JPH06119941A - Sensing method for battery discharging residual time and remaining capacity - Google Patents

Sensing method for battery discharging residual time and remaining capacity

Info

Publication number
JPH06119941A
JPH06119941A JP4286783A JP28678392A JPH06119941A JP H06119941 A JPH06119941 A JP H06119941A JP 4286783 A JP4286783 A JP 4286783A JP 28678392 A JP28678392 A JP 28678392A JP H06119941 A JPH06119941 A JP H06119941A
Authority
JP
Japan
Prior art keywords
time
discharge
battery
capacity
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4286783A
Other languages
Japanese (ja)
Inventor
Toshio Yamamoto
利男 山本
Kazuo Kanai
一夫 金井
Hidemi Hashimoto
秀実 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4286783A priority Critical patent/JPH06119941A/en
Publication of JPH06119941A publication Critical patent/JPH06119941A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To make real time sensing of the discharge residual time of a battery and its residual capacity precisely by substituting continued capacity-converted time factor data of the battery into a calculating formula, and calculating the residual time and capacity. CONSTITUTION:The temp. 6 of a battery, voltage 7, current 8, and load current 9 are read into a CPU 1 via an A/D converter 5. When a power failure occurs, discharge from the battery begins, and the amount of discharging is cumulated from the product of the battery current 8 and discharge time. The ratio of discharge of the battery according to the discharge current is calculated. The dischargeable time is calculated on the basis of the ratio of discharge from a formula representing the function obtained from the battery capacity converted time factor at a temp. of 5 deg.C. The dischargeable time is alike determined for 25 deg.C. A correction is made from the battery temp. 6, and the dischargeable time for the actual battery temp. is determined. The amount of discharge is subtracted from the product of the dischargeable time and current 5, and the residual capacity is determined. The obtained residual capacity is divided with the current 5 to determine the discharging residual time, and the battery residual capacity ratio is determined from the residual capacity and displayed on a display device 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非常照明用・計装用・
交換機用・操作用及びインバ−タ用など二次電池を電源
とする蓄電池の充放電に対し、放電可能な時間・容量や
劣化状況を検知する蓄電池放電残時間および残存容量検
知方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to emergency lighting, instrumentation,
The present invention relates to a remaining battery discharge time and a remaining capacity detection method for detecting a dischargeable time / capacity and a deterioration state when charging / discharging a storage battery using a secondary battery as a power source such as for an exchange / operation and an inverter. .

【0002】[0002]

【従来の技術】従来、蓄電池の放電残時間・残存容量や
劣化を検知する方法としては、蓄電池の電圧のみを測
定しある一定電圧に到達したかどうかにより検知する方
法、鉛蓄電池の電解液である硫酸の比重測定により検
知する方法、微分内部抵抗の測定により、残存容量を
検知する方法、蓄電池形式別や蓄電池温度別に放電特
性デ−タを数値として数多く記憶装置に格納しその時の
放電電流値と放電特性デ−タとの比較演算を繰り返すこ
とにより放電終止電圧までの放電残時間を表示する方法
などがある。
2. Description of the Related Art Conventionally, as a method of detecting the remaining discharge time / remaining capacity or deterioration of a storage battery, a method of measuring only the voltage of the storage battery and detecting whether or not a certain voltage has been reached, and an electrolyte solution of a lead storage battery are used. A method of detecting the specific capacity of a certain sulfuric acid, a method of detecting the remaining capacity by measuring the differential internal resistance, a large number of discharge characteristic data by storage battery type and storage battery temperature are stored in a storage device, and the discharge current value at that time is stored. There is a method of displaying the remaining discharge time up to the discharge end voltage by repeating the comparison calculation between the discharge characteristic data and the discharge characteristic data.

【0003】[0003]

【発明が解決しようとする課題】上記従来の方法で
は、蓄電池の特性上、電圧と残存容量の間に直接的な相
関性はなく、放電終了近くまで蓄電池の電圧に大きな変
化が無いために、放電終止電圧近くまで放電残時間や残
存容量を検知できない。また放電電流が時間の経過とと
もに変化する負荷では、電圧変動が大きく精度も低いと
いう問題点がある。
In the above conventional method, since there is no direct correlation between the voltage and the remaining capacity due to the characteristics of the storage battery, and there is no large change in the voltage of the storage battery near the end of discharge, The remaining discharge time and remaining capacity cannot be detected up to near the discharge end voltage. Further, in a load in which the discharge current changes with the passage of time, there is a problem that the voltage fluctuation is large and the accuracy is low.

【0004】また、従来の方法では、蓄電池の電圧や
温度・放電電流を検出するセンサー以外に比重センサー
の取付が必要で陰極吸収式シール形タイプの鉛蓄電池に
はこの方法は採用できにくい。また従来の開放形の鉛蓄
電池でも、充電後の比重均一化に時間を要するので実用
的ではない。
Further, in the conventional method, a specific gravity sensor must be attached in addition to the sensor for detecting the voltage, temperature and discharge current of the storage battery, and this method is difficult to be applied to the cathode absorption type seal type lead storage battery. Further, even a conventional open-type lead acid battery is not practical because it takes time to make the specific gravity uniform after charging.

【0005】一方、アルカリ蓄電池では、電解液に硫酸
を使用せずかせいカリを使用しており充放電に対して比
重の変化が生じないためこの方法は採用できない。
On the other hand, in alkaline storage batteries, this method cannot be adopted because sulfuric acid is not used in the electrolytic solution and potassium hydroxide is used, and the specific gravity does not change with charge and discharge.

【0006】次に従来の方法については、蓄電池の微
分抵抗を測定するためには、短時間ではあるが蓄電池か
ら大電流を放電させその時のIRドロップから求める
か、交流法による接点抵抗計を設置しなければならない
こと及び、鉛蓄電池の場合正極活物質の軟化など鉛蓄電
池劣化原因によっては、放電持続時間が短くなる場合が
あり、検知結果の信頼性が低いという欠点がある。
Next, in the conventional method, in order to measure the differential resistance of the storage battery, a large current is discharged from the storage battery for a short time, and it is determined from the IR drop at that time, or a contact resistance meter by the AC method is installed. There is a drawback that the discharge duration may be short and the reliability of the detection result is low depending on what must be done and in the case of the lead storage battery, depending on the cause of deterioration of the lead storage battery such as softening of the positive electrode active material.

【0007】従来の方法については、蓄電池容量に対
して放電電流が小さい場合から大きい場合まで放電終止
電圧毎に容量換算時間係数デ−タの数値を数多く必要と
する。まして蓄電池温度の変化による補正容量換算時間
係数デ−タを加えるとさらに膨大な容量換算時間係数デ
−タを数値として記憶装置に登録する必要があり記憶装
置の容量が大きくなるという欠点がある。また、そのデ
−タ数が少ない時には表示結果の信頼性が低いという欠
点がある。
In the conventional method, a large number of capacity conversion time coefficient data are required for each discharge end voltage from the case where the discharge current is small to the case where the discharge current is large. Furthermore, if the corrected capacity conversion time coefficient data due to the change of the storage battery temperature is added, it is necessary to register a huge amount of capacity conversion time coefficient data as a numerical value in the storage device, which has a drawback that the capacity of the storage device becomes large. Further, there is a drawback that the reliability of the display result is low when the number of data is small.

【0008】前記からの3種の方法では、変動する
負荷に対してリアルタイムに蓄電池放電残時間および残
存容量を検知する事ができないという欠点がある。また
の方法では、リアルタイムに表示が可能であるが1つ
の記憶容量で精度の高い数種類の蓄電池容量換算時間係
数データを格納することが困難で汎用性に乏しいという
欠点がある。
The above three methods have a drawback that the remaining battery discharge time and the remaining capacity cannot be detected in real time with respect to a fluctuating load. In the other method, it is possible to display in real time, but there is a drawback that it is difficult to store several kinds of highly accurate storage battery capacity conversion time coefficient data in one storage capacity and the versatility is poor.

【0009】[0009]

【課題を解決するための手段】本発明の目的とするとこ
ろは、蓄電池の連続した容量換算時間係数データをあら
かじめ記憶装置内に関数として格納し温度補正をした放
電終止電圧までの精度の高い蓄電池残時間および残存容
量を得るものである。
SUMMARY OF THE INVENTION An object of the present invention is to store a continuous capacity conversion time coefficient data of a storage battery as a function in a storage device in advance and to perform temperature correction with high accuracy to a discharge end voltage. The remaining time and the remaining capacity are obtained.

【0010】蓄電池の連続した容量換算時間係数データ
を関数化する方式としてニュートンの差分商補間公式な
どがある。
As a method of converting continuous capacity conversion time coefficient data of a storage battery into a function, there is Newton's difference quotient interpolation formula and the like.

【0011】[0011]

【作用】本発明は、容量換残時間係数データを関数化す
ることにより各種類の蓄電池がそれぞれに持っている放
電終止電圧や温度別の容量換残時間係数データを小さな
記憶装置の中に格納することができ、蓄電池ごとに記憶
装置を持つ必要がなく、従来より高い精度で停電発生
後、直ちに負荷電流に応じた蓄電池放電残時間および残
存容量を検知できる。復電後も、負荷電流の値に応じた
蓄電池の残存容量が検知できる。また実際の蓄電池の放
電がこの残時間表示よりも早く終了してしまった時には
その時間によって蓄電池の劣化状態がわかり実際の負荷
での蓄電池寿命の判定が可能である。
According to the present invention, by converting the capacity-replacement remaining time coefficient data into a function, the capacity-remaining remaining-time coefficient data for each discharge end voltage and temperature of each type of storage battery are stored in a small storage device. Therefore, it is not necessary to have a storage device for each storage battery, and the remaining battery discharge time and the remaining capacity corresponding to the load current can be detected immediately after a power failure occurs with higher accuracy than before. Even after power recovery, the remaining capacity of the storage battery can be detected according to the value of the load current. Further, when the actual discharge of the storage battery is finished earlier than the remaining time display, the deterioration state of the storage battery can be known from the time, and the storage battery life under the actual load can be determined.

【0012】[0012]

【実施例】図1は、本発明による蓄電池設備の監視装置
の蓄電池放電残時間および残存容量率検知部分のブロッ
ク図である。図1において、1は制御部であるマイクロ
プロセッサー、2は停電時や充電時に蓄電池放電残時間
および残存容量率を逐次演算し、表示するためのプログ
ラムを記憶しているリードオンリメモリー(ROM)、
3は各種データを一時的に記憶するためのランダムアク
セスメモリー(RAM)である。5は、A/Dコンバ−
タで、蓄電池温度6、蓄電池電圧7、蓄電池電流8、負
荷電流9のアナログデータをデジタルデータに変換しマ
イクロプロセッサーに送り込む。4は、表示装置で蓄電
池放電残時間および残存容量率の計算結果を表示する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a storage battery discharge remaining time and remaining capacity rate detection portion of a storage battery equipment monitoring apparatus according to the present invention. In FIG. 1, 1 is a microprocessor which is a control unit, 2 is a read only memory (ROM) which stores a program for sequentially calculating and displaying the remaining battery discharge time and the remaining capacity rate at the time of power failure or charging.
Reference numeral 3 is a random access memory (RAM) for temporarily storing various data. 5 is an A / D converter
Then, the analog data of the storage battery temperature 6, the storage battery voltage 7, the storage battery current 8 and the load current 9 is converted into digital data and sent to the microprocessor. A display device 4 displays the calculation results of the remaining storage battery discharge time and the remaining capacity rate.

【0013】次にこの監視装置による停電時および充電
時の蓄電池放電残時間および残存容量率検知の演算処理
プロセスについて図2のフローチャートにて説明する。 (1) 監視装置は、常に蓄電池温度6、蓄電池電圧7、蓄
電池電流8および負荷電流9を読み込んでいる。 (2) 停電が発生すると蓄電池から放電が始まり蓄電池電
流8と放電時間の積による放電量を積算する。 (3) 放電終止電圧に至るまでに蓄電池から取り出すこと
の出来る容量は、放電電流によって変わることから放電
電流に応じた蓄電池の放電率を常に演算する。 (4) 5℃の場合の蓄電池容量換算時間係数を関数化した
式から (3)で計算した放電率をもとに放電可能時間を演
算する。 (5) 25℃の場合の蓄電池容量換算時間係数を関数化し
た式から(3) で計算した放電率をもとに放電可能時間を
演算する。 (6) (4) と(5) で求めた2点のデータおよび蓄電池温度
6から比例配分による補正を行い、実際の蓄電池温度に
おける放電可能時間を求める。 (7) (6) で求めた蓄電池放電可能時間と蓄電池電流5の
積から(2) で求めた放電量を減じて、現状負荷において
放電可能な残存容量を求める。 (8) (7) で求めた残存容量を蓄電池電流5で除し蓄電池
放電残時間の演算をする。 (9) (7) で求めた残存容量を (6)で求めた蓄電池放電可
能時間と蓄電池電流5の積で除し蓄電池残存容量率を演
算する。 (10)復電すると蓄電池は充電となり、蓄電池電流8は放
電の時と逆方向となることから、蓄電池電流8と充電時
間の積よる充電量を、これまでの放電量から減算する。 (11)定電圧充電の場合、充電末期近くになると蓄電池充
電電流が小さくなり検出誤差で演算上満充電にならない
場合があるので、24時間充電が継続した場合、蓄電池
は満充電されたものとみなし放電量を0とする。 (12)充電中であってもその時点の負荷電流9における蓄
電池残存容量を表示させるために蓄電池容量を負荷電流
9で除した仮の放電率を演算する。 (13)充電の場合、(6) で求めた蓄電池放電可能時間と負
荷電流9の積から(10)で求めた放電量を減じて残存容量
の演算をする。 (14) (13) で求めた残存容量を (6)で求めた蓄電池放電
可能時間と負荷電流5の積で除し蓄電池残存容量率を演
算する。 (15)この演算結果をもとに蓄電池放電残時間および残存
容量率の表示を行う。
Next, the calculation processing process for detecting the remaining battery discharge time and the remaining capacity rate at the time of power failure and charging by this monitoring device will be described with reference to the flowchart of FIG. (1) The monitoring device constantly reads the storage battery temperature 6, the storage battery voltage 7, the storage battery current 8 and the load current 9. (2) When a power failure occurs, discharge starts from the storage battery and the discharge amount is integrated by the product of storage battery current 8 and discharge time. (3) Since the capacity that can be taken out from the storage battery up to the discharge end voltage changes depending on the discharge current, the discharge rate of the storage battery according to the discharge current is always calculated. (4) The dischargeable time is calculated based on the discharge rate calculated in (3) from the function function of the storage battery capacity conversion time coefficient at 5 ° C. (5) The dischargeable time is calculated based on the discharge rate calculated in (3) from the function function of the storage battery capacity conversion time coefficient at 25 ° C. (6) The dischargeable time at the actual storage battery temperature is obtained by correcting the storage battery temperature 6 with the data of the two points obtained in (4) and (5) by proportional distribution. (7) Subtract the discharge amount obtained in (2) from the product of the storage battery discharge time obtained in (6) and the storage battery current 5 to obtain the remaining capacity that can be discharged under the current load. (8) Divide the remaining capacity obtained in (7) by the storage battery current 5 to calculate the remaining storage battery discharge time. (9) Divide the remaining capacity obtained in (7) by the product of the battery dischargeable time obtained in (6) and the storage battery current 5 to calculate the storage battery remaining capacity rate. (10) When the power is restored, the storage battery is charged and the storage battery current 8 is in the opposite direction to that at the time of discharging. Therefore, the charge amount obtained by multiplying the storage battery current 8 and the charging time is subtracted from the discharge amount so far. (11) In the case of constant voltage charging, the storage battery charging current becomes small near the end of charging and the detection battery may not be fully charged due to a detection error. Therefore, if charging continues for 24 hours, the storage battery is considered to be fully charged. The deemed discharge amount is set to 0. (12) Even during charging, in order to display the storage battery remaining capacity at the load current 9 at that time, a temporary discharge rate is calculated by dividing the storage battery capacity by the load current 9. (13) In the case of charging, the remaining capacity is calculated by subtracting the discharge amount obtained in (10) from the product of the battery dischargeable time obtained in (6) and the load current 9. (14) Divide the remaining capacity obtained in (13) by the product of the battery dischargeable time obtained in (6) and the load current 5 to calculate the remaining capacity of the storage battery. (15) The remaining battery discharge time and the remaining capacity rate are displayed based on this calculation result.

【0014】[0014]

【発明の効果】以上詳述したように、この発明によれば
停電時に精度の高い蓄電池放電残時間および残存容量を
リアルタイムに検知することが可能であり、復電後も負
荷電流に応じた残存容量を検知することが可能である。
従って、停電時において放電残時間および残存容量を
正確に予測計算する事ができるので残時間に応じた適切
な処置が可能である。
As described above in detail, according to the present invention, it is possible to detect the remaining time of the storage battery discharge and the remaining capacity with high accuracy at the time of power failure, and the remaining capacity according to the load current is restored even after the power recovery. It is possible to detect the capacity.
Therefore, it is possible to accurately predict and calculate the remaining discharge time and the remaining capacity during a power failure, and it is possible to take appropriate measures according to the remaining time.

【0015】また、いかなる放電率に於いても基準が正
確であるので蓄電池の劣化状態を実際の負荷によって確
認できるという優れた効果を発揮する。
Further, since the reference is accurate at any discharge rate, the excellent effect that the deterioration state of the storage battery can be confirmed by the actual load is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法による蓄電池設備の監視装置のブ
ロック図
FIG. 1 is a block diagram of a storage battery equipment monitoring apparatus according to the method of the present invention.

【図2】放電残時間検知の演算処理プロセスを示すフロ
−チャ−トを示す図
FIG. 2 is a diagram showing a flow chart showing a calculation processing process of remaining discharge time detection.

【符号の説明】[Explanation of symbols]

1 マイクロプロセッサー 2 リードオンリメモリー 3 ランダムアクセスメモリー 4 表示装置 5 A/Dコンバータ 6 蓄電池温度 7 蓄電池電圧 8 蓄電池電流 9 負荷電流 1 Microprocessor 2 Read only memory 3 Random access memory 4 Display device 5 A / D converter 6 Storage battery temperature 7 Storage battery voltage 8 Storage battery current 9 Load current

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蓄電池温度別と放電終止電圧別にあらわ
された、連続する蓄電池の容量換算時間係数を関数に置
き替え記憶装置に格納したデータと、充放電時の蓄電池
電流から蓄電池の放電率を演算し、前記容量換算時間係
数データを関数で表した演算式に代入することにより残
りの放電可能な時間および容量を演算することを特徴と
する蓄電池放電残時間および残存容量の検知方法。
1. The data stored in a storage device by replacing the capacity conversion time coefficient of continuous storage batteries represented by storage battery temperature and discharge end voltage with a function, and the storage battery discharge rate from the storage battery current during charging / discharging. A method for detecting a remaining discharge time of a storage battery and a remaining capacity, which comprises calculating and remaining capacity dischargeable time and capacity by calculating and substituting the capacity conversion time coefficient data into a calculation expression represented by a function.
JP4286783A 1992-09-30 1992-09-30 Sensing method for battery discharging residual time and remaining capacity Pending JPH06119941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4286783A JPH06119941A (en) 1992-09-30 1992-09-30 Sensing method for battery discharging residual time and remaining capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4286783A JPH06119941A (en) 1992-09-30 1992-09-30 Sensing method for battery discharging residual time and remaining capacity

Publications (1)

Publication Number Publication Date
JPH06119941A true JPH06119941A (en) 1994-04-28

Family

ID=17708995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4286783A Pending JPH06119941A (en) 1992-09-30 1992-09-30 Sensing method for battery discharging residual time and remaining capacity

Country Status (1)

Country Link
JP (1) JPH06119941A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406796B1 (en) * 2001-10-17 2003-11-21 삼성에스디아이 주식회사 Method to precisely estimate effective full-discharge capacity of secondary battery
CN113253121A (en) * 2021-07-07 2021-08-13 江苏和晖电动工具有限公司 Battery monitoring method, monitoring system and electric tool
WO2023279856A1 (en) * 2021-07-06 2023-01-12 深圳市正浩创新科技股份有限公司 Method and apparatus for calculating remaining discharge time, and computer device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163680A (en) * 1988-12-19 1990-06-22 Meidensha Corp Display system for residual capacity of battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163680A (en) * 1988-12-19 1990-06-22 Meidensha Corp Display system for residual capacity of battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406796B1 (en) * 2001-10-17 2003-11-21 삼성에스디아이 주식회사 Method to precisely estimate effective full-discharge capacity of secondary battery
WO2023279856A1 (en) * 2021-07-06 2023-01-12 深圳市正浩创新科技股份有限公司 Method and apparatus for calculating remaining discharge time, and computer device
CN113253121A (en) * 2021-07-07 2021-08-13 江苏和晖电动工具有限公司 Battery monitoring method, monitoring system and electric tool

Similar Documents

Publication Publication Date Title
JP3873623B2 (en) Battery charge state estimation means and battery deterioration state estimation method
US6388450B2 (en) Method for determining the state of charge of storage batteries
US4390841A (en) Monitoring apparatus and method for battery power supply
CN108572325A (en) Detection method, device and test equipment for lithium separation of battery
CN1228540A (en) Monitoring technique for accurately determining residual capacity of battery
JP4016881B2 (en) Battery level measuring device
JP3495139B2 (en) Battery remaining capacity measurement device
JP3225812B2 (en) Battery status management device
JP2004177373A (en) Method of estimating battery condition, and method of determining engine start
JPH06119941A (en) Sensing method for battery discharging residual time and remaining capacity
JP3412355B2 (en) Nickel-based battery deterioration determination method
CN115639480B (en) Method and device for detecting health state of battery
JPH10253725A (en) Method and equipment for measuring battery state
TWI398028B (en) Apparatus and method for measuring internal resistance of battery
CN115436827A (en) Insulation resistance detection method, device and equipment
JPS61109264A (en) Storage cell monitoring device
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
JP2964482B2 (en) Method for detecting remaining capacity of lead-acid battery
JPH0784015A (en) Residual capacity detector for lead storage battery
JP3305403B2 (en) Battery capacity testing device
JP2792064B2 (en) Method for detecting remaining capacity of lead-acid battery
JP3346003B2 (en) Method for detecting capacity of ion secondary battery
JPH09211090A (en) Method for measuring remaining capacity of lead storage battery
JP2964483B2 (en) Method for detecting remaining capacity of lead-acid battery
JP4802414B2 (en) Battery remaining capacity meter