JP5097408B2 - Rutile-type titanium oxide particles and method for producing the same - Google Patents

Rutile-type titanium oxide particles and method for producing the same Download PDF

Info

Publication number
JP5097408B2
JP5097408B2 JP2007024663A JP2007024663A JP5097408B2 JP 5097408 B2 JP5097408 B2 JP 5097408B2 JP 2007024663 A JP2007024663 A JP 2007024663A JP 2007024663 A JP2007024663 A JP 2007024663A JP 5097408 B2 JP5097408 B2 JP 5097408B2
Authority
JP
Japan
Prior art keywords
titanium oxide
particles
rutile
oxide particles
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007024663A
Other languages
Japanese (ja)
Other versions
JP2008189497A (en
Inventor
哲夫 河野
忠夫 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007024663A priority Critical patent/JP5097408B2/en
Publication of JP2008189497A publication Critical patent/JP2008189497A/en
Application granted granted Critical
Publication of JP5097408B2 publication Critical patent/JP5097408B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、ルチル型酸化チタン粒子及びその製造方法、特に、高アスペクト比を有し、単結晶であるルチル型酸化チタン粒子及びその製造方法に関する。   The present invention relates to rutile-type titanium oxide particles and a method for producing the same, and more particularly to rutile-type titanium oxide particles having a high aspect ratio and being a single crystal and a method for producing the same.

酸化チタンは、正の複屈折性を有するため、例えば、光学用途等の複屈折の調節が要請される用途での応用が期待される。ここで、前記複屈折の調節を行なうためには、例えば、粒子を含む高分子膜を溶液製膜する場合には、乾燥過程における溶液の蒸散過程において粒子を面内に配向させるために、粒子はnmサイズであって、且つ、針状、棒状、紡錘状、平板等の球状でない形態であることが必要である。あるいは、粒子を含む膜は、その製膜方法によらず、製膜時に延伸されるため、粒子はnmサイズであって、且つ、針状、棒状、紡錘状等の高アスペクト比であることが必要である。   Titanium oxide has a positive birefringence, and is expected to be applied in applications where birefringence adjustment is required, such as optical applications. Here, in order to adjust the birefringence, for example, when a polymer film containing particles is formed into a solution, in order to orient the particles in the plane in the evaporation process of the solution in the drying process, It is necessary to have a nanometer size and a non-spherical shape such as a needle shape, a rod shape, a spindle shape, or a flat plate. Alternatively, since the film containing particles is stretched during film formation regardless of the film forming method, the particles have a nanometer size and a high aspect ratio such as a needle shape, a rod shape, or a spindle shape. is necessary.

前記酸化チタンの結晶型には、アナターゼ型、ルチル型、及びブルッカイト型が存在する。このうち、ルチル型粒子を得る方法としては、例えば、アナターゼ型粒子を約900℃にて加熱焼成する方法が知られている。しかし、この方法では、アナターゼ型粒子の段階の粒子形態やサイズを維持したルチル型粒子を得ることが難しいことから、長径がnmサイズのルチル型粒子を得ることも困難である。また、この方法では、一旦アナターゼ型粒子を得てからでなければルチル型粒子を得ることができず、工程が煩雑となる。   The crystal form of the titanium oxide includes an anatase type, a rutile type, and a brookite type. Among these, as a method for obtaining rutile type particles, for example, a method in which anatase type particles are heated and fired at about 900 ° C. is known. However, with this method, it is difficult to obtain rutile type particles that maintain the particle form and size at the stage of anatase type particles, and it is therefore difficult to obtain rutile type particles having a major axis of nm size. Further, in this method, rutile type particles cannot be obtained unless anatase type particles are once obtained, and the process becomes complicated.

一方、アナターゼ型粒子を介さずに、ルチル型粒子を直接得る方法としては、気相中での熱分解法が知られているが(特許文献1参照)、この方法では、球状等の低アスペクト比のルチル型粒子が得られてしまい、針状、棒状、紡錘状等の高アスペクト比のルチル型酸化チタン粒子を得ることができない。
また、アナターゼ型酸化チタン粒子については、針状、棒状、紡錘状等の粒子が得られた旨の報告があるが(非特許文献1参照)、ルチル型酸化チタン粒子については、そのような報告は見出されていない。
On the other hand, as a method for directly obtaining rutile-type particles without using anatase-type particles, a thermal decomposition method in a gas phase is known (see Patent Document 1). In other words, rutile type particles having a high aspect ratio such as needles, rods, and spindles cannot be obtained.
As for anatase-type titanium oxide particles, there are reports that particles such as needles, rods, and spindles have been obtained (see Non-Patent Document 1), but for rutile-type titanium oxide particles, such reports are available. Has not been found.

したがって、アナターゼ型酸化チタン粒子を高温焼成する方法以外で形成可能であり、高アスペクト比を有し、複屈折の調節が要請される用途で応用し得るルチル型酸化チタン粒子及びその製造方法は未だ提供されておらず、その開発が強く望まれているのが現状である。
一方で、非特許文献2のようにルチル型の粒子を直接形成させる方法も存在するが、得られる粒子は球状であって、高分子膜中に添加した場合に、針状や棒状で実現できる配向性付与(粒子のある結晶軸をある方向に並べること)ができない。
Therefore, rutile type titanium oxide particles that can be formed by methods other than the method of firing anatase type titanium oxide particles at a high temperature, have a high aspect ratio, and can be applied in applications requiring adjustment of birefringence, and methods for producing the same are still available. It is not provided and the development is strongly desired.
On the other hand, there is a method of directly forming rutile-type particles as in Non-Patent Document 2, but the obtained particles are spherical and can be realized in a needle shape or a rod shape when added to a polymer film. Orientation cannot be imparted (the crystal axes with particles are aligned in a certain direction).

また、特許文献2、特許文献3(比較例2)、及び特許文献4(比較例2)等においては、高アスペクト比を有するルチル型酸化チタン粒子が知られているが、それぞれ以下のような問題点がある。
特許文献2では、酸化錫(SnO)を含む粒子となってしまうことから、高純度なルチル粒子とはならない。
特許文献3(比較例2)では、小さな粒子が凝集して、多結晶の針状粒子が形成されているので、針状や棒状粒子の長軸方向が、結晶(単位格子)のc軸方向に一致しているとは限らない。そのため、このような粒子を高分子膜中に添加し、何らかの配向を実現しても、前記複屈折の調節を行なうことができず、あるいは、調節が行なえたとしてもより多くの粒子を添加する必要がある。
In Patent Document 2, Patent Document 3 (Comparative Example 2), Patent Document 4 (Comparative Example 2) and the like, rutile-type titanium oxide particles having a high aspect ratio are known. There is a problem.
In Patent Document 2, since it becomes particles containing tin oxide (SnO 2), not a high purity rutile particles.
In Patent Document 3 (Comparative Example 2), since small particles aggregate to form polycrystalline needle-like particles, the major axis direction of the needle-like or rod-like particles is the c-axis direction of the crystal (unit cell). Does not necessarily match. Therefore, even if such particles are added to the polymer film and some orientation is realized, the birefringence cannot be adjusted, or even if the adjustment can be made, more particles are added. There is a need.

さらに、特許文献4(比較例2)では、粒子の顕微鏡写真とその比表面積の値から多結晶粒子である可能性が高い。多結晶粒子の場合、上述のように、針状や棒状粒子の長軸方向が、結晶(単位格子)のc軸方向に一致しているとは限らない。そのため、このような粒子を高分子膜中に添加し、何らかの配向を実現しても、前記複屈折の調節を行なうことができず、あるいは、調節が行えたとしてもより多くの粒子を添加する必要がある。   Furthermore, in Patent Document 4 (Comparative Example 2), there is a high possibility that the particles are polycrystalline particles from the micrograph of the particles and the value of the specific surface area. In the case of polycrystalline particles, as described above, the major axis direction of needle-like or rod-like particles does not always coincide with the c-axis direction of the crystal (unit cell). Therefore, even if such particles are added to the polymer film and some orientation is realized, the birefringence cannot be adjusted, or even if the adjustment can be made, more particles are added. There is a need.

特開2001−342011号公報JP 2001-342011 A 特開平5−186221号公報JP-A-5-186221 特開平11−322337号公報JP-A-11-322337 特開平10−245228号公報Japanese Patent Laid-Open No. 10-245228 「Chemical Communications」,2004,1584−1585“Chemical Communications”, 2004, 1584-1585. J. Mater. Chem.,2000, Vol.10, 2388−2391J. et al. Mater. Chem. , 2000, Vol. 10, 2388-2391

本発明は、従来における前記問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、アナターゼ型酸化チタン粒子を高温焼成する方法以外で簡単に形成可能であり、単結晶で高アスペクト比を有し、複屈折の調節が要請される用途(例えば、LCDやプロジェクタ用の位相差板、位相差フィルム)で応用し得るルチル型酸化チタン粒子及びその製造方法を提供することを目的とする。   An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention can be easily formed by a method other than the method of firing anatase-type titanium oxide particles at a high temperature, is a single crystal, has a high aspect ratio, and is required to adjust birefringence (for example, an LCD or a projector). It is an object of the present invention to provide rutile type titanium oxide particles and a method for producing the same that can be applied in a phase difference plate and a phase difference film.

前記課題を解決するための手段は以下の通りである。即ち、
<1> 平均最大短径が5〜50nm、且つ平均最大長径が30〜300nmであり、単結晶であることを特徴とするルチル型酸化チタン粒子である。
<2> 平均アスペクト比が2以上である前記<1>1に記載のルチル型酸化チタン粒子である。
<3> 過塩素酸存在下の反応溶液中で形成することを特徴とするルチル型酸化チタン粒子の製造方法である。
<4> 前記反応溶液の温度が60℃以下であることを特徴とする前記<3>に記載のルチル型酸化チタン粒子の製造方法である。
<5> 酸化チタン原料として、前記反応溶液中にチタニウムイソプロポキシドを含むことを特徴とする前記<3>又は<4>に記載のルチル型酸化チタン粒子の製造方法である。
<6> 前記<3>〜<5>のいずれかに記載の製造方法によって得られるルチル型酸化チタン粒子である。
<7> 平均最大短径が5〜50nm、平均最大長径が30〜300nmであることを特徴とする前記<6>に記載のルチル型酸化チタン粒子である。
<8> 単結晶であることを特徴とする前記<6>又は<7>に記載のルチル型酸化チタン粒子である。
Means for solving the above-mentioned problems are as follows. That is,
<1> Rutile-type titanium oxide particles having an average maximum minor axis of 5 to 50 nm, an average maximum major axis of 30 to 300 nm, and a single crystal.
<2> The rutile-type titanium oxide particles according to <1> 1, wherein the average aspect ratio is 2 or more.
<3> A method for producing rutile-type titanium oxide particles, which is formed in a reaction solution in the presence of perchloric acid.
<4> The method for producing rutile-type titanium oxide particles according to <3>, wherein the temperature of the reaction solution is 60 ° C. or lower.
<5> The method for producing rutile-type titanium oxide particles according to <3> or <4>, wherein the reaction solution contains titanium isopropoxide as a titanium oxide raw material.
<6> Rutile-type titanium oxide particles obtained by the production method according to any one of <3> to <5>.
<7> The rutile-type titanium oxide particles according to <6>, wherein the average maximum minor axis is 5 to 50 nm and the average maximum major axis is 30 to 300 nm.
<8> The rutile-type titanium oxide particle according to <6> or <7>, which is a single crystal.

本発明によると、従来における前記問題を解決することができ、アナターゼ型酸化チタン粒子を高温焼成する方法以外で簡単に形成可能であり、単結晶で高アスペクト比を有し、複屈折の調節が要請される用途で応用し得るルチル型酸化チタン粒子及びその製造方法を提供することができる。   According to the present invention, the above-mentioned problems in the prior art can be solved, and the anatase-type titanium oxide particles can be easily formed by a method other than the high-temperature firing method, have a high aspect ratio with a single crystal, and can adjust birefringence. It is possible to provide rutile-type titanium oxide particles that can be applied for required uses and a method for producing the same.

(ルチル型酸化チタン粒子及びその製造方法)
本発明のルチル型酸化チタン粒子は、平均最大短径が5〜50nm、且つ平均最大長径が30〜300nmであり、単結晶であることを特徴とする。なお、本発明のルチル型酸化チタン粒子の製造方法は、本発明の前記ルチル型酸化チタン粒子の説明を通じて明らかにする。
「単結晶」とは、結晶のどの位置であっても、結晶軸の方向が変わらないものをいう。そして、単結晶の集合体が多結晶である。
単結晶と多結晶の判別方法としては、以下の方法が挙げられる。すなわち、透過型電子顕微鏡によって観察中の粒子を選択し、その粒子に対して、該顕微鏡に具備されている電子線回折装置によって回折像をとることにより、その回折パターンがスポット状になれば単結晶、リング状になれば多結晶と判別することができる。
(Rutyl-type titanium oxide particles and production method thereof)
The rutile-type titanium oxide particles of the present invention have an average maximum minor axis of 5 to 50 nm, an average maximum major axis of 30 to 300 nm, and are single crystals. In addition, the manufacturing method of the rutile type titanium oxide particle of this invention is clarified through description of the said rutile type titanium oxide particle of this invention.
“Single crystal” refers to a crystal whose direction of crystal axis does not change at any position of the crystal. The aggregate of single crystals is polycrystalline.
As a method for discriminating between a single crystal and a polycrystal, the following methods may be mentioned. That is, by selecting a particle under observation with a transmission electron microscope and taking a diffraction image of the particle with an electron beam diffractometer provided in the microscope, if the diffraction pattern becomes a spot shape, If it becomes a crystal or ring shape, it can be identified as a polycrystal.

前記酸化チタン粒子が、ルチル型であるかアナターゼ型であるかは、例えば、X線回折(XRD)にて得られた粒子の結晶相を同定することにより確認することができる。
前記ルチル型酸化チタン粒子の形状としては、平均最大長径及び平均最大短径が上記範囲内であれば特に制限はないが、例えば、針状、棒状、紡錘状等であることが好ましい。
Whether the titanium oxide particles are rutile or anatase can be confirmed, for example, by identifying the crystal phase of the particles obtained by X-ray diffraction (XRD).
The shape of the rutile-type titanium oxide particles is not particularly limited as long as the average maximum major axis and the average maximum minor axis are within the above ranges, but for example, a needle shape, a rod shape, a spindle shape and the like are preferable.

本発明において、前記ルチル型酸化チタン粒子の平均最大短径は、上述のように5〜50nmであるが、5〜30nmであることが好ましく、5〜20nmであることがより好ましい。前記ルチル型酸化チタン粒子の平均最大長径は、上述のように30〜300nmであるが、30〜200nmであることが好ましく、30〜100nmであることがより好ましい。前記平均最大短径あるいは平均最大長径が上記範囲外であると、例えばこの粒子を樹脂中に分散させた場合等に、その透明性が大きく低下することがある。   In the present invention, the average maximum minor axis of the rutile-type titanium oxide particles is 5 to 50 nm as described above, preferably 5 to 30 nm, and more preferably 5 to 20 nm. The average maximum major axis of the rutile-type titanium oxide particles is 30 to 300 nm as described above, but is preferably 30 to 200 nm, and more preferably 30 to 100 nm. When the average maximum minor axis or the average maximum major axis is out of the above range, for example, when the particles are dispersed in a resin, the transparency may be greatly lowered.

前記ルチル型酸化チタン粒子の短径は、例えば、得られたルチル型酸化チタン粒子を透過型電子顕微鏡(TEM)にて観察し、撮影した粒子写真をスキャナーで取り込んで画像ファイルとして保存し、この保存した画像ファイル(電子ファイル)に対し、株式会社マウンテック製、画像解析式粒度分布ソフトウェア「Mac−View」Ver.3を用い、観察できる粒子を取り込み、更にこのソフトによって計算されたその短手方向(幅)の最も大きい箇所の径(最大短径)を平均化して求めることができる。
前記ルチル型酸化チタン粒子の長径は、同様にして長手方向の最も大きい箇所の径(最大長径)を平均化して求めることができる。
The short diameter of the rutile-type titanium oxide particles can be determined by, for example, observing the obtained rutile-type titanium oxide particles with a transmission electron microscope (TEM), capturing the photographed particle photograph with a scanner, and saving the image file. For the saved image file (electronic file), image analysis type particle size distribution software “Mac-View” Ver. 3 can be obtained by taking in particles that can be observed and averaging the diameter (maximum short diameter) of the largest portion in the short direction (width) calculated by this software.
Similarly, the major axis of the rutile-type titanium oxide particles can be determined by averaging the diameter of the largest part in the longitudinal direction (maximum major axis).

本発明において、前記ルチル型酸化チタン粒子のアスペクト比は、好ましい形状の粒子を得る観点から、2以上であることが好ましく、4〜10であることがより好ましい。前記アスペクト比が2未満であると、粒子が粒状又は球状に近くなり、例えば樹脂中に分散させた場合に、分子配向に伴って粒子配向が発現する確率が減少乃至ゼロとなってしまうことがある。前記アスペクト比は、例えば、平均最大長径/平均最大短径により求めることができる。   In the present invention, the aspect ratio of the rutile-type titanium oxide particles is preferably 2 or more, and more preferably 4 to 10 from the viewpoint of obtaining particles having a preferable shape. When the aspect ratio is less than 2, the particles are almost granular or spherical, and when dispersed in a resin, for example, the probability that the particle orientation appears with the molecular orientation may be reduced to zero. is there. The aspect ratio can be obtained by, for example, average maximum major axis / average maximum minor axis.

光学用途に応用した場合に、光散乱による透過率減少を起こす粒子の含有率を下げ、実質的に散乱の少ない状態を実現する観点から、前記ルチル型酸化チタン粒子の径のバラツキとしては、短径及び長径のいずれにおいても、変動係数が0.4以下であることが好ましく、0.3以下であることがより好ましい。前記変動係数が、0.4を超えると、平均値より長い粒子の混合比が増加し、例えば樹脂中に分散させた場合に、該樹脂の光透過率が低下することがある。   From the viewpoint of reducing the content of particles that cause a decrease in transmittance due to light scattering and realizing a state of substantially less scattering when applied to optical applications, the variation in the diameter of the rutile titanium oxide particles is short. In any of the diameter and the major axis, the coefficient of variation is preferably 0.4 or less, and more preferably 0.3 or less. If the coefficient of variation exceeds 0.4, the mixing ratio of particles longer than the average value increases. For example, when dispersed in a resin, the light transmittance of the resin may decrease.

前記変動係数とは、前記平均最大短径又は前記平均最大短径に対する短径又は長径の標準偏差の比で表され、下記数式(1)で求められる。
ただし、前記数式(1)中、rは最大平均短径又は最大平均長径を表し、nは短径及び長径を測定した粒子の数を表し、rはi番目に測定した粒子の短径又は長径を表す。
The coefficient of variation is represented by the ratio of the standard deviation of the minor axis or major axis to the average maximum minor axis or the average maximum minor axis, and is obtained by the following mathematical formula (1).
However, in the equation (1), r is the maximum average minor diameter or represents the maximum average major axis, n represents the number of particles was measured minor and major diameter, minor diameter or r i was measured i-th particle Represents the major axis.

前記nの値は、100以上と定義するが、より大きい方が好ましく、200以上であることがより好ましい。前記nの値が、100未満となると、粒子の分散を正確に反映できなくなることがある。変動係数を百分率で表示する場合には、上記数式(1)の値を100倍した値として表示することができる。例えば、前記変動係数の値が、0.40以下である場合には、百分率表示では、40%以下と表示することができる。   The value of n is defined as 100 or more, but is preferably larger and more preferably 200 or more. If the value of n is less than 100, the dispersion of particles may not be accurately reflected. When the coefficient of variation is displayed as a percentage, it can be displayed as a value obtained by multiplying the value of Equation (1) by 100. For example, when the value of the variation coefficient is 0.40 or less, 40% or less can be displayed in percentage display.

前記変動係数は、例えば、分散させた粒子を透過型電子顕微鏡(TEM)にて観察し、撮影した粒子写真をスキャナーで取り込んで画像ファイルとして保存し、この保存した画像ファイル情報を、株式会社マウンテック製、画像解析式粒度分布測定ソフトウェア「Mac−View」Ver.3を用いて1粒子ごとに測定し、集計することで求めることができる。   The coefficient of variation is obtained by, for example, observing dispersed particles with a transmission electron microscope (TEM), capturing a photograph of the photographed particles with a scanner, and saving the image file as an image file. Manufactured by Image Analysis type particle size distribution measurement software “Mac-View” Ver. It can be obtained by measuring every particle using 3 and counting.

−反応溶液−
前記ルチル型酸化チタン粒子は、酸性の反応用液中で形成される。
前記ルチル型酸化チタン粒子が、酸性の反応溶液中で形成されたことは、例えば、得られた粒子を水等の溶媒中に再分散したときのpH測定等により分析することができる。
前記反応溶液のpHとしては、酸性、すなわちpH7未満であればよいが、酸化チタン粒子の溶解度曲線(溶解度のpH依存性)からわかるように、過飽和度の小さな領域での合成が可能な領域で、高アスペクト比の形態を有する粒子を容易に得られる観点から、1.5以下であることが好ましく、1以下であることがより好ましい。
前記反応溶液の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、簡易な設備でも製造可能とする観点からは、60℃未満であることが好ましく、40℃未満であることがより好ましい。
-Reaction solution-
The rutile titanium oxide particles are formed in an acidic reaction solution.
The formation of the rutile-type titanium oxide particles in the acidic reaction solution can be analyzed, for example, by measuring pH when the obtained particles are redispersed in a solvent such as water.
The pH of the reaction solution may be acidic, i.e., less than pH 7. However, as can be seen from the solubility curve of titanium oxide particles (pH dependence of solubility), the reaction solution can be synthesized in a region where the degree of supersaturation is small. From the viewpoint of easily obtaining particles having a high aspect ratio, it is preferably 1.5 or less, more preferably 1 or less.
There is no restriction | limiting in particular as temperature of the said reaction solution, Although it can select suitably according to the objective, It is preferable that it is less than 60 degreeC, and less than 40 degreeC from a viewpoint which enables manufacture also with simple equipment. More preferably.

前記反応溶液としては、好ましいpHとする観点からは、強酸を含むことが好ましい。前記強酸としては、特に制限はなく、公知のものを適宜選択して用いることができるが、本発明の粒子を得やすい観点から、過塩素酸が好適に用いられる。
前記強酸の反応溶液中における含有量としては、例えば、0.5〜1.5Mであることが好ましく、0.5〜0.9Mであることがより好ましい。
The reaction solution preferably contains a strong acid from the viewpoint of a preferable pH. There is no restriction | limiting in particular as said strong acid, Although a well-known thing can be selected and used suitably, Perchloric acid is used suitably from a viewpoint which is easy to obtain the particle | grains of this invention.
As content in the reaction solution of the said strong acid, it is preferable that it is 0.5-1.5M, for example, and it is more preferable that it is 0.5-0.9M.

前記反応溶液中に含まれるルチル型酸化チタンの原料としては、特に制限はなく、例えば、硫酸チタニル、四塩化チタン、チタニウムイソプロポキシド(TIPO)等が挙げられるが、本発明では、チタニウムイソプロポキシドが好適に用いられる。
反応溶液中における前記酸化チタン原料の配合量は、例えば、0.10〜0.80Mであることが好ましく、0.10〜0.50Mであることがより好ましい。
The raw material of the rutile type titanium oxide contained in the reaction solution is not particularly limited, and examples thereof include titanyl sulfate, titanium tetrachloride, titanium isopropoxide (TIPO), etc. In the present invention, titanium isopropoxy is used. Is preferably used.
The compounding amount of the titanium oxide raw material in the reaction solution is, for example, preferably 0.10 to 0.80M, and more preferably 0.10 to 0.50M.

−製造例−
本発明のルチル型酸化チタン粒子の具体的な製造例としては、これに限定されないが、以下の方法が挙げられる。
過塩素酸水溶液中に、これと同体積のチタニウムイソプロポキシド水溶液を添加し、攪拌する。この溶液を100℃未満、好ましくは60℃未満に保った恒温槽中で、その温度に応じて数時間〜10日間静置し反応させる。得られた溶液を、遠心分離にかけ、回収できた沈殿を水洗、乾燥後、粉砕する。
-Production example-
Specific examples of production of the rutile-type titanium oxide particles of the present invention include, but are not limited to, the following methods.
The same volume of titanium isopropoxide aqueous solution is added to the perchloric acid aqueous solution and stirred. This solution is allowed to stand and react for several hours to 10 days depending on the temperature in a thermostat kept at less than 100 ° C, preferably less than 60 ° C. The obtained solution is centrifuged, and the recovered precipitate is washed with water, dried and then pulverized.

−用途−
本発明のルチル型酸化チタンは、上述のように、平均最大短径5〜50nm、平均最大長径30〜300nmであり、高アスペクト比を有するnmサイズである。このため、正の複屈折性を有する酸化チタンの性質を利用して、複屈折の調節が要請される用途(例えば、LCDやプロジェクタ用の位相差板、位相差フィルム)で好適に用いることができる。具体的には、光学用途において、例えば、偏向特性が重要で高精度が要求される光学素子を構成する樹脂において使用することができる。
-Application-
As described above, the rutile-type titanium oxide of the present invention has an average maximum minor axis of 5 to 50 nm, an average maximum major axis of 30 to 300 nm, and a nm size having a high aspect ratio. For this reason, using the property of titanium oxide having positive birefringence, it can be suitably used in applications requiring adjustment of birefringence (for example, retardation plates and retardation films for LCDs and projectors). it can. Specifically, in an optical application, for example, it can be used in a resin constituting an optical element in which deflection characteristics are important and high accuracy is required.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。
初めに、本実施例における平均最大短径、平均最大長径、アスペクト比、及び変動係数の測定方法について、説明する。
−平均最大短径、平均最大長径、アスペクト比、及び変動係数−
前記平均最大短径は、撮影した粒子写真をスキャナーで取り込んで画像ファイルとして保存し、この保存した画像ファイル(電子ファイル)に対し、株式会社マウンテック製、画像解析式粒度分布ソフトウェア「Mac−View」Ver.3を用い、観察できる粒子を取り込み、更にこのソフトによって計算されたその短手方向(幅)の最も大きい箇所の径を、平均化して求める。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
First, a method for measuring the average maximum minor axis, the average maximum major axis, the aspect ratio, and the coefficient of variation in the present embodiment will be described.
-Average maximum minor axis, average maximum major axis, aspect ratio, and coefficient of variation-
The average maximum minor axis is obtained by taking a photograph of a photographed particle with a scanner and saving it as an image file. For this saved image file (electronic file), image analysis type particle size distribution software “Mac-View” manufactured by Mountec Co., Ltd. Ver. No. 3 is used to take particles that can be observed, and the diameter of the largest portion in the short direction (width) calculated by this software is averaged to obtain.

前記平均最大長径は、前記平均最大短径と同様にして長手方向の最も大きい箇所の径を、平均化して求める。
前記アスペクト比は、平均最大長径/平均最大短径により求める。
前記変動係数は、下記数式(1)により、保存した画像ファイル情報を、株式会社マウンテック製、画像解析式粒度分布測定ソフトウェア「Mac−View」Ver.3を用いて1粒子ごとに測定し、集計することで求める。
The average maximum major axis is obtained by averaging the diameter of the largest part in the longitudinal direction in the same manner as the average maximum minor axis.
The aspect ratio is determined by the average maximum major axis / average maximum minor axis.
The coefficient of variation is calculated using the following mathematical formula (1), and the saved image file information is converted into the image analysis type particle size distribution measurement software “Mac-View” Ver. Measured for each particle using 3 and calculated.

ただし、前記数式(1)中、rは最大平均短径又は最大平均長径を表し、nは短径及び長径を測定した粒子の数を表し、rはi番目に測定した粒子の短径又は長径を表す。 However, in the equation (1), r is the maximum average minor diameter or represents the maximum average major axis, n represents the number of particles was measured minor and major diameter, minor diameter or r i was measured i-th particle Represents the major axis.

(実施例1)
1.6Mの過塩素酸(HClO)水溶液中に、同体積の0.50Mのチタニウムイソプロポキシド(関東化学、以下「TIPO」と称す)水溶液を25℃で添加し、攪拌して反応溶液を得た。得られた反応溶液における各成分の濃度(含有量)は、TIPO:0.25M、HClO:0.80M、pHは0.30であった。この溶液を25℃の恒温槽中で、3日間静置して反応させた。反応後のpHは、0.20であった。
得られた溶液を、10,000回転で10分間の遠心分離にかけ、回収できた沈殿を水洗し、一部を透過型電子顕微鏡(TEM)にて観察し、5万倍及び10万倍に拡大した粒子写真をそれぞれ撮影した(図1)。この写真により、上記方法にて平均最大短径、平均最大長径、アスペクト比、及び変動係数を測定したところ、平均最大短径は14nm、平均最大長径は120nm、アスペクト比は5.6、短径の変動係数は25%、長径の変動係数は18%であった。
Example 1
To a 1.6 M aqueous solution of perchloric acid (HClO 4 ), an equal volume of 0.50 M titanium isopropoxide (Kanto Chemical, hereinafter referred to as “TIPO”) is added at 25 ° C., and the reaction solution is stirred. Got. The concentration (content) of each component in the obtained reaction solution was TIPO: 0.25M, HClO 4 : 0.80M, and pH was 0.30. This solution was allowed to react in a constant temperature bath at 25 ° C. for 3 days. The pH after the reaction was 0.20.
The obtained solution was centrifuged at 10,000 rpm for 10 minutes, the collected precipitate was washed with water, and a part thereof was observed with a transmission electron microscope (TEM) and magnified to 50,000 times and 100,000 times. Each particle photograph was taken (FIG. 1). From this photograph, the average maximum minor axis, the average maximum major axis, the aspect ratio, and the coefficient of variation were measured by the above method. The average maximum minor axis was 14 nm, the average maximum major axis was 120 nm, the aspect ratio was 5.6, and the minor axis. The variation coefficient was 25%, and the variation coefficient of the major axis was 18%.

残りの沈殿を60℃で乾燥させた後、粉砕し、図4に示すX線回折(XRD)測定を行った。この結果、ルチル型酸化チタン粒子が得られたことが確認された。さらに、透過型電子顕微鏡観察時に電子線回折像を撮影し、得られたパターンがスポットパターンであったことから、該ルチル型粒子が単結晶粒子であることが確認された。   The remaining precipitate was dried at 60 ° C., pulverized, and X-ray diffraction (XRD) measurement shown in FIG. 4 was performed. As a result, it was confirmed that rutile type titanium oxide particles were obtained. Furthermore, an electron beam diffraction image was taken at the time of observation with a transmission electron microscope, and the obtained pattern was a spot pattern. Thus, it was confirmed that the rutile type particles were single crystal particles.

(実施例2)
1.6Mの過塩素酸(HClO)水溶液中に、同体積の0.50Mのチタニウムイソプロポキシド(関東化学、以下「TIPO」と称す)水溶液を25℃で添加し、攪拌して反応溶液を得た。得られた反応溶液における各成分の濃度(含有量)は、TIPO:0.25M、HClO:0.80M、pHは0.30であった。この溶液を25℃の恒温槽中で、7日間静置して反応させた。反応後のpHは、0.18であった。
得られた溶液を、10,000回転で10分間の遠心分離にかけ、回収できた沈殿を水洗し、一部を透過型電子顕微鏡(TEM)にて観察し、5万倍及び10万倍に拡大した粒子写真をそれぞれ撮影した(図2)。この写真により、上記方法にて平均最大短径、平均最大長径、アスペクト比、及び変動係数を測定したところ、平均最大短径は18nm、平均最大長径は178nm、アスペクト比は5.8、短径の変動係数は19%、長径の変動係数は22%であった。
(Example 2)
To a 1.6 M aqueous solution of perchloric acid (HClO 4 ), an equal volume of 0.50 M titanium isopropoxide (Kanto Chemical, hereinafter referred to as “TIPO”) is added at 25 ° C., and the reaction solution is stirred. Got. The concentration (content) of each component in the obtained reaction solution was TIPO: 0.25M, HClO 4 : 0.80M, and pH was 0.30. The solution was allowed to react in a constant temperature bath at 25 ° C. for 7 days. The pH after the reaction was 0.18.
The obtained solution was centrifuged at 10,000 rpm for 10 minutes, the collected precipitate was washed with water, and a part thereof was observed with a transmission electron microscope (TEM) and magnified to 50,000 times and 100,000 times. Each particle photograph was taken (FIG. 2). From this photograph, the average maximum minor axis, average maximum major axis, aspect ratio, and coefficient of variation were measured by the above method. The average maximum minor axis was 18 nm, the average maximum major axis was 178 nm, the aspect ratio was 5.8, and the minor axis. The variation coefficient was 19%, and the variation coefficient of the major axis was 22%.

残りの沈殿を60℃で乾燥させた後、粉砕し、図4に示すX線回折(XRD)測定を行った。この結果、ルチル型酸化チタン粒子が得られたことが確認された。さらに、透過型電子顕微鏡観察時に電子線回折像を撮影し、得られたパターンがスポットパターンであったことから、該ルチル型粒子が単結晶粒子であることが確認された。   The remaining precipitate was dried at 60 ° C., pulverized, and X-ray diffraction (XRD) measurement shown in FIG. 4 was performed. As a result, it was confirmed that rutile type titanium oxide particles were obtained. Furthermore, an electron beam diffraction image was taken at the time of observation with a transmission electron microscope, and the obtained pattern was a spot pattern. Thus, it was confirmed that the rutile type particles were single crystal particles.

(実施例3)
1.6Mの過塩素酸(HClO)水溶液中に、同体積の0.50Mのチタニウムイソプロポキシド(関東化学、以下「TIPO」と称す)水溶液を25℃で添加し、攪拌して反応溶液を得た。得られた反応溶液における各成分の濃度(含有量)は、TIPO:0.25M、HClO:0.80M、pHは0.30であった。この溶液を、50℃の恒温槽中で、3日間静置して反応させた。反応後のpHは、0.23であった。
得られた溶液を、10,000回転で10分間の遠心分離にかけ、回収できた沈殿を水洗し、一部を透過型電子顕微鏡(TEM)にて観察し、5万倍及び10万倍に拡大した粒子写真をそれぞれ撮影した(図3)。この写真により、上記方法にて平均最大短径、平均最大長径、アスペクト比、及び変動係数を測定したところ、平均最大短径は15nm、平均最大長径は164nm、アスペクト比は5.5、短径の変動係数は17%、長径の変動係数は20%であった。
(Example 3)
To a 1.6 M aqueous solution of perchloric acid (HClO 4 ), an equal volume of 0.50 M titanium isopropoxide (Kanto Chemical, hereinafter referred to as “TIPO”) is added at 25 ° C., and the reaction solution is stirred. Got. The concentration (content) of each component in the obtained reaction solution was TIPO: 0.25M, HClO 4 : 0.80M, and pH was 0.30. This solution was allowed to react by allowing it to stand for 3 days in a thermostatic bath at 50 ° C. The pH after the reaction was 0.23.
The obtained solution was centrifuged at 10,000 rpm for 10 minutes, the collected precipitate was washed with water, and a part thereof was observed with a transmission electron microscope (TEM) and magnified to 50,000 times and 100,000 times. Each particle photograph was taken (FIG. 3). From this photograph, the average maximum minor axis, average maximum major axis, aspect ratio, and coefficient of variation were measured by the above method. The average maximum minor axis was 15 nm, the average maximum major axis was 164 nm, the aspect ratio was 5.5, and the minor axis. The variation coefficient was 17%, and the variation coefficient of the major axis was 20%.

残りの沈殿を60℃で乾燥させた後、粉砕し、図4に示すX線回折(XRD)測定を行った。この結果、ルチル型酸化チタン粒子が得られたことが確認された。さらに、透過型電子顕微鏡観察時に電子線回折像を撮影し、得られたパターンがスポットパターンであったことから、該ルチル型粒子が単結晶粒子であることが確認された。   The remaining precipitate was dried at 60 ° C., pulverized, and X-ray diffraction (XRD) measurement shown in FIG. 4 was performed. As a result, it was confirmed that rutile type titanium oxide particles were obtained. Furthermore, an electron beam diffraction image was taken at the time of observation with a transmission electron microscope, and the obtained pattern was a spot pattern. Thus, it was confirmed that the rutile type particles were single crystal particles.

(実施例4)
1.6Mの過塩素酸(HClO)水溶液中に、同体積の0.50Mのチタニウムイソプロポキシド(関東化学、以下「TIPO」と称す)水溶液を25℃で添加し、攪拌して反応溶液を得た。得られた反応溶液における各成分の濃度(含有量)は、TIPO:0.25M、HClO:0.80M、pHは0.30であった。この溶液を、10℃の恒温槽中で、3日間静置して反応させた。反応後のpHは、0.23であった。
得られた溶液を、10,000回転で10分間の遠心分離にかけ、回収できた沈殿を水洗し、60℃で乾燥させた後、粉砕し、図4に示すX線回折(XRD)測定を行った。この結果、ルチル型酸化チタン粒子が得られたことが確認された。さらに、透過型電子顕微鏡観察時に電子線回折像を撮影し、得られたパターンがスポットパターンであったことから、該ルチル型粒子が単結晶粒子であることが確認された。
Example 4
To a 1.6 M aqueous solution of perchloric acid (HClO 4 ), an equal volume of 0.50 M titanium isopropoxide (Kanto Chemical, hereinafter referred to as “TIPO”) is added at 25 ° C., and the reaction solution is stirred. Got. The concentration (content) of each component in the obtained reaction solution was TIPO: 0.25M, HClO 4 : 0.80M, and pH was 0.30. This solution was allowed to react for 3 days in a 10 ° C. constant temperature bath. The pH after the reaction was 0.23.
The obtained solution was centrifuged at 10,000 rpm for 10 minutes, and the recovered precipitate was washed with water, dried at 60 ° C., pulverized, and subjected to X-ray diffraction (XRD) measurement shown in FIG. It was. As a result, it was confirmed that rutile type titanium oxide particles were obtained. Furthermore, an electron beam diffraction image was taken at the time of observation with a transmission electron microscope, and the obtained pattern was a spot pattern. Thus, it was confirmed that the rutile type particles were single crystal particles.

(比較例1)
14.919gのトリエタノールアミン(以下、「TEA」と称す)中に、14.21gのTIPOを添加して攪拌した。攪拌を継続しながら、純水100.00mlをゆっくり滴下し、全量添加後に30分攪拌させた(以下、「A液」と称す)。このA液と2Mのアンモニア水を作製後、各25mlずつを攪拌混合して反応溶液を得た。得られた反応溶液における各成分の濃度(含有量)は、TIPO:0.25M、TEA:0.50M、NH:1M、pHは11.30であった。耐圧性且つ耐熱性ガラス容器に全量を入れ、オーブン中に100℃で24時間投入した。得られたゼリー状物質を全てオートクレーブに入れ、140℃で3日間処理した。
これを、10,000回転で10分間の遠心分離にかけ、回収できた沈殿を水洗し、一部を透過型電子顕微鏡(TEM)観察し、5万倍及び10万倍に拡大した粒子写真をそれぞれ撮影した(図5)。
残りの沈殿を60℃で乾燥させた後、粉砕し、実施例1と同様にしてX線回折(XRD)測定(図示せず)を行った結果、針状のアナターゼ型酸化チタン粒子が得られたことが確認された。
(Comparative Example 1)
14.21 g of TIPO was added to 14.919 g of triethanolamine (hereinafter referred to as “TEA”) and stirred. While continuing to stir, 100.00 ml of pure water was slowly added dropwise, and the whole amount was added and stirred for 30 minutes (hereinafter referred to as “solution A”). After preparing this A liquid and 2M ammonia water, 25 ml of each was stirred and mixed, and the reaction solution was obtained. The concentration (content) of each component in the obtained reaction solution was TIPO: 0.25M, TEA: 0.50M, NH 3 : 1M, and pH was 11.30. The whole amount was put into a pressure-resistant and heat-resistant glass container, and placed in an oven at 100 ° C. for 24 hours. The obtained jelly-like substance was all put in an autoclave and treated at 140 ° C. for 3 days.
This was centrifuged at 10,000 rpm for 10 minutes, the collected precipitate was washed with water, and a part of the photograph was observed with a transmission electron microscope (TEM). Photographed (FIG. 5).
The remaining precipitate was dried at 60 ° C., pulverized, and subjected to X-ray diffraction (XRD) measurement (not shown) in the same manner as in Example 1. As a result, acicular anatase-type titanium oxide particles were obtained. It was confirmed that

(比較例2)
J. Mater. Chem.,2000, Vol.10, 2388−2391に記載のあるように、チタンイソプロポキシド(5mL)とイソプロパノール(5mL)を混合した溶液をpH0.5の硝酸水溶液(40mL)中に滴下し、82℃・8時間の加熱でアルコール除去後、攪拌しながらオートクレーブ処理(250℃・26時間)を行い、沈殿を得た。
この沈殿を十分洗浄後、走査型電子顕微鏡(SEM)観察とX線回折(XRD)測定(図示せず)を行った結果、球状のルチル型酸化チタン粒子が得られたことが確認された。
(Comparative Example 2)
J. et al. Mater. Chem. , 2000, Vol. 10, 2388-2391, a solution prepared by mixing titanium isopropoxide (5 mL) and isopropanol (5 mL) was dropped into an aqueous nitric acid solution (40 mL) at pH 0.5, and heated at 82 ° C. for 8 hours. After removing the alcohol, an autoclave treatment (250 ° C., 26 hours) was performed with stirring to obtain a precipitate.
After sufficiently washing the precipitate, scanning electron microscope (SEM) observation and X-ray diffraction (XRD) measurement (not shown) were carried out. As a result, it was confirmed that spherical rutile titanium oxide particles were obtained.

(比較例3)
特開平7−2598号公報の実施例2の方法、すなわち、以下の方法にて酸化チタンを生成した。
(1)TiO2濃度207.9g/Lの四塩化チタン水溶液(TiO2重量基準で462.5g相当量)を、5Lの四つ口フラスコに採取し、攪拌下75℃に加温し、予め分散させたルチル型種晶スラリー(TiO2重量基準で37.5g相当量)を添加し、75℃で2時間加熱加水分解させ、TiO2濃度163.2g/Lのルチル結晶の二酸化チタンスラリー2941mLを得た。
(2)前記(1)のスラリーを、500mLずつ1Lのビーカーに分取し、攪拌しながらNa2CO3粉末を添加して、スラリーpH5まで中和後、それぞれにTiO2100重量部に対し、Na427粉末を30重量部添加して良く混合後、濾過、脱水したケーキを得た。該ケーキをそれぞれマッフル炉にて870℃で3時間焼成した。得られた焼成物は粉砕後、脱イオン水中に投入し、ミキサーで約10分間混合後、濾過し、十分洗浄後、走査型電子顕微鏡(SEM)観察とX線回折(XRD)測定(図示せず)を行った結果、長径が1μm以上のルチル型酸化チタン粒子が得られたことが確認された。
(Comparative Example 3)
Titanium oxide was produced by the method of Example 2 of JP-A-7-2598, that is, the following method.
(1) A titanium tetrachloride aqueous solution having a TiO 2 concentration of 207.9 g / L (equivalent to 462.5 g based on the weight of TiO 2 ) is collected in a 5 L four-necked flask, heated to 75 ° C. with stirring, Dispersed rutile seed slurry (equivalent to 37.5 g based on TiO 2 weight) was added, hydrolyzed at 75 ° C. for 2 hours, and 2941 mL of rutile crystal titanium dioxide slurry having a TiO 2 concentration of 163.2 g / L. Got.
(2) The slurry of (1) above was dispensed into a 1 L beaker of 500 mL, and Na 2 CO 3 powder was added with stirring, neutralized to a slurry pH of 5, and then each 100 parts by weight of TiO 2. Then, 30 parts by weight of Na 4 P 2 O 7 powder was added and mixed well, and then a filtered and dehydrated cake was obtained. Each of the cakes was baked at 870 ° C. for 3 hours in a muffle furnace. The obtained fired product is pulverized, put into deionized water, mixed with a mixer for about 10 minutes, filtered, washed thoroughly, and observed with a scanning electron microscope (SEM) and X-ray diffraction (XRD) (not shown). As a result, it was confirmed that rutile-type titanium oxide particles having a major axis of 1 μm or more were obtained.

本発明のルチル型酸化チタン粒子は、正の複屈折性を有する酸化チタンの性質を利用して複屈折の調節が要請される用途(例えば、LCDやプロジェクタ用の位相差板、位相差フィルム)で好適に用いることができる。具体的には、光学用途において、例えば、偏向特性が重要で高精度が要求される光学素子を構成する樹脂に使用することができる。   The rutile-type titanium oxide particles of the present invention are used for applications in which birefringence adjustment is required using the properties of titanium oxide having positive birefringence (for example, retardation plates and retardation films for LCDs and projectors). Can be suitably used. Specifically, in an optical application, for example, it can be used as a resin constituting an optical element in which deflection characteristics are important and high accuracy is required.

図1は、実施例1で製造したルチル型チタン酸化粒子のTEM写真である。1 is a TEM photograph of rutile-type titanium oxide particles produced in Example 1. FIG. 図2は、実施例2で製造したルチル型酸化チタン粒子のTEM写真である。FIG. 2 is a TEM photograph of rutile titanium oxide particles produced in Example 2. 図3は、実施例3で製造したルチル型酸化チタン粒子のTEM写真である。FIG. 3 is a TEM photograph of the rutile-type titanium oxide particles produced in Example 3. 図4は、実施例のX線回折測定の結果を示すグラフである。FIG. 4 is a graph showing the results of X-ray diffraction measurement of the example. 図5は、比較例2で製造したアナターゼ型酸化チタン粒子のTEM写真である。FIG. 5 is a TEM photograph of the anatase-type titanium oxide particles produced in Comparative Example 2.

Claims (2)

酸化チタン原料として反応溶液中にチタニウムイソプロポキシドを含み、過塩素酸存在下の反応溶液中で、前記反応溶液の温度が10℃以上50℃以下であり、平均最大短径が5〜50nm、かつ平均最大長径が30〜300nmであり、平均アスペクト比が2以上であるルチル型酸化チタン粒子を形成することを特徴とするルチル型酸化チタン粒子の製造方法。 In the reaction solution containing titanium isopropoxide as a titanium oxide raw material, in the presence of perchloric acid , the temperature of the reaction solution is 10 ° C. or more and 50 ° C. or less, and the average maximum minor axis is 5 to 50 nm. A method for producing rutile type titanium oxide particles, comprising forming rutile type titanium oxide particles having an average maximum major axis of 30 to 300 nm and an average aspect ratio of 2 or more . 単結晶であるルチル型酸化チタン粒子を得る請求項1に記載のルチル型酸化チタンの製造方法。
The method for producing rutile type titanium oxide according to claim 1, wherein rutile type titanium oxide particles which are single crystals are obtained .
JP2007024663A 2007-02-02 2007-02-02 Rutile-type titanium oxide particles and method for producing the same Expired - Fee Related JP5097408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024663A JP5097408B2 (en) 2007-02-02 2007-02-02 Rutile-type titanium oxide particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024663A JP5097408B2 (en) 2007-02-02 2007-02-02 Rutile-type titanium oxide particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008189497A JP2008189497A (en) 2008-08-21
JP5097408B2 true JP5097408B2 (en) 2012-12-12

Family

ID=39749968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024663A Expired - Fee Related JP5097408B2 (en) 2007-02-02 2007-02-02 Rutile-type titanium oxide particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5097408B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110116130A (en) * 2009-01-12 2011-10-25 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 One step electrochemical process for the synthesis of pure rutile titanium dioxide nanoneedles
JP5096383B2 (en) * 2009-01-27 2012-12-12 チタン工業株式会社 Bundle-like rutile-type titanium oxide, cosmetics using the same, and external additive for toner
WO2014046020A1 (en) * 2012-09-19 2014-03-27 株式会社ダイセル Transition metal compound-loaded titanium oxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631013B2 (en) * 2003-03-28 2011-02-16 大阪府 Acicular titanium oxide fine particles, production method thereof and use thereof
JP2005041766A (en) * 2003-07-04 2005-02-17 Toto Ltd Method of manufacturing metallic oxide fine structure
JP2006307125A (en) * 2005-02-02 2006-11-09 Toto Ltd Ultraviolet shielding material
JP4635257B2 (en) * 2006-02-28 2011-02-23 独立行政法人物質・材料研究機構 Method for producing titanium dioxide

Also Published As

Publication number Publication date
JP2008189497A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
Leyva-Porras et al. Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method
JP2972752B1 (en) Method for producing ultrafine crystalline titanium oxide monodispersed powder
RU2127221C1 (en) Powder of metal oxide, powder of titanium oxide, method of producing metal oxide powder
KR101233703B1 (en) Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
Golubović et al. Raman study of the variation in anatase structure of TiO 2 nanopowders due to the changes of sol–gel synthesis conditions
Park et al. Understanding of homogeneous spontaneous precipitation for monodispersed TiO2 ultrafine powders with rutile phase around room temperature
JP2010031235A (en) Thermochromic microparticle, dispersion thereof, and manufacturing method thereof, as well as dimming coating, dimming film and dimming ink
Malligavathy et al. Role of pH in the hydrothermal synthesis of phase pure alpha Bi2O3 nanoparticles and its structural characterization
JP2010105892A (en) Zirconia fine particle and method for producing the same
JP5097408B2 (en) Rutile-type titanium oxide particles and method for producing the same
KR101621831B1 (en) Ultrafine particles of titanium dioxide and process for producing the same
JP2005132706A (en) Manufacturing method of rutile type titanium oxide superfine particle
Zimmermann et al. Parameter studies of the synthesis of titanium dioxide nanoparticles: Effect on particle formation and size
Manna et al. Structural stability and optical properties of nanocrystalline zirconia
US9409789B2 (en) Strontium titanate powder and method of preparing the same
CN102089246A (en) Method for producing microcrystalline titanium oxide
Ismail et al. Effect of TiO 2 nanorod thickness on optical properties of Ba 0.8 Sr 0.2 TiO 3 film via hydrothermal method
CN1472169A (en) Technology for preparing high-purity nanometer strontium titanate powder
Balanov et al. Sol–gel synthesis and structural characterization of band gap engineered ferroelectric perovskite oxide potassium sodium barium nickel niobate
JP2012184136A (en) Method for producing lanthanum titanate particle, lanthanum titanate particle and lanthanum titanate particle dispersion
Pramanik et al. Effects of reactant concentration and OH− ions on the formation of nanocrystalline BaTiO3 in solution
JP5531606B2 (en) Spherical crystalline titanium oxyoxalate powder and method for producing the same
JPH04367512A (en) Sperical porous anatase-type titanium dioxide fine particle and its production
JP2011190152A (en) Amorphous titania sol and method for producing the same
JP6124832B2 (en) Infrared shielding material fine particle production method, infrared shielding material fine particle dispersion production method, infrared shielding material fine particle, infrared shielding material fine particle powder, infrared shielding material fine particle dispersion, infrared shielding material fine particle dispersion, and coated substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Ref document number: 5097408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees