JP3873267B2 - Aluminum alloy clad material for heat exchangers with excellent corrosion resistance - Google Patents

Aluminum alloy clad material for heat exchangers with excellent corrosion resistance Download PDF

Info

Publication number
JP3873267B2
JP3873267B2 JP25279698A JP25279698A JP3873267B2 JP 3873267 B2 JP3873267 B2 JP 3873267B2 JP 25279698 A JP25279698 A JP 25279698A JP 25279698 A JP25279698 A JP 25279698A JP 3873267 B2 JP3873267 B2 JP 3873267B2
Authority
JP
Japan
Prior art keywords
clad
core material
corrosion resistance
aluminum alloy
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25279698A
Other languages
Japanese (ja)
Other versions
JP2000087162A (en
Inventor
和幸 坂田
周 黒田
正和 江戸
建 当摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP25279698A priority Critical patent/JP3873267B2/en
Publication of JP2000087162A publication Critical patent/JP2000087162A/en
Application granted granted Critical
Publication of JP3873267B2 publication Critical patent/JP3873267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys

Landscapes

  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、耐食性、特にアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器などの構造用部材として用いるアルミニウム合金クラッド材に関するものである。
【0002】
【従来の技術】
従来、自動車のラジエーターやヒーターコアのチューブ材としては、Al−Mn系合金からなる芯材の片面にAl−Si系ろう材をクラッドし、芯材の他方の片面に、犠牲陽極皮材として芯材よりも卑なアルミニウム合金からなるAl−Zn系合金をクラッドした3層のアルミニウム合金クラッド材が使用されている。最も一般に使用されている具体的なアルミニウム合金クラッド材は、JIS 3003(重量%で、Mn:1.0〜1.5%、Fe:0.05〜0.20%、Si:0.6%以下、Zr:0.7以下%、Zn:0.10以下%、残部:Alおよび不可避不純物)を芯材とし、その片面にJIS 7072からなるAl−Zn系合金犠牲陽極皮材をクラッドし、芯材の他方の片面にAl−Si系ろう材をクラッドしてなるアルミニウム合金クラッド材は知られている。
【0003】
前記アルミニウム合金クラッド材のAl−Si系ろう材は、ろう付け時にチューブ材とフィン材の接合、およびチューブ材とヘッダープレートとの接合に用いられ、犠牲陽極皮材は芯材と電気化学的性質の違いにより皮材を主として腐食し、芯材の孔食を抑制する作用をなすものである。これらアルミニウム合金クラッド材は、ラジエーターやヒーターコアのチューブ材として熱交換器に使用した場合、冷媒が弱酸性から中性領域では優れた犠牲陽極効果を発揮する。しかし、実際に使用される冷却水は不凍液と防錆剤からなるLLC(ロングライフクーラント)を混入したアルカリ性を示すものであり、冷媒がpH9以上のアルカリ性溶液の場合、なお耐食性が十分でなく、早期に孔食が発生したり防食効果が十分に発揮されない場合がある。
【0004】
これらを改良するために、重量%で(以下%は重量%を示す)
(a)Mn:1.0〜1.5%、Fe:0.7%以下、Si:0.6%以下、Cu:0.05〜0.2%、Zn:0.1%以下を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなる芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、Zn:0.1〜1.5%、Fe:0.7を越え〜1.2%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなる耐食性に優れた熱交換器用アルミニウム合金クラッド材(特開平10−17967号公報参照)、
(b)Mn:0.3〜2.0%およびCu:0.10〜0.8%の1種または2種を含有し、必要に応じてMg:0.1〜0.5%、Si:0.1〜1%を含有し、さらに必要に応じてCr:0.05〜0.3%、Zr:0.05〜0.3%、Ti:0.05〜0.3%、B:0.01〜0.1%の内の1種または2種以上を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなる芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、Zn:1.5〜4.0%、Fe:0.5%を越え3%以下を含有し、必要に応じてMg:0.1〜2.5%、Sn:0.01〜0.2%、Ga:0.01〜0.2%の内の1種または2種以上を含有し、さらにCr:0.05〜0.3%、Zr:0.05〜0.3%、Ti:0.05〜0.3%、B:0.01〜0.1、Mn:0.1〜2.0%、Si:0.1〜1%の内の1種または2種以上を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなる耐食性に優れた熱交換器用アルミニウム合金クラッド材(特開平10−72632号公報参照)、
などが提案されている。
【0005】
これら耐食性に優れた熱交換器用アルミニウム合金クラッド材は、犠牲陽極皮材に比較的多量のFeを含有させることにより、犠牲陽極皮材の表面の水酸化皮膜にFeAl3 などのAl−Fe系金属間化合物を微細均一に多く分散させ、腐食開始点を多くすることにより全面腐食の形態を取り、集中腐食により貫通に至るような孔食が発生するのを抑止するものである。
【0006】
【発明が解決しようとする課題】
前述のように、前記従来のアルミニウム合金クラッド材で作製したラジエーターやヒーターコアのチューブは、弱酸性溶液からアルカリ性溶液までの広範囲のpH領域の水溶液に対して優れた耐食性が得られるが、その耐食性はいまだ十分でなく、更なる耐食性に優れたアルミニウム合金クラッド材が求められている。
【0007】
【課題を解決するための手段】
そこで本発明者らは、従来よりも耐食性に優れたアルミニウム合金クラッド材を得るべく研究を行った結果、
(イ)Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、Zn:4.1〜8%、Ti:0.05〜0.5%を含有し、さらに、Zr:0.05〜0.5%、V:0.05〜0.5%、Cr:0.05〜0.5%の内の1種または2種以上を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなるアルミニウム合金クラッド材は、弱酸性溶液からpH9以上のアルカリ性溶液の広範囲のpH領域の水溶液に対する耐食性が従来よりも一層向上し、熱交換器用構造材として優れたものとなる、
(ロ)前記(イ)に記載の芯材は、Al−Mn系合金芯材であればいかなるものでも良いが、特に
(i)Mn:0.8〜1.8%を含有し、さらにSi:0.1〜1.0%、Cu:0.1〜1.0%の内の1種もしくは2種を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなる芯材であることが好ましく、
(ii)Mn:0.8〜1.8%を含有し、さらにFe:0.5〜1.5%を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなる芯材であることが一層好ましく、
(iii)Mn:0.8〜1.8%を含有し、さらにFe:0.5〜1.5%を含有し、さらにSi:0.1〜1.0%、Cu:0.1〜1.0%の内の1種もしくは2種を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなる芯材であることがさらに一層好ましく、
(iv)前記(i)、(ii)または(iii)記載のAl合金に、さらに必要に応じてTi:0.05〜0.2%、Zr:0.05〜0.2%、V:0.05〜0.5%、Cr:0.05〜0.5%、Mg:0.01〜0.2%の内の1種もしくは2種以上を含有し、残りがAlおよび不可避不純物からなる組成のAl合金からなる芯材であってもよい、という知見を得たのである。
【0008】
この発明は、かかる知見に基づいて成されたものであって、
(1)Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなるアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(2)Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Zr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなるアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(3)Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、V:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなるアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(4)Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Cr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなるアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(5)Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Zr:0.05〜0.5%、V:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなるアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(6)Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Zr:0.05〜0.5%、Cr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなるアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(7)Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、V:0.05〜0.5%、Cr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなるアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(8)Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Zr:0.05〜0.5%、V:0.05〜0.5%、Cr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなるアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(9)前記Al−Mn系合金芯材は、Mn:0.8〜1.8%を含有し、さらにSi:0.1〜1.0%、Cu:0.1〜1.0%の内の1種または2種を含有し、残りがAlおよび不可避不純物からなる組成を有する前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(10)前記Al−Mn系合金芯材は、Mn:0.8〜1.8%を含有し、さらに
Si:0.1〜1.0%、Cu:0.1〜1.0%の内の1種または2種を含有し、さらに
Ti:0.05〜0.2%、
Zr:0.05〜0.2%、
V:0.05〜0.5%、
Cr:0.05〜0.5%、
Mg:0.01〜0.2%
の内の1種または2種以上を含有し、残りがAlおよび不可避不純物からなる組成を有する前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(11)前記Al−Mn系合金芯材は、Mn:0.8〜1.8%、Fe:0.5〜1.5%を含有し、残りがAlおよび不可避不純物からなる組成を有する前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(12)前記Al−Mn系合金芯材は、Mn:0.8〜1.8%、Fe:0.5〜1.5%を含有し、さらに
Ti:0.05〜0.2%、
Zr:0.05〜0.2%、
V:0.05〜0.5%、
Cr:0.05〜0.5%、
Mg:0.01〜0.2%
の内の1種または2種以上を含有し、残りがAlおよび不可避不純物からなる組成を有する前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(13)前記Al−Mn系合金芯材は、Mn:0.8〜1.8%、Fe:0.5〜1.5%を含有し、さらにSi:0.1〜1.0%、Cu:0.1〜1.0%の内の1種または2種を含有し、残りがAlおよび不可避不純物からなる組成を有する前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、
(14)前記Al−Mn系合金芯材は、Mn:0.8〜1.8%、Fe:0.5〜1.5%を含有し、さらに
Si:0.1〜1.0%、Cu:0.1〜1.0%の内の1種または2種を含有し、さらに
Ti:0.05〜0.2%、
Zr:0.05〜0.2%、
V:0.05〜0.5%、
Cr:0.05〜0.5%、
Mg:0.01〜0.2%
の内の1種または2種以上を含有し、残りがAlおよび不可避不純物からなる組成を有する前記(1)、(2)、(3)、(4)、(5)、(6)、(7)または(8)記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材、に特徴を有するものである。
【0009】
まず、この発明の熱交換器用アルミニウム合金クラッド材の成分組成を上述のごとく限定した理由を述べる。
(A)犠牲陽極皮材
Zn:
Znは、腐食形態を面食にする効果を持ち、犠牲陽極皮材の電位を卑にして芯材に対する犠牲陽極効果を向上させ、芯材に孔食が発生するのを防止する作用を有するが、その含有量が4.1%未満では酸性溶液中での犠牲陽極効果が十分に働かないので好ましくなく、一方、%を越えて含有すると自己腐食性が増大すると共に、圧延加工性が低下するので好ましくない。したがって、犠牲陽極皮材中のZn含有量は、4.1〜8%に定めた。
【0010】
Ti:
Tiは、素地中にTiAl3 などの微細な金属間化合物を形成し、この形成した金属間化合物の中でも、犠牲陽極皮材の表面に存在する金属間化合物は、アルカリ溶液中で生成する水酸化皮膜の欠陥を多くする作用があり、孔食の発生を抑制するが、その含有量が0.05%未満では所望の耐食性が得られないので好ましくなく、一方、0.5%を越えて含有すると巨大なAl−Ti系金属間化合物が形成されることによって犠牲陽極皮材の自己腐食性が増大すると共に圧延加工性が低下するので好ましくない。したがって、犠牲陽極皮材に含まれるTi含有量は、0.05〜0.5%に定めた。Ti含有量の一層好ましい範囲は0.2〜0.4%である。
【0011】
Zr:
Zrは、素地中にZrAl3 などの微細な金属間化合物を形成し、この形成した金属間化合物の中でも、犠牲陽極皮材の表面に存在する金属間化合物は、アルカリ溶液中で生成する水酸化皮膜の欠陥を多くする作用があり、孔食の発生が抑制する作用があるので必要に応じて添加するが、その含有量が含有量が0.05%未満では所望の耐食性が得られないので好ましくなく、一方、0.5%を越えて含有すると圧延加工性が低下するので好ましくない。したがって、犠牲陽極皮材に含まれるZr含有量は、0.05〜0.5%に定めた。Zr含有量の一層好ましい範囲は0.1〜0.4%である。
【0012】
V:
Vは、素地中にVAl10などの微細な金属間化合物を形成し、この形成した金属間化合物の中でも、犠牲陽極皮材の表面に存在する金属間化合物は、アルカリ溶液中で生成する水酸化皮膜の欠陥を多くする作用があり、孔食の発生が抑制する作用があるので必要に応じて添加するが、その含有量が含有量が0.05%未満では所望の耐食性が得られないので好ましくなく、一方、0.5%を越えて含有すると圧延加工性が低下するので好ましくない。したがって、犠牲陽極皮材に含まれるV含有量は、0.05〜0.5%に定めた。V含有量の一層好ましい範囲は0.2〜0.4%である。
【0013】
Cr:
Crは、素地中にCrAl8 などの微細な金属間化合物を形成し、この形成した金属間化合物の中でも、犠牲陽極皮材の表面に存在する金属間化合物は、アルカリ溶液中で生成する水酸化皮膜の欠陥を多くする作用があり、孔食の発生が抑制する作用があるので必要に応じて添加するが、その含有量が含有量が0.05%未満では所望の耐食性が得られないので好ましくなく、一方、0.5%を越えて含有すると圧延加工性が低下するので好ましくない。したがって、犠牲陽極皮材に含まれるCr含有量は、0.05〜0.5%に定めた。Cr含有量の一層好ましい範囲は0.2〜0.5%である。
【0014】
(B)芯材
Mn:
Mnは、芯材素地中にAl−Mn金属間化合物として分散し、強度を向上せしめる成分であるが、その含有量が0.8%未満では所望の効果が得られず、一方、1.8%を越えて含有すると粗大な金属間化合物の生成によって加工性を劣化させるので好ましくない。したがって、Mnの含有量を0.8〜1.8%に定めた。Mnの含有量のいっそう好ましい範囲は1.0〜1.5%である。
【0015】
Fe:
Feは、素地中にAl−Fe金属間化合物を微細に分散させることにより、アルカリ溶液中での腐食において、生成する皮膜の欠陥が芯材中に分散しているAl−Fe金属間化合物によって増加される、腐食が芯材にまで及んだ場合の耐食性も向上させ、さらに前記微細なAl−Fe金属間化合物の分散によって芯材の強度を向上させる作用を有するが、その含有量が0.5%未満では所望の効果が得られず、一方、1.5%を越えると芯材の自己腐食性が増大するので好ましくない。したがって、Feの含有量は、0.5〜1.5%に定めた。Feの含有量のいっそう好ましい範囲は0.7を越え〜1.3%である。
【0016】
Si:
Siは、Mnと共存させることによりAl−Mn−Si金属間化合物となって素地中に分散、あるいはマトリックスに固溶して芯材の強度を向上させる作用があるが、その含有量が0.1%未満では所望の効果が得られず、一方、1.0%を越えて含有すると芯材の融点を低下させるので好ましくない。したがって、Siの含有量を0.1〜1.0%に定めた。Siの含有量のいっそう好ましい範囲は0.2〜0.5%である。
【0017】
Cu:
芯材に含まれるCuは、マトリックスに固溶して芯材の強度を向上させると共に、芯材の電気化学的性質を貴にして、犠牲陽極皮材との電位差を大きくする作用を有するが、その含有量が0.1%未満では所望の効果が得られず、一方、1.0%を越えて含有すると芯材の融点が低下するためろう付け時に材料が溶融しやすく、さらに酸性溶液中で粒界腐食が起こりやすくなり、耐食性が低下するので好ましくない。したがって、Cuの含有量を0.1〜1.0%に定めた。Cuの含有量の一層好ましい範囲は0.3〜0.7%である。
【0018】
Ti:
Ti成分は、ろう付け後にTiAl3 などの微細な金属間化合物として素地中に分散し、芯材の強度を向上させる作用を有するので必要に応じて添加するが、その含有量が0.05%未満では所望の効果が得られず、一方、0.2%を越えると加工性を阻害するので好ましくない。したがって、Tiの含有量は0.05〜0.2%に定めた。Tiの含有量の一層好ましい範囲は0.07〜0.15%である。
【0019】
Zr:
ZrもTiと同様に、ろう付け後にZrAl3 などの微細な金属間化合物として素地中に分散し、芯材の強度を向上させる作用を有するので必要に応じて添加するが、その含有量が0.05%未満では所望の効果が得られず、一方、0.2%を越えると加工性を阻害するので好ましくない。したがって、Zrの含有量は0.05〜0.2%に定めた。Zrの含有量の一層好ましい範囲は0.07〜0.18%である。
【0020】
V:
Vもろう付け後にVAl10などの微細な金属間化合物として素地中に分散し、芯材の強度を向上させる作用を有するので必要に応じて添加するが、その含有量が0.05%未満では所望の効果が得られず、一方、0.5%を越えると加工性を阻害するので好ましくない。したがって、Vの含有量は0.05〜0.5%に定めた。Vの含有量の一層好ましい範囲は0.07〜0.35%である。
【0021】
Cr:
Crは、素地中にCrAl8 などの微細な金属間化合物として素地中に分散し、芯材の強度を向上させる作用を有するので必要に応じて添加するが、その含有量が0.05%未満では所望の効果が得られず、一方、0.5%を越えると加工性を阻害するので好ましくない。したがって、Crの含有量は0.05〜0.5%に定めた。Crの含有量の一層好ましい範囲は0.07〜0.35%である。
【0022】
Mg:
Mgは、素地中にMgAl8 などの微細な金属間化合物として素地中に分散し、芯材の強度を向上させる作用を有するので必要に応じて添加するが、その含有量が0.01%未満では所望の効果が得られず、一方、0.2%を越えると耐食性、圧延加工性、クラッド性などを阻害するので好ましくない。したがって、Mgの含有量は0.01〜0.2%に定めた。
【0023】
(C)ろう材
この発明の熱交換器用アルミニウム合金クラッド材で使用するろう材は、通常のAl−Si系ろう材であればよく、特に限定されるものではないが、ろう材中に含まれるSiは融点を下げると共に流動性を付与する成分であり、その含有量が5%未満では所望の効果が得られず、一方、15%を越えて含有するとかえって流動性が低下するので好ましくない。したがって、ろう材中のSiの含有量を3〜15%に定めた。ろう材中のSiの含有量のいっそう好ましい範囲は5〜12%である。また、この発明の熱交換器用アルミニウム合金クラッド材に使用するAl−Si系ろう材は、さらにZnが1.0〜5.0%含まれていているろう材であっても良い。
【0024】
【発明の実施の形態】
表1〜表4に示す成分組成のAl合金を溶解し、鋳造してインゴットを製造し、このインゴットを通常の条件で均質化処理後、熱間圧延を行い、厚さ:150mmの熱延板からなる芯材a〜Cを作製した。
【0025】
【表1】

Figure 0003873267
【0026】
【表2】
Figure 0003873267
【0027】
【表3】
Figure 0003873267
【0028】
【表4】
Figure 0003873267
【0029】
さらに、表5に示す成分組成のAl合金を溶解し、鋳造してインゴットを製造し、このインゴットを通常の条件で均質化処理後、熱間圧延を行い、厚さ:30mmの熱延板からなる犠牲陽極皮材ア〜チを作製した。
【0030】
【表5】
Figure 0003873267
【0031】
一方、表6に示す成分組成のAl合金を溶解し、鋳造してインゴットを製造し、このインゴットを通常の条件で熱間圧延を行い、厚さ:20mmの熱延板からなるろう材I〜IIを作製した。
【0032】
【表6】
Figure 0003873267
【0033】
これら表1〜表4の芯材a〜C、表5の犠牲陽極皮材ア〜チおよび表6のろう材I〜IIを表7〜表8に示される組み合わせにしたがって重ね合わせ、熱間圧延にてクラッドし、引き続いて中間焼鈍を行ったのち、冷間圧延を行うことによりいずれも板厚:0.3mm、犠牲陽極皮材およびろう材にクラッド率がそれぞれ15%および10%で調質H14の本発明クラッド材1〜25、比較クラッド材1〜7および従来クラッド材1〜2を作製した。これら本発明クラッド材1〜25、比較クラッド材1〜7および従来クラッド材1〜2を用いてそれぞれの試験片を作製し、これら試験片を600℃に3分間保持した後、冷却速度:100℃/min.で室温まで冷却するろう付けを想定した熱処理を行い、その後、下記の条件の腐食試験を行った。
【0034】
腐食試験1
Cl- :195ppm,SO4 2-:60ppm,Fe3+:30ppm,Cu2+:1ppmを含む水溶液(pH:3.4)を腐食液として用意し、前記本発明クラッド材1〜25、比較クラッド材1〜7および従来クラッド材1〜2の熱処理した試験片を自動車用熱交換器の冷却水を想定して、流速:0.7m/sec.で流れている温度:88℃の腐食液の中に8時間浸漬保持した後、室温の静止腐食液の中に16時間浸漬保持すると云う温度サイクルを加える操作を90日間行い、90日間経過後の犠牲陽極皮材層の表面からの最大腐食深さを測定し、その測定結果を表7〜表8に示した。
【0035】
腐食試験2
Cl- :195ppm,SO4 2-:60ppm,Fe3+:30ppm,Cu2+:1ppmを含む水溶液をNaOHでpH11に調整した水溶液を腐食液として用意し、前記本発明クラッド材1〜25、比較クラッド材1〜7および従来クラッド材1〜2の熱処理した試験片を自動車用熱交換器の冷却水を想定して、流速:0.7m/sec.で流れている温度:88℃の腐食液の中に8時間浸漬保持した後、室温の静止腐食液の中に16時間に浸漬保持すると云う温度サイクルを加える操作を90日間行い、90日間経過後の犠牲陽極皮材層の表面からの最大腐食深さを測定し、その測定結果を表7〜表8に示した。
【0036】
【表7】
Figure 0003873267
【0037】
【表8】
Figure 0003873267
【0039】
表7〜表8に示される結果から、本発明クラッド材1〜25は、従来クラッド材1〜2に比べて、表面からの最大腐食深さが極めて小さいところから、耐食性に優れていることが分かる。また、構成成分の内の少なくとも1つの成分含有量がこの発明の範囲から外れている比較クラッド材1〜7は耐食性またはその他の特性が劣ることも分かる。
【0040】
【発明の効果】
上述のように、この発明のクラッド材は耐食性に優れているため、この発明のクラッド材を用いて作製した熱交換器は、広範囲のpHの冷却水を使用しても貫通することなく長期間使用することができ、産業上優れた効果をもたらすものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy clad material used as a structural member such as a heat exchanger excellent in corrosion resistance, particularly corrosion resistance in a wide pH range from an alkaline environment to an acidic environment.
[0002]
[Prior art]
Conventionally, as a tube material for an automobile radiator or heater core, an Al—Si brazing material is clad on one side of a core material made of an Al—Mn alloy, and a core as a sacrificial anode skin material is provided on the other side of the core material. A three-layer aluminum alloy clad material clad with an Al—Zn alloy made of an aluminum alloy that is less basic than the material is used. The most commonly used aluminum alloy clad material is JIS 3003 (by weight, Mn: 1.0 to 1.5%, Fe: 0.05 to 0.20%, Si: 0.6% Hereinafter, Zr: 0.7% or less, Zn: 0.10% or less, the balance: Al and inevitable impurities) is used as a core material, and an Al—Zn alloy sacrificial anode skin material made of JIS 7072 is clad on one side thereof, An aluminum alloy clad material obtained by clad an Al—Si brazing material on the other surface of the core material is known.
[0003]
The Al-Si brazing material of the aluminum alloy clad material is used for joining the tube material and the fin material, and joining the tube material and the header plate at the time of brazing, and the sacrificial anode skin material is the core material and electrochemical properties. Due to this difference, the skin material is mainly corroded, and the core material is prevented from pitting corrosion. When these aluminum alloy clad materials are used in heat exchangers as tube materials for radiators and heater cores, they exhibit an excellent sacrificial anode effect when the refrigerant is weakly acidic to neutral. However, the cooling water actually used shows alkalinity mixed with LLC (Long Life Coolant) composed of antifreeze and rust preventive, and when the refrigerant is an alkaline solution having a pH of 9 or more, the corrosion resistance is still insufficient. There are cases where pitting corrosion occurs early and the anticorrosion effect is not sufficiently exhibited.
[0004]
In order to improve these, in% by weight (hereinafter% indicates% by weight)
(A) Mn: 1.0 to 1.5%, Fe: 0.7% or less, Si: 0.6% or less, Cu: 0.05 to 0.2%, Zn: 0.1% or less Then, an Al—Si brazing material is clad on one side of a core material made of an Al alloy having a composition consisting of Al and inevitable impurities, and Zn: 0.1 to 1 is coated on the other side of the core material. Aluminum alloy clad material for heat exchangers excellent in corrosion resistance, clad with a sacrificial anode skin material having a composition of 5%, Fe: over 0.7 to 1.2%, and the balance comprising Al and inevitable impurities (Refer to Unexamined-Japanese-Patent No. 10-17967),
(B) Containing one or two of Mn: 0.3 to 2.0% and Cu: 0.10 to 0.8%, Mg: 0.1 to 0.5%, Si as required : 0.1 to 1%, if necessary, Cr: 0.05 to 0.3%, Zr: 0.05 to 0.3%, Ti: 0.05 to 0.3%, B : One or more of 0.01 to 0.1%, and the balance of Al-Si brazing material on one side of a core material made of an Al alloy having a composition consisting of Al and inevitable impurities The other side of the core material contains Zn: 1.5 to 4.0%, Fe: more than 0.5% and 3% or less, and Mg: 0.1 to 2 as necessary. 0.5%, Sn: 0.01 to 0.2%, Ga: 0.01 to 0.2% of one or more, containing Cr: 0.05 to 0.3%, Zr: 0.05-0. %, Ti: 0.05-0.3%, B: 0.01-0.1, Mn: 0.1-2.0%, Si: 0.1-1% An aluminum alloy clad material for a heat exchanger excellent in corrosion resistance formed by clad a sacrificial anode skin material having a composition composed of Al and inevitable impurities as the rest (see JP-A-10-72632),
Etc. have been proposed.
[0005]
These aluminum alloy clad materials for heat exchangers with excellent corrosion resistance are obtained by adding a relatively large amount of Fe to the sacrificial anode skin material so that the hydroxide film on the surface of the sacrificial anode skin material is an Al—Fe-based metal such as FeAl 3. The intermetallic compound is dispersed finely and uniformly, and the corrosion start point is increased to take the form of full-surface corrosion, and the occurrence of pitting corrosion that leads to penetration due to concentrated corrosion is suppressed.
[0006]
[Problems to be solved by the invention]
As described above, the radiator and heater core tubes made of the conventional aluminum alloy clad material can provide excellent corrosion resistance to aqueous solutions in a wide pH range from weak acidic solutions to alkaline solutions. There is still a need for an aluminum alloy clad material that is not sufficient and has further excellent corrosion resistance.
[0007]
[Means for Solving the Problems]
Therefore, the present inventors conducted a study to obtain an aluminum alloy clad material superior in corrosion resistance than conventional,
(A) One side of an Al—Mn alloy core material is clad with an Al—Si brazing material, and the other side surface of the core material is Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, and further, one or two of Zr: 0.05 to 0.5%, V: 0.05 to 0.5%, Cr: 0.05 to 0.5% The aluminum alloy clad material clad with the sacrificial anode skin material containing the above composition, the remainder being composed of Al and inevitable impurities, has been conventionally resistant to a wide range of pH range aqueous solutions from weakly acidic solutions to alkaline solutions of pH 9 or higher. It will be even better and will be excellent as a structural material for heat exchangers.
(B) The core material described in (a) above may be any material as long as it is an Al—Mn alloy core material, but in particular contains (i) Mn: 0.8 to 1.8%, and Si : A core material made of an Al alloy having a composition of 0.1 to 1.0% and Cu: 0.1 to 1.0%, and the remainder comprising Al and inevitable impurities Preferably,
(Ii) Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, the remainder is a core material made of an Al alloy having a composition composed of Al and inevitable impurities. More preferred,
(Iii) Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, Si: 0.1 to 1.0%, Cu: 0.1 It is even more preferable that the core material is made of an Al alloy having a composition containing 1.0% or 1 of 2% and the balance of Al and inevitable impurities,
(Iv) In the Al alloy described in (i), (ii) or (iii), Ti: 0.05 to 0.2%, Zr: 0.05 to 0.2%, V: Contains one or more of 0.05 to 0.5%, Cr: 0.05 to 0.5%, Mg: 0.01 to 0.2%, the remainder from Al and inevitable impurities It has been found that a core material made of an Al alloy having a composition as described above may be used.
[0008]
This invention is made based on such knowledge,
(1) One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1-8 %, Ti: 0.05-0.5 %, the remainder from an alkaline environment to an acidic environment clad with a sacrificial anode skin material composed of Al and inevitable impurities Aluminum alloy clad material for heat exchangers with excellent corrosion resistance in a wide pH range,
(2) One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, Zr: 0.05 to 0.5%, clad sacrificial anode skin material with the composition consisting of Al and inevitable impurities Aluminum alloy cladding material for heat exchangers with excellent corrosion resistance in a wide pH range from alkaline to acidic environments,
(3) One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, V: 0.05 to 0.5%, the remaining clad sacrificial anode skin material composed of Al and inevitable impurities Aluminum alloy cladding material for heat exchangers with excellent corrosion resistance in a wide pH range from alkaline to acidic environments,
(4) One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, Cr: 0.05 to 0.5%, clad sacrificial anode skin material with the composition consisting of Al and inevitable impurities Aluminum alloy cladding material for heat exchangers with excellent corrosion resistance in a wide pH range from alkaline to acidic environments,
(5) One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, Zr: 0.05 to 0.5%, V: 0.05 to 0.5%, the remainder being Al and inevitable Aluminum alloy clad material for heat exchangers with excellent corrosion resistance in a wide pH range from alkaline to acidic environments clad with a sacrificial anode skin material composed of impurities
(6) One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, Zr: 0.05 to 0.5%, Cr: 0.05 to 0.5%, the remainder being Al and inevitable Aluminum alloy clad material for heat exchangers with excellent corrosion resistance in a wide pH range from alkaline to acidic environments clad with a sacrificial anode skin material composed of impurities
(7) One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, V: 0.05 to 0.5%, Cr: 0.05 to 0.5%, the remainder being Al and inevitable Aluminum alloy clad material for heat exchangers with excellent corrosion resistance in a wide pH range from alkaline to acidic environments clad with a sacrificial anode skin material composed of impurities
(8) One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1-8 %, Ti: 0.05-0.5 %, Zr: 0.05-0.5%, V: 0.05-0.5%, Cr: 0.05-0. Aluminum alloy cladding for heat exchangers with excellent corrosion resistance in a wide pH range from alkaline to acidic environments, which is clad with a sacrificial anode skin material containing 5% and the balance consisting of Al and inevitable impurities Material,
(9) The Al—Mn-based alloy core material contains Mn: 0.8 to 1.8%, Si: 0.1 to 1.0%, and Cu: 0.1 to 1.0%. (1), (2), (3), (4), (5), (6), (7) having a composition comprising one or two of the above, and the remainder consisting of Al and inevitable impurities Or (8) aluminum alloy clad material for heat exchangers excellent in corrosion resistance in a wide pH range from an alkaline environment to an acidic environment,
(10) The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, and Si: 0.1 to 1.0%, Cu: 0.1 to 1.0%. 1 type or 2 types in it, and further Ti: 0.05-0.2%,
Zr: 0.05 to 0.2%,
V: 0.05-0.5%
Cr: 0.05 to 0.5%,
Mg: 0.01-0.2%
(1), (2), (3), (4), (5), (6), (6) containing one or more of the above, and the remainder comprising Al and inevitable impurities 7) or an aluminum alloy clad material for heat exchangers having excellent corrosion resistance in a wide pH range from an alkaline environment to an acidic environment described in (8),
(11) The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, and the remainder has a composition composed of Al and inevitable impurities. (1), (2), (3), (4), (5), (6), (7) or (8) described in corrosion resistance in a wide pH range from an alkaline environment to an acidic environment Excellent aluminum alloy cladding material for heat exchanger,
(12) The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, and Ti: 0.05 to 0.2%.
Zr: 0.05 to 0.2%,
V: 0.05-0.5%
Cr: 0.05 to 0.5%,
Mg: 0.01-0.2%
(1), (2), (3), (4), (5), (6), (6) containing one or more of the above, and the remainder comprising Al and inevitable impurities 7) or an aluminum alloy clad material for heat exchangers having excellent corrosion resistance in a wide pH range from an alkaline environment to an acidic environment described in (8),
(13) The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, Si: 0.1 to 1.0%, Cu: The above (1), (2), (3), (4), which contains one or two of 0.1 to 1.0%, and the remainder consists of Al and inevitable impurities (5), (6), (7) or (8) aluminum alloy clad material for heat exchangers excellent in corrosion resistance in a wide pH range from an alkaline environment to an acidic environment,
(14) The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, Si: 0.1 to 1.0%, Cu: contains one or two of 0.1 to 1.0%, and Ti: 0.05 to 0.2%,
Zr: 0.05 to 0.2%,
V: 0.05-0.5%
Cr: 0.05 to 0.5%,
Mg: 0.01-0.2%
(1), (2), (3), (4), (5), (6), (6) containing one or more of the above, and the remainder comprising Al and inevitable impurities It is characterized by the aluminum alloy clad material for heat exchangers having excellent corrosion resistance in a wide pH range from an alkaline environment to an acidic environment as described in 7) or (8).
[0009]
First, the reason why the component composition of the aluminum alloy clad material for heat exchanger of the present invention is limited as described above will be described.
(A) Sacrificial anode skin material Zn:
Zn has the effect of making the corrosion form a surface corrosion, has the effect of preventing the occurrence of pitting corrosion in the core material by improving the sacrificial anode effect on the core material by lowering the potential of the sacrificial anode skin material, If the content is less than 4.1 %, the sacrificial anode effect in an acidic solution is not sufficient, which is not preferable. On the other hand, if the content exceeds 8 %, self-corrosion increases and rolling workability decreases. Therefore, it is not preferable. Therefore, the Zn content in the sacrificial anode skin material is set to 4.1 to 8%.
[0010]
Ti:
Ti forms a fine intermetallic compound such as TiAl 3 in the substrate, and among these formed intermetallic compounds, the intermetallic compounds present on the surface of the sacrificial anode skin material are hydroxylated produced in an alkaline solution. It has the effect of increasing the number of defects in the film and suppresses the occurrence of pitting corrosion. However, if its content is less than 0.05%, it is not preferable because desired corrosion resistance cannot be obtained. On the other hand, it exceeds 0.5%. Then, since a huge Al—Ti intermetallic compound is formed, the self-corrosion property of the sacrificial anode skin material is increased and rolling workability is lowered, which is not preferable. Therefore, the Ti content contained in the sacrificial anode skin material is set to 0.05 to 0.5%. A more preferable range of Ti content is 0.2 to 0.4%.
[0011]
Zr:
Zr forms fine intermetallic compounds such as ZrAl 3 in the substrate, and among these formed intermetallic compounds, intermetallic compounds present on the surface of the sacrificial anode skin material are hydroxylated produced in an alkaline solution. It has the effect of increasing film defects and suppresses the occurrence of pitting corrosion, so it is added as necessary. However, if the content is less than 0.05%, the desired corrosion resistance cannot be obtained. On the other hand, if it exceeds 0.5%, the rolling processability is lowered, which is not preferable. Therefore, the Zr content contained in the sacrificial anode skin material is set to 0.05 to 0.5%. A more preferable range of the Zr content is 0.1 to 0.4%.
[0012]
V:
V forms fine intermetallic compounds such as VAl 10 in the substrate, and among the formed intermetallic compounds, intermetallic compounds present on the surface of the sacrificial anode skin material are hydroxylated produced in an alkaline solution. It has the effect of increasing film defects and suppresses the occurrence of pitting corrosion, so it is added as necessary. However, if the content is less than 0.05%, the desired corrosion resistance cannot be obtained. On the other hand, if it exceeds 0.5%, the rolling processability is lowered, which is not preferable. Therefore, the V content contained in the sacrificial anode skin material is set to 0.05 to 0.5%. A more preferable range of the V content is 0.2 to 0.4%.
[0013]
Cr:
Cr forms fine intermetallic compounds such as CrAl 8 in the substrate, and among these formed intermetallic compounds, the intermetallic compounds present on the surface of the sacrificial anode skin material are hydroxylated produced in an alkaline solution. It has the effect of increasing film defects and suppresses the occurrence of pitting corrosion, so it is added as necessary. However, if the content is less than 0.05%, the desired corrosion resistance cannot be obtained. On the other hand, if it exceeds 0.5%, the rolling processability is lowered, which is not preferable. Therefore, the Cr content contained in the sacrificial anode skin material is set to 0.05 to 0.5%. A more preferable range of the Cr content is 0.2 to 0.5%.
[0014]
(B) Core material Mn:
Mn is a component that disperses as an Al—Mn intermetallic compound in the core material base and improves the strength. However, if its content is less than 0.8%, the desired effect cannot be obtained. If the content exceeds 50%, the workability deteriorates due to the formation of coarse intermetallic compounds, which is not preferable. Therefore, the Mn content is set to 0.8 to 1.8%. A more preferable range of the Mn content is 1.0 to 1.5%.
[0015]
Fe:
Fe is increased by Al-Fe intermetallic compounds dispersed in the core material in the corrosion in alkaline solution by finely dispersing Al-Fe intermetallic compounds in the substrate. The corrosion resistance when the corrosion reaches the core material is also improved, and further the strength of the core material is improved by the dispersion of the fine Al—Fe intermetallic compound. If it is less than 5%, the desired effect cannot be obtained. On the other hand, if it exceeds 1.5%, the self-corrosion property of the core material increases, which is not preferable. Therefore, the content of Fe is set to 0.5 to 1.5%. The more preferable range of the Fe content is more than 0.7 to 1.3%.
[0016]
Si:
Si coexists with Mn to form an Al—Mn—Si intermetallic compound, which is dispersed in the substrate or dissolved in the matrix to improve the strength of the core material. If it is less than 1%, the desired effect cannot be obtained. On the other hand, if it exceeds 1.0%, the melting point of the core material is lowered, which is not preferable. Therefore, the Si content is set to 0.1 to 1.0%. A more preferable range of the Si content is 0.2 to 0.5%.
[0017]
Cu:
Cu contained in the core material has the effect of increasing the potential difference from the sacrificial anode skin material while improving the strength of the core material by dissolving in the matrix and making the electrochemical properties of the core material noble, If the content is less than 0.1%, the desired effect cannot be obtained. On the other hand, if the content exceeds 1.0%, the melting point of the core material is lowered, so that the material is easily melted during brazing. In this case, intergranular corrosion is likely to occur, and the corrosion resistance is lowered. Therefore, the Cu content is set to 0.1 to 1.0%. A more preferable range of the Cu content is 0.3 to 0.7%.
[0018]
Ti:
The Ti component is dispersed in the substrate as a fine intermetallic compound such as TiAl 3 after brazing and has the effect of improving the strength of the core material, so it is added as necessary, but its content is 0.05% If it is less than 0.2%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.2%, the workability is impaired, which is not preferable. Therefore, the Ti content is set to 0.05 to 0.2%. A more preferable range of the Ti content is 0.07 to 0.15%.
[0019]
Zr:
Zr, like Ti, is dispersed in the substrate as a fine intermetallic compound such as ZrAl 3 after brazing and has the effect of improving the strength of the core material, so it is added as necessary, but its content is 0 If it is less than 0.05%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.2%, the workability is impaired, which is not preferable. Therefore, the content of Zr is set to 0.05 to 0.2%. A more preferable range of the content of Zr is 0.07 to 0.18%.
[0020]
V:
V is also dispersed in the substrate as a fine intermetallic compound such as VAl 10 after brazing and has the effect of improving the strength of the core material, so it is added as necessary, but if its content is less than 0.05% On the other hand, if the desired effect cannot be obtained, and if it exceeds 0.5%, the workability is impaired. Therefore, the content of V is set to 0.05 to 0.5%. A more preferable range of the V content is 0.07 to 0.35%.
[0021]
Cr:
Cr is dispersed in the substrate as a fine intermetallic compound such as CrAl 8 and has the effect of improving the strength of the core material. Therefore, the Cr content is less than 0.05%. In this case, the desired effect cannot be obtained. Therefore, the Cr content is set to 0.05 to 0.5%. A more preferable range of the Cr content is 0.07 to 0.35%.
[0022]
Mg:
Mg is dispersed in the substrate as a fine intermetallic compound such as MgAl 8 and has the effect of improving the strength of the core material, so it is added as necessary, but its content is less than 0.01% However, the desired effect cannot be obtained. On the other hand, if it exceeds 0.2%, corrosion resistance, rolling workability, cladability and the like are hindered. Therefore, the content of Mg is set to 0.01 to 0.2%.
[0023]
(C) Brazing material The brazing material used in the aluminum alloy clad material for a heat exchanger according to the present invention may be an ordinary Al—Si brazing material, and is not particularly limited, but is included in the brazing material. Si is a component that lowers the melting point and imparts fluidity. If its content is less than 5%, the desired effect cannot be obtained. On the other hand, if it exceeds 15%, the fluidity is lowered, which is not preferable. Therefore, the content of Si in the brazing material is set to 3 to 15%. The more preferable range of the content of Si in the brazing material is 5 to 12%. Further, the Al—Si brazing material used for the aluminum alloy clad material for a heat exchanger of the present invention may be a brazing material further containing 1.0 to 5.0% of Zn.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
An Al alloy having the composition shown in Tables 1 to 4 is melted and cast to produce an ingot. The ingot is homogenized under normal conditions, and then hot-rolled, and the thickness is 150 mm. Core materials a to C made of
[0025]
[Table 1]
Figure 0003873267
[0026]
[Table 2]
Figure 0003873267
[0027]
[Table 3]
Figure 0003873267
[0028]
[Table 4]
Figure 0003873267
[0029]
Further, an Al alloy having the composition shown in Table 5 is melted and cast to produce an ingot. The ingot is homogenized under normal conditions, and then hot-rolled. From a hot rolled sheet having a thickness of 30 mm Sacrificial anode skin materials A to H were prepared.
[0030]
[Table 5]
Figure 0003873267
[0031]
On the other hand, an Al alloy having the composition shown in Table 6 is melted, cast to produce an ingot, this ingot is hot-rolled under normal conditions, and the brazing material I is made of a hot-rolled sheet having a thickness of 20 mm. II was produced.
[0032]
[Table 6]
Figure 0003873267
[0033]
These core materials a to C in Table 1 to Table 4, sacrificial anode skin materials to H in Table 5 and brazing materials I to II in Table 6 are superposed according to the combinations shown in Tables 7 to 8, and hot rolled. After clad with, followed by intermediate annealing and cold rolling, the thickness is 0.3 mm, the sacrificial anode skin material and the brazing material are tempered with a cladding ratio of 15% and 10%, respectively. Invention cladding materials 1 to 25 of H14, comparative cladding materials 1 to 7 and conventional cladding materials 1 to 2 were produced. Each test piece was prepared using these inventive clad materials 1-25, comparative clad materials 1-7, and conventional clad materials 1-2, and these test pieces were held at 600 ° C. for 3 minutes. ° C / min. Then, heat treatment was performed assuming brazing to cool to room temperature, and then a corrosion test was performed under the following conditions.
[0034]
Corrosion test 1
An aqueous solution (pH: 3.4) containing Cl : 195 ppm, SO 4 2− : 60 ppm, Fe 3+ : 30 ppm, and Cu 2+ : 1 ppm was prepared as a corrosive solution. Assuming the cooling water of the automotive heat exchanger, the heat-treated test pieces of the clad materials 1 to 7 and the conventional clad materials 1 and 2 are flow rate: 0.7 m / sec. The temperature flowing at: After being immersed in an etching solution of 88 ° C. for 8 hours and then immersed in a static corrosion solution at room temperature for 16 hours, an operation of adding a temperature cycle was performed for 90 days. The maximum corrosion depth from the surface of the sacrificial anode skin layer was measured, and the measurement results are shown in Tables 7 to 8.
[0035]
Corrosion test 2
Cl -: 195ppm, SO 4 2- : 60ppm, Fe 3+: 30ppm, Cu 2+: an aqueous solution containing 1ppm prepared aqueous solution was adjusted to pH11 with NaOH as etchant, the present invention clad material 1 to 25, Assuming the cooling water of the automotive heat exchanger, the heat-treated test pieces of the comparative clad materials 1 to 7 and the conventional clad materials 1 to 2 are flow rate: 0.7 m / sec. The temperature flowing at: After being immersed in a corrosive solution at 88 ° C for 8 hours and then immersed in a static corrosive solution at room temperature for 16 hours, an operation was performed for 90 days, after 90 days The maximum corrosion depth from the surface of the sacrificial anode skin layer was measured, and the measurement results are shown in Tables 7-8.
[0036]
[Table 7]
Figure 0003873267
[0037]
[Table 8]
Figure 0003873267
[0039]
From the results shown in Tables 7 to 8, the clad materials 1 to 25 of the present invention are excellent in corrosion resistance because the maximum corrosion depth from the surface is extremely small as compared with the conventional clad materials 1 and 2. I understand. It can also be seen that the comparative clad materials 1 to 7 in which the content of at least one of the components is out of the scope of the present invention are inferior in corrosion resistance or other characteristics.
[0040]
【The invention's effect】
As described above, since the clad material of the present invention is excellent in corrosion resistance, the heat exchanger produced using the clad material of the present invention can be used for a long time without penetrating even when cooling water having a wide range of pH is used. It can be used and has an industrially excellent effect.

Claims (14)

Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなることを特徴とするアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1-8 %, Ti: 0.05-0.5 %, with the remainder being clad with a sacrificial anode skin material composed of Al and inevitable impurities, in an alkaline environment Aluminum clad material for heat exchangers with excellent corrosion resistance in a wide pH range from high to acidic environments.
Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Zr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなることを特徴とするアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, Zr: 0.05 to 0.5%, and the remainder is clad with a sacrificial anode skin material composed of Al and inevitable impurities An aluminum alloy clad material for a heat exchanger having excellent corrosion resistance in a wide pH range from an alkaline environment to an acidic environment.
Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、V:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなることを特徴とするアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, V: 0.05 to 0.5%, the remaining clad sacrificial anode skin material composed of Al and inevitable impurities An aluminum alloy clad material for a heat exchanger having excellent corrosion resistance in a wide pH range from an alkaline environment to an acidic environment.
Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Cr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなることを特徴とするアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, Cr: 0.05 to 0.5%, clad sacrificial anode skin material with the composition consisting of Al and inevitable impurities An aluminum alloy clad material for a heat exchanger having excellent corrosion resistance in a wide pH range from an alkaline environment to an acidic environment.
Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Zr:0.05〜0.5%、V:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなることを特徴とするアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, Zr: 0.05 to 0.5%, V: 0.05 to 0.5%, the remainder being Al and inevitable An aluminum alloy clad material for a heat exchanger having excellent corrosion resistance in a wide pH range from an alkaline environment to an acidic environment, characterized by being clad with a sacrificial anode skin material composed of impurities.
Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Zr:0.05〜0.5%、Cr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなることを特徴とするアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, Zr: 0.05 to 0.5%, Cr: 0.05 to 0.5%, the remainder being Al and inevitable An aluminum alloy clad material for a heat exchanger that is excellent in corrosion resistance in a wide pH range from an alkaline environment to an acidic environment, characterized by being clad with a sacrificial anode skin material composed of impurities.
Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、V:0.05〜0.5%、Cr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなることを特徴とするアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1 to 8 %, Ti: 0.05 to 0.5%, V: 0.05 to 0.5%, Cr: 0.05 to 0.5%, the remainder being Al and inevitable An aluminum alloy clad material for a heat exchanger that is excellent in corrosion resistance in a wide pH range from an alkaline environment to an acidic environment, characterized by being clad with a sacrificial anode skin material composed of impurities.
Al−Mn系合金芯材の一方の片面に、Al−Si系ろう材をクラッドし、該芯材の他方の片面に、
Zn:4.1〜8%、Ti:0.05〜0.5%、Zr:0.05〜0.5%、V:0.05〜0.5%、Cr:0.05〜0.5%を含有し、残りがAlおよび不可避不純物からなる組成の犠牲陽極皮材をクラッドしてなることを特徴とするアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
One side of the Al-Mn alloy core material is clad with an Al-Si brazing material, and the other side surface of the core material is
Zn: 4.1-8 %, Ti: 0.05-0.5 %, Zr: 0.05-0.5%, V: 0.05-0.5%, Cr: 0.05-0. Heat excellent in corrosion resistance in a wide pH range from an alkaline environment to an acidic environment, characterized by being clad with a sacrificial anode skin material containing 5% and the remainder comprising Al and inevitable impurities. Aluminum alloy clad material for exchangers.
前記Al−Mn系合金芯材は、Mn:0.8〜1.8%を含有し、さらにSi:0.1〜1.0%、Cu:0.1〜1.0%の内の1種または2種を含有し、残りがAlおよび不可避不純物からなる組成を有することを特徴とする請求項1、2、3、4、5、6、7または8記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。  The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, and Si: 0.1 to 1.0%, Cu: 0.1 to 1.0%. 9. From an alkaline environment to an acidic environment according to claim 1, wherein the composition comprises seeds or two kinds, and the remainder comprises Al and inevitable impurities. Aluminum clad material for heat exchangers with excellent corrosion resistance in a wide pH range. 前記Al−Mn系合金芯材は、Mn:0.8〜1.8%を含有し、さらに
Si:0.1〜1.0%、Cu:0.1〜1.0%の内の1種または2種を含有し、さらに
Ti:0.05〜0.2%、
Zr:0.05〜0.2%、
V:0.05〜0.5%、
Cr:0.05〜0.5%、
Mg:0.01〜0.2%
の内の1種または2種以上を含有し、残りがAlおよび不可避不純物からなる組成を有することを特徴とする請求項1、2、3、4、5、6、7または8記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, and Si: 0.1 to 1.0%, Cu: 0.1 to 1.0% Containing seeds or two, and Ti: 0.05-0.2%
Zr: 0.05 to 0.2%,
V: 0.05-0.5%
Cr: 0.05 to 0.5%,
Mg: 0.01-0.2%
9. The alkaline environment according to claim 1, wherein the alkaline environment contains one or more of the above, and the balance is composed of Al and inevitable impurities. Aluminum alloy clad material for heat exchangers with excellent corrosion resistance in a wide pH range from below to acidic environments.
前記Al−Mn系合金芯材は、Mn:0.8〜1.8%、Fe:0.5〜1.5%を含有し、残りがAlおよび不可避不純物からなる組成を有することを特徴とする請求項1、2、3、4、5、6、7または8記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。  The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, and the remainder has a composition composed of Al and inevitable impurities. The aluminum alloy clad material for heat exchangers having excellent corrosion resistance in a wide pH range from an alkaline environment to an acidic environment according to claim 1, 2, 3, 4, 5, 6, 7 or 8. 前記Al−Mn系合金芯材は、Mn:0.8〜1.8%、Fe:0.5〜1.5%を含有し、さらに
Ti:0.05〜0.2%、
Zr:0.05〜0.2%、
V:0.05〜0.5%、
Cr:0.05〜0.5%、
Mg:0.01〜0.2%
の内の1種または2種以上を含有し、残りがAlおよび不可避不純物からなる組成を有することを特徴とする請求項1、2、3、4、5、6、7または8記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, and Ti: 0.05 to 0.2%.
Zr: 0.05 to 0.2%,
V: 0.05-0.5%
Cr: 0.05 to 0.5%,
Mg: 0.01-0.2%
9. The alkaline environment according to claim 1, wherein the alkaline environment contains one or more of the above, and the balance is composed of Al and inevitable impurities. Aluminum alloy clad material for heat exchangers with excellent corrosion resistance in a wide pH range from below to acidic environments.
前記Al−Mn系合金芯材は、Mn:0.8〜1.8%、Fe:0.5〜1.5%を含有し、さらにSi:0.1〜1.0%、Cu:0.1〜1.0%の内の1種または2種を含有し、残りがAlおよび不可避不純物からなる組成を有することを特徴とする請求項1、2、3、4、5、6、7または8記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。  The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, Si: 0.1 to 1.0%, Cu: 0 1 to 1.0% of one or two of them, and the remainder has a composition composed of Al and inevitable impurities. Or an aluminum alloy clad material for a heat exchanger having excellent corrosion resistance in a wide pH range from an alkaline environment to an acidic environment described in 8; 前記Al−Mn系合金芯材は、Mn:0.8〜1.8%、Fe:0.5〜1.5%を含有し、さらに
Si:0.1〜1.0%、Cu:0.1〜1.0%の内の1種または2種を含有し、さらに
Ti:0.05〜0.2%、
Zr:0.05〜0.2%、
V:0.05〜0.5%、
Cr:0.05〜0.5%、
Mg:0.01〜0.2%
の内の1種または2種以上を含有し、残りがAlおよび不可避不純物からなる組成を有することを特徴とする請求項1、2、3、4、5、6、7または8記載のアルカリ環境下から酸性環境下に至る広範囲なpH領域での耐食性に優れた熱交換器用アルミニウム合金クラッド材。
The Al-Mn alloy core material contains Mn: 0.8 to 1.8%, Fe: 0.5 to 1.5%, Si: 0.1 to 1.0%, Cu: 0 1 to 2% of 1 to 1.0%, Ti: 0.05 to 0.2%,
Zr: 0.05 to 0.2%,
V: 0.05-0.5%
Cr: 0.05 to 0.5%,
Mg: 0.01-0.2%
9. The alkaline environment according to claim 1, wherein the alkaline environment contains one or more of the above, and the balance is composed of Al and inevitable impurities. Aluminum alloy clad material for heat exchangers with excellent corrosion resistance in a wide pH range from below to acidic environments.
JP25279698A 1998-09-07 1998-09-07 Aluminum alloy clad material for heat exchangers with excellent corrosion resistance Expired - Fee Related JP3873267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25279698A JP3873267B2 (en) 1998-09-07 1998-09-07 Aluminum alloy clad material for heat exchangers with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25279698A JP3873267B2 (en) 1998-09-07 1998-09-07 Aluminum alloy clad material for heat exchangers with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2000087162A JP2000087162A (en) 2000-03-28
JP3873267B2 true JP3873267B2 (en) 2007-01-24

Family

ID=17242372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25279698A Expired - Fee Related JP3873267B2 (en) 1998-09-07 1998-09-07 Aluminum alloy clad material for heat exchangers with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3873267B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319399A1 (en) * 2014-01-10 2016-11-03 Uacj Corporation Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor
US20160319401A1 (en) * 2014-01-07 2016-11-03 Uacj Corporation Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256123A (en) * 2006-03-23 2007-10-04 Inst Nuclear Energy Research Rocaec System used for stress corrosion cracking test
JP5019797B2 (en) * 2006-06-15 2012-09-05 古河スカイ株式会社 Sacrificial anode material and aluminum alloy composite
EP2692524B2 (en) 2008-01-18 2022-01-19 Speira GmbH Composite material with a protective layer against corrosion and method for its manufacture
JP5466409B2 (en) 2009-01-22 2014-04-09 株式会社神戸製鋼所 Aluminum alloy clad material for heat exchanger
JP5885424B2 (en) * 2011-08-12 2016-03-15 三菱アルミニウム株式会社 Method for producing extruded pipe member made of aluminum alloy for heat exchanger
ES2829291T3 (en) 2013-06-26 2021-05-31 Howmet Aerospace Inc Resistance welding clamp, apparatus and methods
JP5650305B2 (en) * 2013-10-30 2015-01-07 株式会社神戸製鋼所 Aluminum alloy clad material for heat exchanger
JP6448667B2 (en) 2014-02-03 2019-01-09 アーコニック インコーポレイテッドArconic Inc. Resistance welding fastener, apparatus and method
CA2964452C (en) 2014-10-13 2020-04-14 Arconic Inc. Brazing sheet
KR20170086651A (en) 2014-12-15 2017-07-26 아르코닉 인코포레이티드 Resistance welding fastener, apparatus and methods for joining similar and dissimilar materials
KR102228179B1 (en) * 2015-11-13 2021-03-16 그렌게스 아베 Brazing sheet and manufacturing method
US10593034B2 (en) 2016-03-25 2020-03-17 Arconic Inc. Resistance welding fasteners, apparatus and methods for joining dissimilar materials and assessing joints made thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319401A1 (en) * 2014-01-07 2016-11-03 Uacj Corporation Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
US9976201B2 (en) * 2014-01-07 2018-05-22 Uacj Corporation Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
US20160319399A1 (en) * 2014-01-10 2016-11-03 Uacj Corporation Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor
US9976200B2 (en) * 2014-01-10 2018-05-22 Uacj Corporation Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor

Also Published As

Publication number Publication date
JP2000087162A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
JPS6248742B2 (en)
JP3873267B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
WO2015141192A1 (en) Clad aluminum alloy material with excellent corrosion resistance and brazeability and manufacturing method therefor
JP3858255B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP4019775B2 (en) Aluminum alloy brazing sheet for heat exchangers with excellent corrosion resistance
JP4019337B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP4574036B2 (en) Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger
JP3811932B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP2000212668A (en) Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance
JP2000087164A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP4238957B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent strength and corrosion resistance
JP3858254B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JP2000084661A (en) Manufacture of heat exchanger excellent in corrosion resistance
JP4058650B2 (en) Clad material for heat exchangers with excellent pitting corrosion resistance in a strong alkaline environment
JP5019797B2 (en) Sacrificial anode material and aluminum alloy composite
JP3858253B2 (en) Aluminum alloy clad material for automotive heat exchangers with excellent corrosion resistance in alkaline environments
JP2000087166A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance
JP2000297338A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment
JP3977978B2 (en) Aluminum alloy for heat exchangers with excellent corrosion resistance
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP3243189B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP2000297339A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance under alkaline environment and acid environment
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JP2000087165A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061015

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees