organic metal compound and solvent used, etc., and cannot be unconditionally limited,
It is preferably in the range of 1 to 10% by weight. When the concentrations of water and the hydrolysis catalyst in the reaction solution are lower than the respective ranges described above, the growth of the particle size is delayed and the inorganic oxide particles having a uniform particle size cannot be obtained. On the other hand, when it is higher than the above range, the growth of the particle size is accelerated, but the inorganic oxide particles having a uniform particle size cannot be obtained.

【0019】上記加水分解触媒としては、公知の塩基ま
たは酸加水分解触媒を使用することができるが、目的と
する無機酸化物粒子の種類に応じて決定すれば良い。
As the above hydrolysis catalyst, a known base or acid hydrolysis catalyst can be used, and it may be determined according to the kind of the intended inorganic oxide particles.

【0020】無機酸化物粒子がシリカ、ジルコニア、チ
タニア、或はこれらの複合酸化物である場合は、アンモ
ニア;プロピルアミン、アニリン等のアミン類;ジメチ
ルホルムアミド、アセトアミド等のアミド類などの塩基
加水分解触媒が用いられる。無機酸化物粒子がアルミ
ナ、或はアルミナを含む複合酸化物粒子であり、塩基加
水分解触媒を用いると粒子が生成せずゲル体が生成して
しまうような場合は、硫酸、塩酸等の鉱酸や、酢酸、ク
エン酸等の有機酸などの酸加水分解触媒を使用する。
When the inorganic oxide particles are silica, zirconia, titania, or a composite oxide thereof, ammonia; amines such as propylamine and aniline; base hydrolysis of amides such as dimethylformamide and acetamide. A catalyst is used. If the inorganic oxide particles are alumina or composite oxide particles containing alumina and a gel is formed without particles when a base hydrolysis catalyst is used, a mineral acid such as sulfuric acid or hydrochloric acid is used. Alternatively, an acid hydrolysis catalyst such as an organic acid such as acetic acid or citric acid is used.

【0021】次に本発明で用いる電解質物質としては、
上記した溶媒、水を含む反応液に可溶であり、かつ溶
媒、加水分解触媒、水と相互に反応しない物質であり、
さらに本反応液中でイオン解離する物質であれば特に制
限されない。代表的な物質としては、水酸化ナトリウ
ム、水酸化カルシウム、塩化ナトリウム、塩化アンモニ
ウム、硝酸ナトリウム等の無機塩類、グルタミン酸ナト
リウム、アスパラギン酸ナトリウム等の有機塩類等を挙
げることができる。該電解質物質は2種以上混合して使
用しても良い。
Next, as the electrolyte substance used in the present invention,
The above-mentioned solvent, which is soluble in a reaction liquid containing water, and is a substance which does not react with the solvent, the hydrolysis catalyst, and water,
Furthermore, there is no particular limitation as long as it is a substance that ionically dissociates in this reaction solution. Representative substances include inorganic salts such as sodium hydroxide, calcium hydroxide, sodium chloride, ammonium chloride and sodium nitrate, organic salts such as sodium glutamate and sodium aspartate, and the like. Two or more kinds of the electrolyte substances may be mixed and used.

【0022】電解質物質の含有量は、設定すべき電気伝
導度の値、並びに有機金属化合物や溶媒の種類等により
決定される。一般に、反応液の反応開始時の電気伝導度
が0〜10mS/cmのとなるように使用する。反応液
の反応開始時の電気伝導度が上記した範囲より高い場合
には、粒子の凝集が起こり易くなるため均一粒子径の無
機酸化物粒子が得にくい傾向にある。
The content of the electrolyte substance is determined by the value of electric conductivity to be set, the kind of the organometallic compound and the solvent, and the like. Generally, the reaction solution is used so that the electric conductivity at the start of the reaction is 0 to 10 mS / cm. When the electric conductivity of the reaction solution at the start of the reaction is higher than the above range, aggregation of particles is likely to occur, and thus it tends to be difficult to obtain inorganic oxide particles having a uniform particle size.

【0023】本発明に使用する加水分解可能な有機金属
化合物としては、代表的には、一般式 M(OR)m [m=1〜4] MRn(OR)k−n [k=1〜4、n=kより小さ
い整数] で表される金属アルコキシド、或はこれら金属アルコキ
シドを部分的に加水分解して得られる低縮合物が挙げら
れる。上記一般式において、 Mは、Na、K、Ca、
Al、Si、Ti、Zr等の金属元素を示し、Rはエチ
ル基、ブチル基などのアルキル基を示す。
The hydrolyzable organometallic compound used in the present invention is typically represented by the general formula M (OR) m [m = 1 to 4] MRn (OR) k−n [k = 1 to 4]. , An integer smaller than n = k], or a low condensate obtained by partially hydrolyzing these metal alkoxides. In the above general formula, M is Na, K, Ca,
A metal element such as Al, Si, Ti, and Zr is shown, and R is an alkyl group such as an ethyl group and a butyl group.

【0024】加水分解可能な有機金属化合物を具体的に
例示すると、テトラメトキシシラン、テトラエトキシシ
ラン、テトラプロポキシシラン、テトラブトキシシラ
ン、テトラフェノキシシラン、フェニルトリエトキシシ
ラン等のアルコキシシラン類;ナトリウムメトキサイ
ド、ナトリウムエトキサイド等のナトリウムアルコキシ
ド;トリノルマルブトキシアルミニウム、トリイソプロ
ポキシアルミニウム等のアルミニウムアルコキシド;テ
トライソプロポキシチタニウム、テトラノルマルブトキ
シチタニウム等のチタンニウムアルコキシド;テトライ
ソプロポキシジルコニウム、テトラノルマルブトキシジ
ルコニウム等のジルコニウムアルコキシドなどが挙げら
れる。
Specific examples of the hydrolyzable organometallic compound include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetraphenoxysilane and phenyltriethoxysilane; sodium methoxide. , Sodium alkoxides such as sodium ethoxide; aluminum alkoxides such as trinormalbutoxyaluminum and triisopropoxyaluminum; titanium titanium alkoxides such as tetraisopropoxytitanium and tetranormalbutoxytitanium; zirconium such as tetraisopropoxyzirconium and tetranormalbutoxyzirconium. Examples include alkoxides.

【0025】これら有機金属化合物は、単独もしくは2
種以上混合して用いてもよく、後者の場合は複合無機酸
化物が生成する。
These organometallic compounds may be used alone or
A mixture of two or more species may be used, and in the latter case, a composite inorganic oxide is produced.

【0026】尚、前述のごとく有機金属化合物の反応量
等のその他の反応条件によっても粒子径が変化するの
で、本発明を実施する場合は開始時伝導度以外の条件は
一定にしておく必要がある。
As mentioned above, since the particle size also changes depending on other reaction conditions such as the reaction amount of the organometallic compound, when the present invention is carried out, it is necessary to keep the conditions other than the starting conductivity constant. is there.

【0027】本発明の加水分解反応条件は特に限定され
ないが、一般に、大気圧下、0〜60℃で反応させる。
The hydrolysis reaction conditions of the present invention are not particularly limited, but generally, the reaction is carried out at 0 to 60 ° C. under atmospheric pressure.

【0028】[0028]

【発明の効果】本発明の無機酸化物粒子を製造する際に
反応液の反応開始時の電気伝導度を制御することによっ
て、特に0.1〜10μmの範囲で任意の粒子径の無機
酸化物粒子を再現性よく安定的に製造することができ
る。
INDUSTRIAL APPLICABILITY When the inorganic oxide particles of the present invention are produced, the electric conductivity of the reaction solution at the start of the reaction is controlled, so that the inorganic oxide particles having an arbitrary particle diameter in the range of 0.1 to 10 μm can be obtained. The particles can be produced stably with good reproducibility.

【0029】[0029]

【実施例】本発明を以下に示す実施例により具体的に説
明するが、本発明はこれらの実施例により何ら限定され
るものではない。
EXAMPLES The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.

【0030】実施例1 攪拌機付きガラス製フラスコ中にメタノール1600m
l、アンモニア水(25重量%)356mlを加え、反
応液温を10℃に保ち水酸化ナトリウム(5mol/
l)少量ずつ加え反応液の電気伝導度を2.15S/c
mに合わせた。この反応液にテトラエトキシシラン(商
品名エチルシリケート28、コルコート化学社製)のメ
タノール溶液(22重量%)163mlを25ml/h
の速度で滴々添加しシリカ粒子を合成した。シリカ粒子
は遠心分離または自然沈降で反応液からの回収し、遠心
分離または大量の溶媒を用いたデカンテーションで洗浄
を行った。
Example 1 1600 m of methanol in a glass flask equipped with a stirrer
1, 356 ml of ammonia water (25% by weight) were added, and the reaction solution temperature was kept at 10 ° C. Sodium hydroxide (5 mol /
l) Add little by little to make the electric conductivity of the reaction liquid 2.15 S / c.
It matched to m. 25 ml / h of 163 ml of a methanol solution (22% by weight) of tetraethoxysilane (trade name: ethyl silicate 28, manufactured by Colcoat Chemical Co., Ltd.) was added to this reaction liquid.
The silica particles were synthesized by adding dropwise at a rate of. The silica particles were recovered from the reaction solution by centrifugation or spontaneous precipitation, and washed by centrifugation or decantation with a large amount of solvent.

【0031】得られたシリカ粒子の粒子径は、走査型電
子顕微鏡により観察の結果1.50μmであった。この
反応を3回繰り返し合成再現性をみた。結果を表1に示
した。
The particle size of the obtained silica particles was 1.50 μm as a result of observation with a scanning electron microscope. This reaction was repeated 3 times to confirm the reproducibility of synthesis. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】比較例1 実施例1において、反応液の反応開始時電気伝導度での
制御を行わなかった場合のシリカ粒子の合成結果を比較
例1に示した。電解質物質の添加量を67mmolにし
た以外はすべて実施例1と同様に行った。表2に結果を
示す。
Comparative Example 1 Comparative Example 1 shows the result of synthesizing silica particles in Example 1 when the control of the electric conductivity at the start of the reaction of the reaction solution was not performed. The same procedure as in Example 1 was performed except that the amount of the electrolyte substance added was 67 mmol. The results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】実施例2〜4 実施例1において、水酸化ナトリウムの添加量を変えて
表3に示す開始時伝導度にした以外はすべて実施例1と
同様に行った。結果を併せて表3に示す。これから、開
始時伝導度と粒子径にはほぼ直線関係があることがわか
る。
Examples 2 to 4 The same procedure as in Example 1 was carried out except that the amount of sodium hydroxide added was changed to the starting conductivity shown in Table 3. The results are also shown in Table 3. From this, it can be seen that there is a substantially linear relationship between the starting conductivity and the particle size.

【0036】[0036]

【表3】 [Table 3]

【0037】実施例5〜9 実施例1において、水酸化ナトリウムに変えて表4に示
す電解質物質を使用した以外はすべて実施例1と同様に
行った。結果を併せて表4に示す。
Examples 5 to 9 The same procedure as in Example 1 was carried out except that the electrolyte substances shown in Table 4 were used instead of sodium hydroxide. The results are also shown in Table 4.

【0038】[0038]

【表4】 [Table 4]

【0039】実施例10〜13 実施例1において、テトラエトキシシランに変えてトリ
エトキシフェニルシランを用い且つ開始時伝導度を変化
させた以外はすべて実施例1と同様に行った。表5に結
果を示す。開始時伝導度と粒子径にほぼ直線関係が認め
られる。
Examples 10 to 13 The same procedure as in Example 1 was carried out except that triethoxyphenylsilane was used instead of tetraethoxysilane and the starting conductivity was changed. The results are shown in Table 5. A nearly linear relationship is found between the initial conductivity and the particle size.

【0040】[0040]

【表5】 [Table 5]

【0041】実施例14〜16 攪拌機付きガラス製フラスコ中にメタノール1600m
l、アンモニア水(25重量%)356mlを加え、反
応液温を20℃に保ち水酸化ナトリウム(5mol/
l)少量ずつ加え反応液の電気伝導度を所定値に合わせ
た。この反応液に予め0.1%塩酸を加え、室温で2時
間予備加水分解したテトラエトキシシラン(商品名エチ
ルシリケート28、コルコート化学社製)のメタノール
溶液(18重量%)163ml、及びテトラ−n−ブト
キシチタン(日本曹達社製)のメタノール溶液(9重量
%)72mlをそれぞれ25ml/hの速度で同時に滴
々添加しシリカ−チタニア粒子を合成した。シリカ−チ
タニア粒子は遠心分離または自然沈降で反応液からの回
収し、遠心分離または大量の溶媒を用いたデカンテーシ
ョンで洗浄を行った。
Examples 14-16 1600 m of methanol in a glass flask equipped with a stirrer
1, 356 ml of ammonia water (25% by weight) were added, and the reaction solution temperature was kept at 20 ° C. sodium hydroxide (5 mol /
1) The reaction solution was added little by little and the electric conductivity of the reaction solution was adjusted to a predetermined value. To this reaction solution, 0.1% hydrochloric acid was added in advance, and pre-hydrolyzed at room temperature for 2 hours to obtain 163 ml of a methanol solution (18% by weight) of tetraethoxysilane (trade name: ethyl silicate 28, manufactured by Colcoat Chemicals), and tetra-n. -72 ml of a methanol solution (9% by weight) of butoxytitanium (manufactured by Nippon Soda Co., Ltd.) was simultaneously added dropwise at a rate of 25 ml / h to synthesize silica-titania particles. The silica-titania particles were recovered from the reaction solution by centrifugation or spontaneous precipitation, and washed by centrifugation or decantation using a large amount of solvent.

【0042】表6に反応液の反応開始時電気伝導度を変
えた場合の結果を示す。これから、開始時伝導度と粒子
径にはほぼ直線関係があることがわかる。
Table 6 shows the results when the electric conductivity of the reaction solution at the start of the reaction was changed. From this, it can be seen that there is a substantially linear relationship between the starting conductivity and the particle size.

【0043】[0043]

【表6】 [Table 6]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加水分解触媒、水、電解質物質、及び溶
媒よりなる反応液中で加水分解可能な有機金属化合物を
加水分解して無機酸化物粒子を製造する際に、反応液の
反応開始時の電気伝導度を制御することによって粒子径
を制御することを特徴とする無機酸化物粒子の製造方
法。
1. When starting the reaction of a reaction solution, when an inorganic oxide particle is produced by hydrolyzing a hydrolyzable organometallic compound in a reaction solution consisting of a hydrolysis catalyst, water, an electrolyte substance, and a solvent. A method for producing inorganic oxide particles, which comprises controlling the particle size by controlling the electrical conductivity of the.
【請求項2】 アンモニア、水、電解質物質、及びアル
コールよりなる反応液中でアルコキシシランを加水分解
してシリカ粒子を製造する際に、反応液の反応開始時の
電気伝導度を制御することによって粒子径を制御するこ
とを特徴とするシリカ粒子の製造方法。
2. By controlling the electrical conductivity at the start of the reaction of the reaction solution when the alkoxysilane is hydrolyzed in the reaction solution consisting of ammonia, water, an electrolyte substance and alcohol to produce silica particles. A method for producing silica particles, which comprises controlling the particle diameter.
JP4272962A 1992-10-12 1992-10-12 Method for producing inorganic oxide particles Expired - Fee Related JP2915224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4272962A JP2915224B2 (en) 1992-10-12 1992-10-12 Method for producing inorganic oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4272962A JP2915224B2 (en) 1992-10-12 1992-10-12 Method for producing inorganic oxide particles

Publications (2)

Publication Number Publication Date
JPH06122516A true JPH06122516A (en) 1994-05-06
JP2915224B2 JP2915224B2 (en) 1999-07-05

Family

ID=17521217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4272962A Expired - Fee Related JP2915224B2 (en) 1992-10-12 1992-10-12 Method for producing inorganic oxide particles

Country Status (1)

Country Link
JP (1) JP2915224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178070A3 (en) * 2000-08-02 2003-09-10 Shin-Etsu Chemical Co., Ltd. Method for the preparation of fine globular silicone resin particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178070A3 (en) * 2000-08-02 2003-09-10 Shin-Etsu Chemical Co., Ltd. Method for the preparation of fine globular silicone resin particles
US6753399B2 (en) 2000-08-02 2004-06-22 Shin-Etsu Chemical Co., Ltd. Method for the preparation of fine globular silicone resin particles

Also Published As

Publication number Publication date
JP2915224B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US4842837A (en) Process for producing fine spherical silica
US5597512A (en) Method for preparing elongated-shaped silica sol
US20200354225A1 (en) Silica particle dispersion and method for producing the same
JPS62223019A (en) Crystalline tin-antimony oxide sol and production thereof
JPS62162626A (en) Highly dispersed sol or gel of ultrafine crystal of monoclinic zirconia and production thereof
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
US7175825B2 (en) Method of producing titania solution
JP2019116396A (en) Silica-based particle dispersion and production method thereof
JPH0811690B2 (en) Process for producing aqueous sol of novel cerium IV compound
US20120164450A1 (en) Method for producing and treating nanosized doped zinc oxide particles
JPH0710535A (en) Production of alumina sol excellent in transparency and having satisfactory viscosity stability
JPH06298520A (en) Production of silica gel containing dispersed ultrafine titanium oxide particle
JP2007176710A (en) Method for producing antimony oxide sol and antimony oxide sol
JPH06122516A (en) Production of inorganic oxide particle
KR100488100B1 (en) Mesoporous transition metal oxide thin film and powder and preparation thereof
JP5097408B2 (en) Rutile-type titanium oxide particles and method for producing the same
JPH05139717A (en) Production of spherical silica particles
WO2021161550A1 (en) Niobic acid aqueous solution
RU2144505C1 (en) Method of preparing titanium dioxide
JPS62207717A (en) Sol of crystalline tin oxide and its preparation
JP6990785B2 (en) Niobate aqueous solution
JP3582093B2 (en) Method for producing silica glass
JP2006282423A (en) Bismuth vanadate fine particles and method for manufacturing bismuth vanadate fine particles
JPS62226821A (en) Production of glass
CN111498816A (en) Method for preparing cadmium telluride nanowire at room temperature

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees