JPH0611896B2 - Aluminum alloy brazing sheet - Google Patents

Aluminum alloy brazing sheet

Info

Publication number
JPH0611896B2
JPH0611896B2 JP62157601A JP15760187A JPH0611896B2 JP H0611896 B2 JPH0611896 B2 JP H0611896B2 JP 62157601 A JP62157601 A JP 62157601A JP 15760187 A JP15760187 A JP 15760187A JP H0611896 B2 JPH0611896 B2 JP H0611896B2
Authority
JP
Japan
Prior art keywords
corrosion
aluminum
aluminum alloy
core material
brazing sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62157601A
Other languages
Japanese (ja)
Other versions
JPS644449A (en
Inventor
達也 藤吉
勝之 橋本
建 当摩
憲昭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP62157601A priority Critical patent/JPH0611896B2/en
Publication of JPS644449A publication Critical patent/JPS644449A/en
Publication of JPH0611896B2 publication Critical patent/JPH0611896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Description

【発明の詳細な説明】 a.発明の目的 (産業上の利用分野) この発明に係るアルミニウム合金製ブレージングシート
は、ろう付け後も高強度を有し、且つ耐食性に優れたも
ので自動車用ラジエータやヒータコア等として利用する
アルミニウム製熱交換器の伝熱管や座板を構成する板材
として利用する事が出来る。
DETAILED DESCRIPTION OF THE INVENTION a. Object of the Invention (Industrial field of application) The aluminum alloy brazing sheet according to the present invention has high strength even after brazing and is excellent in corrosion resistance, and is made of aluminum heat used as a radiator or heater core for automobiles. It can be used as a plate material for heat exchanger tubes and seat plates of exchangers.

(従来の技術) ラジエータ或はヒータコアとして利用される熱交換器と
して、第2図に示す様な熱交換器が知られている。この
熱交換器は、多数の扁平な伝熱管1、1と、多数のフィ
ン2、2とを、各フィン2、2の湾曲部を各伝熱管1、
1の平坦な側面に当接させた状態で交互に重ね合わせて
成るコア部3の上下(或は左右)両端部に、それぞれ座
板4を介して入口管5を有する上タンク6と出口管7を
有する下タンク8とを設けている。
(Prior Art) As a heat exchanger used as a radiator or a heater core, a heat exchanger as shown in FIG. 2 is known. This heat exchanger includes a large number of flat heat transfer tubes 1 and 1, a large number of fins 2 and 2, and a curved portion of each fin 2 and 2 to each heat transfer tube 1,
An upper tank 6 and an outlet pipe each having an inlet pipe 5 via a seat plate 4 at both upper and lower (or left and right) end portions of a core portion 3 which is alternately stacked in a state of being in contact with a flat side surface of And a lower tank 8 having

この様な熱交換器により、例えばエンジン冷却水の放熱
を行なう場合、エンジンの熱を奪って温度上昇した冷却
水を入口管5から送り込むと、この冷却水は上タンク6
から下タンク8に向けて多数の伝熱管1、1内を流下す
る間に、コア部3を構成する多数のフィン2、2の間を
図面の表裏方向に流通する空気との間で熱交換を行なっ
て温度低下した後、出口管7から送り出される。
For example, when heat is dissipated from the engine cooling water by such a heat exchanger, when the cooling water which has taken the heat of the engine and rises in temperature is sent from the inlet pipe 5, this cooling water is transferred to the upper tank 6.
From the bottom to the lower tank 8 while flowing in the large number of heat transfer tubes 1 and 1, heat is exchanged between the large number of fins 2 and 2 forming the core part 3 and the air flowing in the front-back direction of the drawing. After the temperature is lowered by performing the above, the gas is sent out from the outlet pipe 7.

この様な熱交換器は、従来は銅や真鍮によって造られて
いたが、近年安価で軽量なアルミニウムにより造る事が
多くなって来た。
Conventionally, such a heat exchanger has been made of copper or brass, but in recent years, it has become more and more often made of inexpensive and lightweight aluminum.

ところが、アルミニウムは銅や真鍮に比べて腐食し易
く、そのままでは熱交換器として十分な耐久性を得る事
が出来ない為、特開昭55-95094号公報、同55-123996号
公報、同56-44742号公報、同58-173396号公報等に開示
されている様に、亜鉛を多く含むアルミニウム合金の皮
材を、防食をすべきアルミニウム材の芯材に積層(クラ
ッド)して設け、上記亜鉛を多く含むアルミニウム合金
の皮材を犠牲的に腐食させる事によって、芯材であるア
ルミニウム材の防食を図る事が行なわれている。
However, aluminum is more likely to corrode than copper or brass, and it is not possible to obtain sufficient durability as a heat exchanger as it is, therefore, JP-A-55-95094, JP-A-55-123996, and JP-A-56-56 As disclosed in JP-A-44742, JP-A-58-173396, etc., an aluminum alloy skin material containing a large amount of zinc is provided by being laminated (clad) on a core material of an aluminum material to be protected against corrosion. It has been attempted to prevent corrosion of an aluminum material which is a core material by sacrificially corroding an aluminum alloy skin material containing a large amount of zinc.

この様なアルミニウム製熱交換器の多くには、JIS3
003材(0.05〜0.2%の銅と、1.0〜1.5
%のマンガンとを含み、残りを不可避不純物とアルミニ
ウムとしたもの)を芯材とし、この芯材の片面または両
面にアルミニウム−硅素系合金のろう材を皮材として積
層したアルミニウム合金製ブレージングシートが用いら
れている。
Many of such aluminum heat exchangers have JIS3
003 material (0.05-0.2% copper, 1.0-1.5
% Of manganese, the remainder being unavoidable impurities and aluminum) as a core material, and an aluminum alloy brazing sheet in which a brazing material of an aluminum-silicon alloy is laminated on one or both surfaces of the core material as a skin material. It is used.

このブレージングシートを、そのままラジエータの伝熱
管や座板に用いる場合には、これに熱媒体であるエンジ
ン冷却水が接触して腐食が発生し、薄肉のシートの場合
には皮材を通して腐食が進行し、芯材にも貫通孔を生じ
させる事がある。この為、冷却水に接する面に、更にJ
IS7072材(0.8〜1.3%の亜鉛を含み、残り
を不可避不純物とアルミニウムとしたもの)で代表され
るアルミニウム−亜鉛合金を積層して犠牲陽極を形成さ
せ、芯材に熱交換器として致命的な腐食が発生するのを
防止する様にしたブレージングシートが用いられてい
る。従来から知られているアルミニウム製熱交換器用積
層材の他のものも、基本的には同様にして、熱交換器と
して致命的になる様な腐食が芯材に発生する事を防止し
ている。
When this brazing sheet is used as it is for a radiator heat transfer tube or a seat plate, engine cooling water, which is a heat medium, comes into contact with it to cause corrosion, and in the case of a thin sheet, corrosion progresses through the skin material. However, a through hole may be formed in the core material. For this reason, J
A sacrificial anode is formed by laminating an aluminum-zinc alloy represented by IS7072 material (containing 0.8 to 1.3% of zinc, with the balance being inevitable impurities and aluminum) to form a sacrificial anode, and a heat exchanger as a core material. As the brazing sheet, a brazing sheet is used to prevent the occurrence of fatal corrosion. Other aluminum laminates for heat exchangers that have been known in the past are basically used in the same manner to prevent corrosion that would be fatal as a heat exchanger from occurring in the core material. .

(発明が解決しようとする問題点) ところが従来の熱交換器に使用されたアルミニウム合金
製ブレージングシートに於いては、次に述べる様な不都
合を生じる。
(Problems to be Solved by the Invention) However, the aluminum alloy brazing sheet used in the conventional heat exchanger has the following disadvantages.

即ち、JIS3003材で代表される従来の熱交換器用
積層材の芯材の場合には、ろう付け後の軟化した材料の
引張り強度が11〜12Kg/mm2程度と比較的小さい
為、ろう付け後に十分な強度を得ようとすると、材料シ
ートの厚さを大きくしなければならず、アルミニウム合
金を採用する事による熱交換器軽量化の効果を十分に発
揮する事が出来ない。
That is, in the case of the core material of the conventional laminated material for heat exchanger represented by JIS3003 material, the tensile strength of the softened material after brazing is relatively small at about 11 to 12 kg / mm 2, and therefore, after brazing In order to obtain sufficient strength, it is necessary to increase the thickness of the material sheet, and the effect of reducing the weight of the heat exchanger by using the aluminum alloy cannot be fully exerted.

又、JIS3003材を芯材として、防食の為、これに
亜鉛を多く含むアルミニウム合金を積層すると、上記芯
材の防食を図る事は出来るが、亜鉛を多く含むアルミニ
ウム合金の皮材の腐触量が相当に多くなってしまう。特
に、上記芯材を構成するアルミニウム合金中に、この芯
材の強度を向上させる目的で珪素(Si)や銅(Cu)を添加し
た場合には、これら珪素や銅が、熱交換器の構成各部材
をろう付けする際の加熱によって、前記犠牲陽極を形成
するJIS7072材等のアルミニウム合金中に拡散、
流入する。そして、この拡散、流入に伴なって、この犠
牲陽極の腐食量を増大させてしまう。
In addition, JIS3003 material is used as a core material for corrosion protection. When an aluminum alloy containing a large amount of zinc is laminated on the core material, the corrosion resistance of the core material can be achieved, but the corrosion amount of the skin material of the aluminum alloy containing a large amount of zinc. Will increase considerably. Particularly, when silicon (Si) or copper (Cu) is added to the aluminum alloy forming the core material for the purpose of improving the strength of the core material, these silicon and copper are the components of the heat exchanger. Diffusion in aluminum alloy such as JIS7072 material forming the sacrificial anode by heating when brazing each member,
Inflow. Then, along with this diffusion and inflow, the amount of corrosion of the sacrificial anode is increased.

この様に犠牲腐触させるアルミニウム合金の腐食量が多
くなると、腐食生成物が多く発生して熱交換器を構成す
る伝熱管1、1が詰まる原因となり、熱交換器の性能を
悪化させる事にもなる為好ましくない。
When the amount of corrosion of the aluminum alloy to be sacrificed and corroded increases in this way, corrosion products are generated in large amounts, which causes clogging of the heat transfer tubes 1 and 1 constituting the heat exchanger, which deteriorates the performance of the heat exchanger. It is not preferable because it also becomes.

本考案のブレージングシートは、芯材の強度を著しく向
上させると共に、芯材と皮材との電位差によって、犠牲
陽極効果を十分に発揮させつつ犠牲陽極材の耐食性をも
改善する事により、上述の様な不都合を解消する様にし
たものである。
The brazing sheet of the present invention remarkably improves the strength of the core material, and also improves the corrosion resistance of the sacrificial anode material while sufficiently exhibiting the sacrificial anode effect due to the potential difference between the core material and the skin material. This is to eliminate such inconvenience.

b.発明の構成 (問題を解決するための手段) 本発明のアルミニウム合金製ブレージングシートは、前
述した従来の熱交換器様アルミニウム合金製ブレージン
グシートの場合と同様第1図に示す様に、防食すべき芯
材9の冷却液と接触する側の表面に犠牲陽極層10を、
反対側の表面に、このブレージングシートを他のアルミ
ニウム合金製板材とろう付けする場合のろうを供給する
ろう材層11を、それぞれ設けている。
b. Configuration of the Invention (Means for Solving the Problem) The aluminum alloy brazing sheet of the present invention should be anticorrosive as shown in FIG. 1 as in the case of the conventional heat exchanger-like aluminum alloy brazing sheet described above. The sacrificial anode layer 10 is formed on the surface of the core material 9 that is in contact with the cooling liquid.
A brazing material layer 11 for supplying a brazing material when brazing this brazing sheet to another aluminum alloy plate material is provided on the surface on the opposite side.

この内の芯材9は、0.8〜1.5重量%のマンガン(M
n)と、0.6〜1.3重量%の硅素(Si)と、0.3〜
1.0重量%の、銅(Cu)と、0.2〜0.5重量%のマ
グネシウム(Mg)と、0.05〜0.2重量%のジルコニ
ウム(Zr)とを含み、残りをアルミニウム(Al)と不可避不
純物としている。
The core material 9 in this is 0.8 to 1.5% by weight of manganese (M
n), 0.6 to 1.3% by weight of silicon (Si), and 0.3 to
1.0 wt% copper (Cu), 0.2-0.5 wt% magnesium (Mg), 0.05-0.2 wt% zirconium (Zr), the balance aluminum (Al) and unavoidable impurities.

又、この芯材9の冷却水と接触する側の面を覆う犠牲陽
極層10は、0.2〜0.5重量%のマグネシウム(Mg)
と、0.1〜0.3重量%の亜鉛(Zn)とを含み、残りを
アルミニウムと不可避不純物としている。
The sacrificial anode layer 10 covering the surface of the core material 9 in contact with the cooling water is 0.2 to 0.5% by weight of magnesium (Mg).
And zinc (Zn) in an amount of 0.1 to 0.3% by weight, and the balance is aluminum and inevitable impurities.

更に、芯材9の反対面を覆うろう材層11は、珪素を含
みアルミニウムを主成分とし残りを不可避不純物として
いる。
Furthermore, the brazing material layer 11 that covers the opposite surface of the core material 9 contains silicon as a main component and aluminum as the unavoidable impurities.

この様に構成される本発明のアルミニウム合金製ブレー
ジグシートに於いては、犠牲陽極層10自体に亜鉛が多
く含まれていない事と、含まれるマグネシウムの量が限
定されている事との為、ろう付け時の加熱に伴なって、
芯材9から珪素や銅が、上記犠牲陽極層10中に拡散、
流入しても、この犠牲陽極層10の腐触量を増加させ
ず、むしろ減少させる作用があるので、腐食生成物が、
熱交換器を構成する伝熱管を詰まらせる程多くなる事は
ない。
In the aluminum alloy brazing sheet of the present invention having such a configuration, the sacrificial anode layer 10 itself does not contain much zinc, and the amount of magnesium contained is limited. , With the heating during brazing,
Silicon or copper diffuses from the core material 9 into the sacrificial anode layer 10,
Even if it flows in, the corrosion amount of the sacrificial anode layer 10 does not increase but rather decreases.
It does not increase enough to block the heat transfer tubes that make up the heat exchanger.

又、マンガンと銅とを含む芯材9の電位は、これらの元
素を含まない犠牲陽極層10の電位よりも高い(貴であ
る)為、腐食条件が厳しくなった場合には、犠牲陽極層
10が腐食する事で芯材9に迄腐食が及ぶ事を防止す
る。
Further, since the potential of the core material 9 containing manganese and copper is higher (noble) than the potential of the sacrificial anode layer 10 not containing these elements, the sacrificial anode layer 10 is used when the corrosion condition becomes severe. Corrosion of 10 prevents the core material 9 from being corroded.

又、マンガンと銅、硅素、マグネシウム、亜鉛とを含む
芯材9の引張り強度はJIS3003材に比べて大きく
なり、本発明のブレージングシートを用いて造った熱交
換器の強度も十分に大きくなる。
Further, the tensile strength of the core material 9 containing manganese, copper, silicon, magnesium, and zinc is higher than that of JIS3003 material, and the strength of the heat exchanger manufactured using the brazing sheet of the present invention is also sufficiently high.

尚、芯材中に含有させるマンガン、硅素、銅、マグネシ
ウム、ジルコニウムの量を前述の範囲に定めたのは、次
の理由による。
The amount of manganese, silicon, copper, magnesium and zirconium contained in the core material is set within the above range for the following reason.

即ち、アルミニウム合金にマンガンを添加する事によっ
て、このアルミニウム合金の耐食性と高温強度とが向上
するが、この効果はマンガンの含有量が0.8重量%未
満では不十分であり、反対に含有量が1.5重量%を超
えると材料の加工性が低下し、成形の際に割れを生じ易
くなる為、上記の範囲に限定した。
That is, by adding manganese to the aluminum alloy, the corrosion resistance and high temperature strength of the aluminum alloy are improved, but this effect is insufficient when the manganese content is less than 0.8% by weight, and conversely Is more than 1.5% by weight, the workability of the material is deteriorated and cracks are likely to occur during molding. Therefore, the content is limited to the above range.

硅素は、マンガンと共存することにより均一分散する微
細なアルミニウム−マンガン、硅素化合物を形成し、高
温強度と室温強度とがアルミニウム−マンガン合金の場
合に比べて飛躍的に向上するという効果を生じる。この
効果は、硅素の含有量が0.6重量%未満では不十分で
あり、1.3重量%を越えると材料の溶融開始温度が下
り、高温強度が低下すると共に、犠牲陽極層の腐食量を
増大させるので、上記の範囲に限定した。
Silicon forms fine aluminum-manganese and silicon compounds that are uniformly dispersed by coexisting with manganese, and has the effect of dramatically improving high-temperature strength and room-temperature strength as compared with aluminum-manganese alloys. This effect is insufficient when the content of silicon is less than 0.6% by weight, and when it exceeds 1.3% by weight, the melting start temperature of the material is lowered, the high temperature strength is lowered, and the corrosion amount of the sacrificial anode layer is reduced. Is increased, so the above range is limited.

又、銅は芯材の電位を犠牲陽極層の電位よりも十分に高
くすると共に、芯材の強度を向上させる為に添加する
が、この効果は銅の含有量が0.3重量%未満では不十
分であり、反対に含有量が1.0重量%を越えると、前
記マンガンの場合と同様に、銅とアルミニウムとの間の
粒界腐食性が強くなって、局部腐食の成長速度が著しく
大きくなり、金属を内部から破壊し貫通孔を生じ易くな
ると共に、犠牲陽極層の腐食量を増大させるので、上記
の範囲に限定した。
Further, copper is added in order to make the potential of the core material sufficiently higher than that of the sacrificial anode layer and to improve the strength of the core material. This effect is obtained when the content of copper is less than 0.3% by weight. If the content exceeds 1.0% by weight, on the other hand, the intergranular corrosion between copper and aluminum becomes strong, and the growth rate of local corrosion becomes remarkable, as in the case of manganese. Since the size of the sacrificial anode layer is increased, the metal is destroyed from the inside to easily form a through hole, and the corrosion amount of the sacrificial anode layer is increased.

マグネシウムは、芯材の強度を更に向上させる為に添加
するものであるが、その効果はマグネシウムの含有量が
0.2重量%未満では不十分であり、一方、含有量が
0.5重量%を越えると材料の粒界腐食性が強くなり、
局部腐食の成長速度が著しく大きくなって貫通孔を生じ
易くなるので、上記の範囲に限定した。
Magnesium is added to further improve the strength of the core material, but its effect is not sufficient if the magnesium content is less than 0.2% by weight, while the content is 0.5% by weight. If it exceeds, the intergranular corrosion resistance of the material becomes strong,
Since the growth rate of local corrosion is remarkably increased and a through hole is easily generated, the range is limited to the above range.

ジルコニウムに就いては、銅と同様に芯材の電位を犠牲
陽極層の電位よりも十分に高くすると共に、芯材の高温
時に於ける強度を向上させる為に添加するが、この効果
はジルコニウムの含有量が0.05重量%未満では不十
分であり、反対に含有量が0.2重量%を越えるとプレ
ス成形時等に於ける加工性が悪化する為、上記の範囲に
限定した。
Like zirconium, zirconium is added to make the potential of the core material sufficiently higher than the potential of the sacrificial anode layer and to improve the strength of the core material at high temperature. If the content is less than 0.05% by weight, the content is insufficient. On the contrary, if the content exceeds 0.2% by weight, the workability during press molding is deteriorated, so the content is limited to the above range.

次に、犠牲陽極層中に含有させるマグネシウム、亜鉛の
量を前述の範囲に定めたのは、次の理由による。
Next, the amounts of magnesium and zinc contained in the sacrificial anode layer are set within the above ranges for the following reason.

即ち、マグネシウムは適量加える事によってアルミニウ
ム合金の水に対する耐食性を向上させる事が出来るのに
加えて、亜鉛(Zn)との共存下で芯材からの珪素及び銅の
拡散、流入を防止するが、この様に耐食性を期待出来る
範囲は前記の様に0.2〜0.5重量%の範囲であっ
て、0.2重量%未満では耐食性を期待出来ず、反対に
0.5重量%を越えて加えてもかえって耐食性が低下す
る為、上記範囲に限定した。
That is, magnesium can improve the corrosion resistance to water of the aluminum alloy by adding an appropriate amount, and in addition to preventing the diffusion and inflow of silicon and copper from the core material in the coexistence with zinc (Zn), As described above, the range in which the corrosion resistance can be expected is 0.2 to 0.5% by weight. If it is less than 0.2% by weight, the corrosion resistance cannot be expected. If added in addition, the corrosion resistance is rather lowered, so the content is limited to the above range.

又、亜鉛はマグネシウムとの共存でアルミニウム合金に
部分的に深い腐食、所謂孔食が発生するのを抑制すると
共に、電位を卑にし、芯材に対する犠牲陽極効果を生じ
させる為に含有させるのであるが、この孔食抑制効果は
亜鉛の添加量が0.1重量%未満ではあまり期待出来
ず、反対に0.3重量%を越えて添加した場合、電位が
卑となり過ぎて、孔食の防止は出来ても犠牲陽極層の腐
食量が多くなって、多量に発生する腐食生成物が伝熱管
を詰まらせる原因となったりする為、0.1〜0.3重
量%の範囲に限定した。
Further, zinc is contained in order to suppress partial deep corrosion, so-called pitting corrosion, in the aluminum alloy in the coexistence with magnesium, make the potential base, and cause a sacrificial anode effect on the core material. However, this effect of suppressing pitting corrosion cannot be expected if the amount of zinc added is less than 0.1% by weight, and conversely, if added in excess of 0.3% by weight, the potential becomes too base and pitting corrosion is prevented. However, the amount of corrosion of the sacrificial anode layer increases, and a large amount of corrosion products may cause clogging of the heat transfer tube. Therefore, the amount is limited to 0.1 to 0.3% by weight.

(実施例) 次に、本発明者が行なった実験に就いて説明する。Example Next, an experiment conducted by the present inventor will be described.

実験は芯材9として第1表のNO.1〜6に示した様な組
成を有する6種類のアルミニウム合金を使用し、犠牲陽
極層10として第2表のNO.A〜Iに示した様な組成を有
する9種類のアルミニウム合金を使用した。
In the experiment, six kinds of aluminum alloys having compositions as shown in Nos. 1 to 6 of Table 1 were used as the core material 9, and the sacrificial anode layer 10 was made as shown in Nos. A to I of Table 2. Nine kinds of aluminum alloys having different compositions were used.

第1表に示された6種類のアルミニウム合金の内、NO.
1〜4のものは本発明に属するものであり、NO.5〜6
は比較の為に用意したアルミニウム合金であってNO.5
はJIS3003材に相当するものである。
Of the six types of aluminum alloy shown in Table 1, NO.
Nos. 1 to 4 belong to the present invention, and NO.
Is an aluminum alloy prepared for comparison and is NO.5
Corresponds to JIS3003 material.

又、第2表に示された9種類のアルミニウム合金の内、
NO.A〜Fのものは本発明に属するものでありNO.G〜I
は比較の為に用意したアルミニウム合金であって、NO.
GはJIS1050材に相当するもの、NO.IはJIS7
072材に相当するものである。
In addition, among the nine types of aluminum alloys shown in Table 2,
NO.A to F belong to the present invention, and NO.G to I
Is an aluminum alloy prepared for comparison, and NO.
G is equivalent to JIS1050 material, NO.I is JIS7
It corresponds to 072 material.

これら第1〜2表に示された合計15種類のアルミニウ
ム合金は、第1表に示された芯材用のアルミニウム合金
の表面に第2図に示した犠牲陽極層用のアルミニウム合
金0.1mmの厚さに被覆する事で、第3表に示した様な
合計15種類のブレージングシートの試験片を造った。
試験片の製造は、何れも圧延により行なった。
The total of 15 types of aluminum alloys shown in Tables 1 and 2 are the aluminum alloy for the sacrificial anode layer shown in FIG. A total of 15 types of brazing sheet test pieces as shown in Table 3 were prepared by coating the same thickness.
All the test pieces were manufactured by rolling.

各試験片は、実際の熱交換器に使用するブレージングシ
ートと条件を同じにする為、窒素雰囲気中に於いて60
0℃で3分間加熱した後、各試験片に就いて引張り強度
の測定を行なうと共に、所定の腐食試験を行ない、その
後各試験片に就いて腐食量と最大孔食深さとを測定し
た。
Since each test piece has the same condition as the brazing sheet used for the actual heat exchanger, it is 60
After heating at 0 ° C. for 3 minutes, the tensile strength was measured for each test piece and a predetermined corrosion test was performed, and thereafter the corrosion amount and the maximum pitting corrosion depth were measured for each test piece.

腐食試験は、塩素イオン(Cl-)を200ppm、硫酸イオン
(SO4 2-)を60ppm、銅イオン(Cu2+)を1ppm、第二鉄イ
オン(Fe3+)を30ppmそれぞれ含む88℃に加温した腐
食液に各試験片を浸漬し、上記腐食液を60/minで
8時間循環させた後、16時間静止させる工程を1サイ
クルとして、30日間(30サイクル)実施した。
Corrosion test, a chlorine ion (Cl -) 200 ppm of sulfate ions
(SO 4 2− ) 60ppm, copper ion (Cu 2+ ) 1ppm, ferric ion (Fe 3+ ) 30ppm, each test piece is immersed in a corrosive liquid heated to 88 ° C, and the above corrosion is performed. The liquid was circulated at 60 / min for 8 hours and then allowed to stand for 16 hours, which was set as one cycle, and was performed for 30 days (30 cycles).

この試験結果を判定するに当っては、腐食量に就いて
は、2.0mg/cm2未満の場合を良好とし、最大孔食深さ
に就いては、犠牲陽極層の厚さである0.1mm以下であ
れば良好とした。
In determining the test results, the corrosion amount is less than 2.0 mg / cm 2 , and the maximum pitting depth is 0, which is the thickness of the sacrificial anode layer. If it was less than 1 mm, it was considered good.

その結果、本発明によるアルミニウム合金製ブレージン
グシートの引張り強度は何れに就いても19Kg/mm2
上で、熱交換器を造る為に十分な強度を有していた。
As a result, the aluminum alloy brazing sheet according to the present invention had a tensile strength of 19 kg / mm 2 or more in any case, and had a sufficient strength for producing a heat exchanger.

又、腐食量に関しても、最も多いのものでも1.82mg
/cm2であって、比較の為に使用したブレージングシート
に比べて少なかった。
Regarding the amount of corrosion, 1.82 mg is the most
/ cm 2, which was less than the brazing sheet used for comparison.

更に、最大孔食深さに就いては、最も深く迄達したもの
でも犠牲陽極層の厚さと同じ0.1mmであって、芯材の
中に迄腐食が達したものはなく、比較材に於いてその多
くが芯材に迄達する孔食を発生したのに比べて、優れた
結果を得られた。
Further, regarding the maximum pitting depth, even the deepest pitting corrosion was 0.1 mm, which is the same as the thickness of the sacrificial anode layer, and no corrosion reached the core material. Excellent results were obtained in comparison with most of them in which pitting corrosion that reaches the core material occurred.

c.発明の効果 本発明のアルミニウム合金製ブレージングシートは以上
に述べた様に、腐食量を少なく抑える事が出来るばかり
でなく、芯材の中に迄達する様な深い孔食の発生を抑え
る事が可能となり、しかも加熱後の引張り強度も十分に
大きい為、軽量でしかも耐久性に優れ、長期間に亘って
安定した性能を発揮するアルミニウム製熱交換器を得る
事が出来て有用である。
c. EFFECTS OF THE INVENTION As described above, the aluminum alloy brazing sheet of the present invention can not only suppress the amount of corrosion to be small, but also suppress the occurrence of deep pitting that reaches the core material. Moreover, since the tensile strength after heating is sufficiently large, it is useful because it is possible to obtain an aluminum heat exchanger that is lightweight and has excellent durability, and that exhibits stable performance over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のアルミニウム合金ブレージングシート
の断面図、第2図はこのブレージングシートを用いて造
られる熱交換器の1例を示す正面図である。 1:伝熱管、2:フィン、3:コア部、4:座板、5:
入口管、6:上タンク、7:出口管、8:下タンク、
9:芯材、10:犠牲陽極層、11:ろう材層。
FIG. 1 is a cross-sectional view of an aluminum alloy brazing sheet of the present invention, and FIG. 2 is a front view showing an example of a heat exchanger manufactured using this brazing sheet. 1: Heat transfer tube, 2: Fin, 3: Core part, 4: Seat plate, 5:
Inlet pipe, 6: upper tank, 7: outlet pipe, 8: lower tank,
9: core material, 10: sacrificial anode layer, 11: brazing material layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 勝之 東京都中野区南台5丁目24番15号 日本ラ ヂヱーター株式会社内 (72)発明者 当摩 建 静岡県裾野市平松85 三菱アルミニウム株 式会社技術開発センター内 (72)発明者 高橋 憲昭 静岡県裾野市平松85 三菱アルミニウム株 式会社技術開発センター内 (56)参考文献 特開 昭56−16646(JP,A) 特開 昭60−141844(JP,A) 特開 昭60−230953(JP,A) 特開 昭62−127192(JP,A) 特開 昭59−85837(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuyuki Hashimoto 5-24-15 Minamidai, Nakano-ku, Tokyo Within Japan Radiator Co., Ltd. (72) Inventor Toyama Ken 85 Hiramatsu, Susono-shi, Shizuoka Mitsubishi Aluminum Co., Ltd. Technology Development Center (72) Inventor Noriaki Takahashi 85 Hiramatsu, Susono City, Shizuoka Prefecture Mitsubishi Aluminum Co., Ltd. Technology Development Center (56) Reference JP-A-56-16646 (JP, A) JP-A-60-141844 (JP) , A) JP 60-230953 (JP, A) JP 62-127192 (JP, A) JP 59-85837 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】0.8〜1.5重量%のマンガンと、0.
6〜1.3重量%の硅素と、0.3〜1.0重量%の銅
と、0.2〜0.5重量%のマグネシウムと、0.05
〜0.2重量%のジルコニウムとを含み、残部がアルミ
ニウムと、不可避不純物とである芯材の片面に、0.2
〜0.5重量%のマグネシウムと、0.1〜0.3重量
%の亜鉛とを含み、残部がアルミニウムと不可避不純物
とである皮材を積層し、他の片面に、アルミニウムと硅
素とより成るろう材を積層して成るアルミニウム合金製
ブレージングシート。
1. A manganese content of 0.8 to 1.5% by weight;
6-1.3 wt% silicon, 0.3-1.0 wt% copper, 0.2-0.5 wt% magnesium, 0.05
0.1% to 0.2% by weight of zirconium, with the balance being aluminum and unavoidable impurities.
~ 0.5 wt% magnesium, 0.1 ~ 0.3 wt% zinc, the rest is a laminate of aluminum and unavoidable impurities, laminated on the other side, aluminum and silicon An aluminum alloy brazing sheet made by laminating the brazing material.
JP62157601A 1987-06-26 1987-06-26 Aluminum alloy brazing sheet Expired - Lifetime JPH0611896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62157601A JPH0611896B2 (en) 1987-06-26 1987-06-26 Aluminum alloy brazing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62157601A JPH0611896B2 (en) 1987-06-26 1987-06-26 Aluminum alloy brazing sheet

Publications (2)

Publication Number Publication Date
JPS644449A JPS644449A (en) 1989-01-09
JPH0611896B2 true JPH0611896B2 (en) 1994-02-16

Family

ID=15653285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62157601A Expired - Lifetime JPH0611896B2 (en) 1987-06-26 1987-06-26 Aluminum alloy brazing sheet

Country Status (1)

Country Link
JP (1) JPH0611896B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642995B2 (en) * 1987-09-22 1994-06-08 古河アルミニウム工業株式会社 Aluminum brazing sheet
US5133402A (en) * 1990-11-09 1992-07-28 Ajax Magnethermic Corporation Induction heating of endless belts in a continuous caster
JP2718325B2 (en) * 1992-05-15 1998-02-25 富士写真光機株式会社 Endoscope suction operation device
WO1996002687A1 (en) * 1994-07-19 1996-02-01 American Plating System, Inc. Electrolytic plating apparatus and method
US5670034A (en) * 1995-07-11 1997-09-23 American Plating Systems Reciprocating anode electrolytic plating apparatus and method
JPH11106855A (en) * 1997-09-30 1999-04-20 Zexel:Kk Heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846540B2 (en) * 1979-07-23 1983-10-17 住友軽金属工業株式会社 Aluminum alloy laminate for heat exchangers assembled by non-oxidizing vacuum brazing
JPS60141844A (en) * 1983-12-28 1985-07-26 Mitsubishi Alum Co Ltd Composite tubular al alloy material for heat exchanger having superior pitting corrosion resistance and mechanical strength
JPS60230953A (en) * 1984-04-27 1985-11-16 Nippon Radiator Co Ltd Composite plate made of aluminum material for heat exchanger
JPS62127192A (en) * 1985-11-29 1987-06-09 Kobe Steel Ltd Corrosion resistant composite aluminum alloy material for brazing

Also Published As

Publication number Publication date
JPS644449A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
EP1038984B1 (en) Corrosion protective sacrificial aluminum alloy for heat exchanger and aluminum alloy composite material highly resistant to corrosion for heat exchanger and heat exchanger using said composite material
EP0799667B1 (en) Aluminum alloy brazing sheet for brazed heat exchanger
JP3772035B2 (en) Aluminum alloy clad material for heat exchangers with excellent erosion and corrosion resistance
JP3873267B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
CN111065753A (en) Aluminum alloy brazing sheet for heat exchanger
JPH0611896B2 (en) Aluminum alloy brazing sheet
JP3765327B2 (en) Brazing aluminum alloy composite member and brazing method
EP1391679A2 (en) Sacrificial Material and Aluminium Alloy Cladding Material for Heat Exchanger
JP4874074B2 (en) Aluminum alloy clad material for heat exchanger
JP3759215B2 (en) Al brazing sheet for vacuum brazing, tube element for drone cup type heat exchanger and drone cup type heat exchanger
JPS6248743B2 (en)
JP3858255B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JPH1161306A (en) Aluminum alloy clad material for heat exchanger
JP2685926B2 (en) A Blazing sheet for refrigerant passage of heat exchanger manufactured by A
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP2003306735A (en) Aluminum alloy brazing sheet for heat exchanger having excellent corrosion resistance
JP4019337B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP3749089B2 (en) Sacrificial anticorrosion aluminum alloy plate and composite material thereof
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPS62227056A (en) Composite material for heat exchanger made of aluminum
JP2764909B2 (en) Brazing sheet and heat exchanger
JP2749660B2 (en) Aluminum heat exchanger
JPS62185855A (en) Sheet for heat exchanger made of aluminum
JP2000034532A (en) Composite material for heat exchanger made of aluminum alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080216

Year of fee payment: 14