JPH061185B2 - Method and apparatus for detecting state of adhered matter in fluid pipe - Google Patents

Method and apparatus for detecting state of adhered matter in fluid pipe

Info

Publication number
JPH061185B2
JPH061185B2 JP14738884A JP14738884A JPH061185B2 JP H061185 B2 JPH061185 B2 JP H061185B2 JP 14738884 A JP14738884 A JP 14738884A JP 14738884 A JP14738884 A JP 14738884A JP H061185 B2 JPH061185 B2 JP H061185B2
Authority
JP
Japan
Prior art keywords
pipe
heater
heat
temperature
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14738884A
Other languages
Japanese (ja)
Other versions
JPS6126809A (en
Inventor
哲 藤井
繁 小山
美明 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14738884A priority Critical patent/JPH061185B2/en
Publication of JPS6126809A publication Critical patent/JPS6126809A/en
Publication of JPH061185B2 publication Critical patent/JPH061185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Description

【発明の詳細な説明】 技術分野 本発明は流体が流れる管内に付着する付着物の厚さ等の
付着状況を容易かつ確実に検知する方法および装置に関
する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for easily and surely detecting an adhesion state such as a thickness of an adhered matter adhered in a pipe through which a fluid flows.

従来技術 管内を冷却水或いは水蒸気等が流れる熱交換器の管、ス
ラリー、海水等が流れる輸送管等には付着物が付着し、
それによって熱交換性能或いは流体の輸送効率が低下す
る。
BACKGROUND ART Adhesive matter adheres to pipes of heat exchangers in which cooling water or steam flows, pipes for transportation of slurries, seawater, etc.
As a result, heat exchange performance or fluid transport efficiency is reduced.

熱交換器を例にとれば、火力発電で象徴されるように、
その発電効率を高めるためには、発電(ランキン)サイ
クルの高温熱源と低温熱源との温度差を大きくとること
が必要である。低温熱源の温度をより低く保持するため
に熱交換器が使用され、その多数の管(パイプ)内を冷
却水(例えば海水)が一定流量で流されている。しか
し、冷却水中には微生物、菌が存在し、それらがパイプ
内に付着するため、伝熱効率が悪くなる現象を生ずる。
フジツボや菌が管内壁に付着したものをスライムと称す
るが、現状ではこのスライムあるいは鉱物質のスケール
等が管内壁に数10μm〜数mm厚さ、付着することを前
提として、数日〜10数日おきに定期的にプラスチック
製のスポンジボール等の固形体を熱交換器等のパイプ内
へ流し、上記管内壁付着物を取除く作業を行なってい
る。従来、この付着物の付着状況を検知するには、多数
の管の一部の管内に圧力センサーを配設し、付着層が厚
くなると水圧が変化することによって付着状況を調べて
いる。
Taking a heat exchanger as an example, as symbolized by thermal power generation,
In order to increase the power generation efficiency, it is necessary to increase the temperature difference between the high temperature heat source and the low temperature heat source in the power generation (Rankin) cycle. A heat exchanger is used to keep the temperature of the low temperature heat source lower, and cooling water (for example, seawater) is made to flow at a constant flow rate in a large number of the pipes. However, since the microorganisms and bacteria are present in the cooling water and adhere to the inside of the pipe, the heat transfer efficiency is deteriorated.
Although barnacles and bacteria adhere to the inner wall of the tube are called slime, at present, it is assumed that this slime or a scale of minerals adheres to the inner wall of the tube with a thickness of several tens of μm to several mm for several days to several tens of days. A solid body such as a plastic sponge ball is periodically flown into a pipe of a heat exchanger or the like every other day to remove the deposits on the inner wall of the pipe. Conventionally, in order to detect the adhesion state of the adhered matter, a pressure sensor is arranged in a part of a large number of tubes, and the adhesion state is investigated by changing the water pressure when the adhesion layer becomes thick.

従来技術の問題点 ところで、上記管内壁にスライム或いはスケールが付着
することにより圧力損失が増大するが、これによる水圧
変化を検知し、付着物の付着状況を確実に把握すること
は難かしく、また装置も高価となる不都合があった。
Problems of the prior art By the way, when slime or scale adheres to the inner wall of the pipe, the pressure loss increases, but it is difficult to detect the change in water pressure due to this and reliably grasp the adhered state of the adhered matter. The device is also expensive.

本発明の目的および構成 本発明は上記の事情に鑑み、管内に付着する付着物の状
況を容易かつ確実に検知する方法および装置を提供する
ことを目的とするもので、その検知方法の1つとしての
要旨は、流体の流れる管の外周に単位時間に一定の熱量
を与え、管内に付着する付着物によって生ずる管外壁の
温度変化、又は熱流の変化を測定することにある。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention has an object to provide a method and apparatus for easily and reliably detecting the condition of an adhered substance adhering to the inside of a pipe, and one of the detecting methods. The gist of is to apply a constant amount of heat to the outer circumference of the pipe through which the fluid flows per unit time, and measure the temperature change of the outer wall of the pipe or the change of the heat flow caused by the deposits adhering to the inside of the pipe.

更に、その検知方法の他の1つとしての要旨は、流体の
流れる管の外周に可変の熱量を与え、管内付着物によっ
て生ずる管外壁の温度変化を変化させないように、管の
温度をモニタして上記可変の熱量を供給し、その熱量又
は熱流を測定することにある。
Further, the gist of another one of the detection methods is to monitor the temperature of the pipe so as to give a variable amount of heat to the outer periphery of the pipe through which the fluid flows so as not to change the temperature change of the outer wall of the pipe caused by the deposit inside the pipe. To supply the variable heat quantity and measure the heat quantity or heat flow.

一方、検知装置の1つとしての要旨は、流体の流れる管
の外周の所定範囲に設けられて上記管の外周に単位時間
に一定の熱量を与えるヒータと、少なくとも上記ヒータ
が設けられた管の外周部分に設けられて上記管の外壁温
度変化を測定する1個以上の温度計とを具備してなるこ
とにある。
On the other hand, the gist of one of the detection devices is a heater provided in a predetermined range on the outer circumference of a pipe through which a fluid flows to give a constant amount of heat to the outer circumference of the pipe in a unit time, and at least a pipe provided with the heater. It is provided with one or more thermometers which are provided in the outer peripheral portion and measure changes in the outer wall temperature of the tube.

また、検知装置の他の1つとしての要旨は、流体の流れ
る管の外周の所定範囲に設けられて上記管の外周に単位
時間に一定の熱量を与えるヒータと、少なくとも上記ヒ
ータが設けられた管の外周側に設けられて上記管の外壁
の熱流変化を測定する1個以上の熱流計とを具備してな
ることにある。
Further, the gist of another one of the detecting devices is that a heater is provided in a predetermined range on the outer circumference of a pipe through which a fluid flows, and a heater for providing a constant amount of heat per unit time to the outer circumference of the pipe, and at least the heater is provided. It is provided with one or more heat flow meters which are provided on the outer peripheral side of the tube and measure changes in heat flow of the outer wall of the tube.

更に、検知装置の別の1つとしての要旨は、流体の流れ
る管の外周の所定範囲に設けられて上記管の外周に可変
の熱量を与えるヒータと、少なくとも上記ヒータが設け
られた管の外周に設けられて上記管の外壁温度を測定す
る1個以上の温度計と、管内付着物によって生じようと
する管外壁の温度変化を生じさせないように、管の外壁
温度モニタの結果に応じて上記管へのヒータによる可変
の熱量の増減を行なう電源と、上記ヒータへの投入電力
量を測定する計測装置とを具備してなることである。
Further, the gist of another one of the detection devices is a heater provided in a predetermined range on the outer circumference of a pipe through which a fluid flows to give a variable amount of heat to the outer circumference of the pipe, and at least an outer circumference of the pipe provided with the heater. One or more thermometers for measuring the temperature of the outer wall of the pipe, and the temperature of the outer wall of the pipe to prevent the temperature change of the outer wall of the pipe due to the deposits in the pipe. That is, it is provided with a power source for changing the amount of heat variable to the tube by the heater and a measuring device for measuring the amount of electric power supplied to the heater.

本発明の具体的説明 第1図(a)(b)は、本発明を説明するためのモデルの一例
を示すもので、図中符号1は、パイプ2の長さ:l部分
の全周に沿って配設されたヒータで、このヒータ1と後
述する温度計、熱流計によってセンサAが構成されてい
る。とりあえず、ヒータからパイプ2壁内への熱伝導は
一次元的であるとする。
Detailed Description of the Invention FIGS. 1 (a) and 1 (b) show an example of a model for explaining the present invention. In the figure, reference numeral 1 indicates the length of the pipe 2: the entire circumference of the l part. The heater A is provided along the heater 1, and the heater 1 and a thermometer and a heat flow meter described later constitute a sensor A. For the time being, heat conduction from the heater into the wall of the pipe 2 is one-dimensional.

ヒータ1の発熱による熱流束が経時的に一様の場合はパ
イプ2内の壁面付着物3の表面温度は、パイプ2内の流
体4の流れる方向に沿って変化する筈であるが、ここで
は付着物3の検知に対する基本特性を把握することが目
的であるので、ヒータ1の中心(l/2位置)Pで一次
元伝熱的に扱えるとし、付着物3は一様な厚さδでパイ
プ内壁に付着しているとして解析する。
If the heat flux due to the heat generated by the heater 1 is uniform over time, the surface temperature of the wall surface deposit 3 in the pipe 2 should change along the flowing direction of the fluid 4 in the pipe 2, but here Since the purpose is to grasp the basic characteristics for detection of the deposit 3, it is assumed that the center (l / 2 position) P of the heater 1 can be used for one-dimensional heat transfer, and the deposit 3 has a uniform thickness δ. It is analyzed that it is attached to the inner wall of the pipe.

ヒータ1の発熱による全熱量Qのうちパイプ2側へ流れ
る熱流をQとすると、パイプ2における熱伝導は次式
で与えられる。
When the heat flow flowing to the pipe 2 side out of the total heat quantity Q generated by the heater 1 is Q i , the heat conduction in the pipe 2 is given by the following equation.

但しT:パイプ外壁の温度 T:パイプ内壁の温度 λ :パイプ材料の熱伝導率 γ:パイプの外半径 γ:パイプの内半径 また、付着物3における熱伝導は次式となる。 However, T o : temperature of the outer wall of the pipe T i : temperature of the inner wall of the pipe λ: thermal conductivity of the pipe material γ o : outer radius of the pipe γ i : inner radius of the pipe Further, the heat conduction in the deposit 3 is as follows. .

但し、T:付着物の流体側表面の温度 λ:付着物の熱伝導率 γ:付着物の内面までの半径 さらに、付着物表面から流体への伝熱状態は次式で示さ
れる。
Where T s is the temperature of the fluid-side surface of the deposit, λ s is the thermal conductivity of the deposit, γ s is the radius to the inner surface of the deposit, and the heat transfer state from the surface of the deposit to the fluid is given by the following equation. .

但し、T:パイプ中央を流れる流体の温度 α :熱伝達率 (1),(2),(3)式から 他方、パイプ2の外周を断熱材5で覆った場合、断熱材
5を通して外界へ逃げる熱量Qは次式となる。
Where T f is the temperature of the fluid flowing through the center of the pipe α is the heat transfer coefficient (1), (2), (3) On the other hand, when the outer periphery of the pipe 2 is covered with the heat insulating material 5, the amount of heat Q o escaping to the outside through the heat insulating material 5 is given by the following equation.

但し、T:外界の温度 h :断熱材表面からの熱伝達率 λ:断熱材の熱伝導率 γ:断熱材の外面半径 ヒータ1からの発熱量(熱流)Qは Q=Q+Q ……… (6) (4)式、(5)式の対応において、断熱材5の断熱性能をよ
くすれば、Qの値は極めて小となり、しかも、ほぼ一
定とみなせるようにすることが出来るから、ヒータ1の
発熱量Qとパイプ2内へ流れる熱流Qは比例関係にあ
るものとみなすことが出来る。また、断熱材5の外側か
らの熱伝達率:hがほとんど変化しない状況であれば、
断熱材5を用いない状況にしておいても、Q:一定とし
ておけば、パイプ2内へ流れる熱流Qの変化はQ
Q−Qによって外界へ流れるQの変化として検知す
ることが可能となる。
However, T : outside temperature h: heat transfer coefficient from heat insulating material surface λ a : heat conductivity of heat insulating material γ a : outer surface radius of heat insulating material Heat generation amount (heat flow) Q from heater 1 is Q = Q i + Q o ………… (6) In correspondence with Eqs. (4) and (5), if the heat insulation performance of the heat insulating material 5 is improved, the value of Q o will be extremely small and can be regarded as almost constant. Therefore, it can be considered that the heat generation amount Q of the heater 1 and the heat flow Q i flowing into the pipe 2 are in a proportional relationship. If the heat transfer coefficient h from the outside of the heat insulating material 5 hardly changes,
Even if the heat insulating material 5 is not used, if Q is kept constant, the change of the heat flow Q i flowing into the pipe 2 is Q o =
Q-Q i enables detection as a change in Q o flowing to the outside world.

また、付着物3が付着していない時のパイプ2外周温度
をT′とすると、(4)式で、γ=γとおくことに
よって (4)式、(7)式とから が得られる。
Further, assuming that the outer peripheral temperature of the pipe 2 when the deposit 3 is not attached is T o ′, by setting γ s = γ i in the equation (4), From equation (4) and equation (7) Is obtained.

付着物3の厚さδがγに比し充分に小さい状況で付着
物3の存在を検知することを考えると、 γ=γ−δ ……… (9) とおいて(8)式に代入し、良い近似式として次式を得
る。
Considering that the presence of the deposit 3 is detected when the thickness δ of the deposit 3 is sufficiently smaller than γ i , γ s = γ i −δ ………… (9) , And obtain the following equation as a good approximation.

(10)式、(11)式によれば、ヒータからの発熱量を単位時
間に一定としておけば温度差(T−T′)は付着物
3の厚さδに比例して大となる。あるいは、付着物3の
厚さδが徐々に増加するにつれてパイプ2内の流体4の
流速が低下してくるようであれば、熱伝導率αは小とな
り、従って(1/λs+1/αγi)は増加する値となるの
で、(T−T′)の値も大となる。すなわち、付着
物3の厚さδが増加する程、温度差(T−T′)の
値もそれにつれて増加が加速される傾向となるので、や
はり付着物の付着状況、付着厚さの検知を(T
′)から知ることは伝熱効率を評価する上で極めて
有効となる。
According to the equations (10) and (11), if the amount of heat generated from the heater is kept constant per unit time, the temperature difference (T o −T o ′) becomes large in proportion to the thickness δ of the deposit 3. Become. Alternatively, if the flow velocity of the fluid 4 in the pipe 2 decreases as the thickness δ of the deposit 3 gradually increases, the thermal conductivity α becomes small, and therefore (1 / λ s + 1 / αγ Since i ) is a value that increases, the value of (T o −T o ′) is also large. That is, as the thickness δ of the deposit 3 increases, the value of the temperature difference (T 0 −T o ′) also tends to increase accordingly. Detect (T o
Knowing from T o ') is extremely effective in evaluating the heat transfer efficiency.

また、パイプ2内を流れる流体4の温度Tはヒータ1
から充分離れた、ヒータ1の加熱による温度上昇の影響
を受けない地点のパイプ2外壁温度(特に流れに対して
上流側では割合とヒータ1から近い距離の地点となり、
下流側ではヒータ1による加熱の影響が無くなるやゝヒ
ータ1から遠く離れた地点)T′とよい近似が得ら
れ、T=T′となりこの地点の温度T′とヒータ
1から一定発熱させた時のヒータ1の下面にあるパイプ
2外壁温度Tとの温度差を経時的に求めることによっ
ても付着物の付着状況は検知できる(以下T′をT
と記す)。
Further, the temperature T f of the fluid 4 flowing in the pipe 2 is determined by the heater 1
The temperature of the outer wall of the pipe 2 at a point that is not sufficiently affected by the temperature rise due to the heating of the heater 1 (especially on the upstream side with respect to the flow, the point is a point close to the heater 1,
On the downstream side, as soon as the influence of heating by the heater 1 disappears, a good approximation can be obtained, that is, a point far away from the heater 1) T f ′, and T f = T f ′, and the temperature T f ′ at this point and the heater 1 are constant. The adhered state of the adhered matter can also be detected by obtaining the temperature difference with the temperature T o of the outer wall of the pipe 2 on the lower surface of the heater 1 when the heat is generated (hereinafter, T f ′ is T f
Note).

他方、付着物3がある一定厚さになったところを検知し
ようとすれば、(10)式、(11)式の温度差(T
′)あるいは(4)式の(T−T)の値を一定値
に固定して考え、その値となるべき単位時間の熱流Q
の値を熱流計やヒータ1への単位時間の投入電力量から
求めることによって、付着物3が一定厚さ付着したこと
を知ることが出来る。すなわち、Qの値は付着物3の
厚さδが増加するに従って、徐々に減じてきて、ある値
になったとき付着物3が許容の厚さまで付着してしまっ
たとして検知するものである。
On the other hand, if it is attempted to detect a place where the deposit 3 has a certain thickness, the temperature difference (T o
(T o ′) or the value of (T o −T f ) in the equation (4) is fixed at a fixed value, and the heat flow Q i per unit time that should be the value is considered.
It is possible to know that the deposit 3 has adhered to a certain thickness by obtaining the value of from the heat flow meter or the amount of electric power applied to the heater 1 per unit time. That is, the value of Q i gradually decreases as the thickness δ of the deposit 3 increases, and when it reaches a certain value, it is detected that the deposit 3 has adhered to an allowable thickness. .

上述したように、付着物3の厚さはヒータ1の発熱量Q
の一定のときは温度差(T−T′)、温度差(T
−T)および熱流Q、熱流Qとの関係において、
また、温度差(T−T′)あるいは(T−T
を一定値とする検知を考え、管の温度をモニタして、そ
の一定値となるヒータ投入熱量の値又は熱流を検知する
か、いずれによっても付着物の付着状況を知ることが出
来る。
As described above, the thickness of the deposit 3 depends on the calorific value Q of the heater 1.
Is constant, the temperature difference (T o −T o ′) and the temperature difference (T o
-T f ) and the heat flow Q i and the heat flow Q o ,
Further, the temperature difference (T o −T o ′) or (T o −T f ).
The temperature of the tube is monitored in consideration of detection as a constant value, and the value of the heat input to the heater or the heat flow, which is the constant value, is detected.

上記の説明は、パイプ2の全周を取巻くヒータ1が配設
されたセンサAについて行なったが、ヒータ1が第2図
に断面図を示すように、パイプ2の全周にはなくて、そ
の一部に存在するようにして発熱させるセンサAにおい
ても、同様の解析によって容易に上述した2つの検知方
式が可能であることが知られる。
The above description has been made on the sensor A in which the heater 1 surrounding the entire circumference of the pipe 2 is provided. However, as shown in the sectional view of FIG. It is known that the above-described two detection methods can be easily performed by the same analysis even for the sensor A that is present in a part thereof and generates heat.

上記センサの電源、検出回路を含めた装置を、例えば熱
交換器に取付ける場合には、第3図に示すようになる。
すなわち、パイプ2は1ケの熱交換器で数100本〜2
0000本程度と極めて多く、これらのパイプ内を冷却
水がほぼ一定流速で流れている。この冷却水に含まれる
微生物や鉱物質成分が各々のパイプの内壁に付着し、伝
熱効率を低下させる。上記パイプに、「ヒータと1本又
は複数本の温度計および断熱材」、「ヒータと1本又は
複数本の温度計」、「ヒータと熱流計と温度計と断熱
材」さらには「ヒータと熱流計」などからなるセンサを
熱交換器の適宜選択した数本〜数10本のパイプに取付
ける。図中センサ11はパイプ2に直接取付けたもの、
センサ12は、パイプ2と同材料、同寸法で長さが数cm
〜数10cmのダミーパイプ13を冷却用パイプに継ぎ足
し、そのダミーパイプ13にセンサを配設したものであ
る。センサ11,12のリード線14はハッチ15を通
して外へ取出される。上記センサ11,12は、第1図
に示すヒータが全周に存在するもの、或いは第2図に示
すように、パイプ外周の一部に取付けられたものいずれ
でもよい。
When the device including the power source of the sensor and the detection circuit is attached to, for example, a heat exchanger, it is as shown in FIG.
That is, the pipe 2 is several hundreds to two with one heat exchanger.
The number of pipes is extremely large, about 0000, and the cooling water flows in these pipes at a substantially constant flow velocity. Microorganisms and mineral components contained in this cooling water adhere to the inner wall of each pipe, reducing heat transfer efficiency. In the above pipe, "heater and one or more thermometers and heat insulating materials", "heater and one or more thermometers", "heater and heat flow meter and thermometers and heat insulating materials", and further "heater and A sensor such as a "heat flow meter" is attached to several to several tens of appropriately selected pipes of the heat exchanger. In the figure, the sensor 11 is directly attached to the pipe 2,
The sensor 12 is made of the same material as the pipe 2, has the same dimensions, and has a length of several cm.
A dummy pipe 13 of several tens of cm is added to a cooling pipe, and a sensor is arranged on the dummy pipe 13. The lead wires 14 of the sensors 11 and 12 are taken out through a hatch 15. The sensors 11 and 12 may be those in which the heater shown in FIG. 1 is present on the entire circumference, or those mounted on a part of the outer circumference of the pipe as shown in FIG.

本発明に係る装置の具体的構成、作用 次に、全周形のヒータを有するセンサを例として、その
構成を第4図(a)(b)〜第13図に示す。これらセンサは
いずれもダミーパイプをセンサの構成体として有するも
のと、実際のパイプへ取付けるために、上記ダミーパイ
プを有さない構成からなるものとの2種類がある。また
これらに使用する温度計は、熱電対、サーミスタ、或い
は薄型の測温抵抗素子など通常の温度計測に使用される
温度計が用いられる。薄型やシート状の測温抵抗素子で
は、平均的外壁温度が得られ、熱電対やサーミスタでは
1点の温度が得られるが、いずれのタイプの温度計にお
いても、複数個使用して平均的な外壁温度を測定しても
よいことは云うまでもない。また、ヒータの外側を覆う
断熱材は、外界側の熱的変動の影響を受けないように配
設してあるものであるが、温度変化や熱伝達率の変化な
どに起因する外界側の熱的変動が殆んど生じないときは
使用しなくてもよい。また、熱流計を用いる場合には、
その出力信号を大きくするため、断熱材に代えて構造材
(熱抵抗の小さい材料)を使用することもある。
Specific Configuration and Operation of Device According to the Present Invention Next, the configuration is shown in FIGS. 4 (a) (b) to 13 by taking a sensor having a full-circumferential heater as an example. There are two types of these sensors, one having a dummy pipe as a constituent of the sensor and the other not having the dummy pipe for mounting on the actual pipe. As the thermometer used for these, a thermometer used for normal temperature measurement such as a thermocouple, a thermistor, or a thin temperature measuring resistance element is used. A thin or sheet resistance temperature element can obtain an average outer wall temperature, and a thermocouple or a thermistor can obtain a temperature of one point. It goes without saying that the outer wall temperature may be measured. Also, the heat insulating material that covers the outside of the heater is arranged so as not to be affected by thermal fluctuations on the external side, but the heat on the external side due to changes in temperature or changes in heat transfer coefficient, etc. It is not necessary to use it when there is almost no fluctuation. When using a heat flow meter,
In order to increase the output signal, a structural material (a material with low thermal resistance) may be used instead of the heat insulating material.

第4図(a)(b)はパイプ2を取巻くヒータ1と、このヒー
タ1の存在する範囲のパイプ外壁温度、を検知するため
の温度計16とヒータ1を取巻く断熱材5とからなるセ
ンサである。この場合上述したように、温度計を複数と
して平均的温度を測定し、また、外界側の熱的変動が小
さい時には断熱材5を設けなくてもよい。さらに、ヒー
タ1として例えば白金の測温抵抗素子を用いて発熱させ
る作用と、その時のヒータ1の抵抗値から温度を測定す
るようにすることも出来る。すなわち、測温素子兼用の
ヒータである。白金の場合、その抵抗値の温度係数は1
℃当り約3800ppmであって、温度が約10℃上昇し
ても抵抗値は4%弱しか変化しないから、白金抵抗素子
に一定電流を流して又は一定電圧を与えて加熱する場
合、その発熱量はほぼ一定とみなすことができる。他
方、4%弱の抵抗値の変化は温度計測技術の分野では、
容易に検知可能であり、これを用いればセンサの構造が
簡単化される。
4 (a) and 4 (b) are a sensor including a heater 1 surrounding the pipe 2, a thermometer 16 for detecting the temperature of the outer wall of the pipe in the area where the heater 1 exists, and a heat insulating material 5 surrounding the heater 1. Is. In this case, as described above, a plurality of thermometers are used to measure the average temperature, and when the thermal fluctuation on the outside is small, the heat insulating material 5 may not be provided. Further, it is also possible to measure the temperature from the action of causing heat to be generated by using, for example, a platinum resistance temperature measuring element as the heater 1 and the resistance value of the heater 1 at that time. That is, the heater also serves as the temperature measuring element. In the case of platinum, the temperature coefficient of its resistance is 1
It is about 3800ppm per ° C, and the resistance value changes only a little less than 4% even if the temperature rises by about 10 ° C. Therefore, when the platinum resistance element is heated by applying a constant current or applying a constant voltage, the amount of heat generated Can be regarded as almost constant. On the other hand, a resistance value change of less than 4% is in the field of temperature measurement technology.
It can be easily detected, and using this simplifies the structure of the sensor.

第5図(a)(b)は、ダミーパイプ13を用いないで実際の
パイプ2に取付けるセンサの構造例を示すもので、2つ
割りとし、パイプ2の外周に取付けられるようにしたも
のである。この場合ヒータ1は第5図(b)に示すように
ヘヤピン状に配設する。当然のことながら以下に述べる
センサも必要に応じて2つ割り構造とすることが出来
る。
FIGS. 5 (a) and 5 (b) show an example of the structure of a sensor which is actually attached to the pipe 2 without using the dummy pipe 13, and is divided into two parts which are attached to the outer periphery of the pipe 2. is there. In this case, the heater 1 is arranged in a hairpin shape as shown in FIG. 5 (b). As a matter of course, the sensor described below can also have a two-part structure as required.

第6図は、第4図に対して、ヒータ1から離れた地点の
パイプ2の外周温度T′(T)を測定するための温
度計16′が追加された構成のセンサであって、(4)式
に従って、ヒータの存在する範囲でのパイプの外壁温度
とヒータから離れた地点の温度をそれぞれ計測して両者
の差をとるか、或いは差動結線回路(例えば熱電対では
差動熱電対結線又は差動熱電対群結線)によって同時に
温度差を得るものである。
FIG. 6 shows a sensor in which a thermometer 16 ′ for measuring the outer peripheral temperature T f ′ (T f ) of the pipe 2 at a point distant from the heater 1 is added to FIG. , According to the equation (4), the outer wall temperature of the pipe in the area where the heater exists and the temperature at the point away from the heater are respectively measured and the difference between the two is taken, or a differential connection circuit (for example, a thermocouple is The temperature difference is simultaneously obtained by thermocouple connection or differential thermocouple group connection).

第7図は、第4図のセンサの温度計16に替えて熱流計
17を用いたセンサで、ヒータ1とパイプ2の間に熱流
計17を配置しても、ヒータ1の外側に熱流計17′を
配置してもよい。このセンサにおいては、前記したよう
に外側を覆う断熱材5を用いることは、特に熱流計を外
側に配置した場合、熱流計17′の出力信号の変化応答
量が小さくなり望ましくない。したがって、センサの構
造を支え、かつ熱抵抗の小さい材料から成る構造材18
を断熱材5の代りに用いる。
FIG. 7 shows a sensor using a heat flow meter 17 in place of the thermometer 16 of the sensor shown in FIG. 4. Even if the heat flow meter 17 is arranged between the heater 1 and the pipe 2, the heat flow meter is placed outside the heater 1. 17 'may be arranged. In this sensor, it is not preferable to use the heat insulating material 5 that covers the outside as described above, especially when the heat flow meter is arranged outside because the change response amount of the output signal of the heat flow meter 17 'becomes small. Therefore, the structural material 18 that supports the structure of the sensor and is made of a material having a low thermal resistance is used.
Is used instead of the heat insulating material 5.

以上のセンサは、ヒータの発熱量を単位時間に一定とし
て、温度差、熱流を検知するセンサの構成について述べ
たが、次に温度差、熱流を一定として発熱量の増減を検
知するセンサの構成を示す。これらのセンサは、(10)
式、(11)式の(T−T′)を一定値とし、その温度
差となるように発熱量を変えたとき、その量を熱流計や
投入電力量から検知しようとするものである。
The above-mentioned sensor has described the configuration of the sensor that detects the temperature difference and the heat flow while keeping the heat generation amount of the heater constant per unit time. Next, the configuration of the sensor that detects the increase and decrease of the heat generation amount while keeping the temperature difference and the heat flow constant. Indicates. These sensors are (10)
Equation (11) (T o −T o ′) is a constant value, and when the calorific value is changed so as to obtain the temperature difference, the amount is to be detected from the heat flow meter or the input electric energy. is there.

第8図は、ヒータ1とヒータの存在する範囲のパイプ2
の外壁温度を測定する温度計16とヒータの外側に配置
された熱流計17′とからなるセンサである。外側を覆
う材料は、前記した理由で断熱材でなく、構造材18の
方が望ましい。
FIG. 8 shows the heater 1 and the pipe 2 in the range where the heater exists.
It is a sensor consisting of a thermometer 16 for measuring the outer wall temperature and a heat flow meter 17 'arranged outside the heater. For the above-mentioned reason, the material covering the outside is preferably the structural material 18 rather than the heat insulating material.

第9図は第8図における熱流計をヒータ1の内側に設け
たものである。この場合、外側は構造材18で覆っても
よいが、外界側に熱的変動を生ずる可能性がある場合
は、断熱材5を用いた方がよい。
FIG. 9 shows the heat flow meter shown in FIG. 8 provided inside the heater 1. In this case, the outside may be covered with the structural material 18, but if there is a possibility that thermal fluctuations may occur on the external side, it is better to use the heat insulating material 5.

第10図は、第4図における発熱量の変化をヒータ1に
投入される電力量、又は電圧、電流をメータ19によっ
て検知するものである。
FIG. 10 shows a change in the amount of heat generated in FIG. 4 detected by the meter 19 for the amount of electric power, voltage or current supplied to the heater 1.

また、第11図、第12図、第13図のセンサは、第6
図のセンサが第4図のセンサに温度計16′を追加した
ものであるように、それぞれ、第8図第9図、第10図
のセンサーに対してヒータから離れた地点のパイプ外壁
温度を計測する温度計16′が追加されたものである。
Further, the sensors shown in FIGS. 11, 12, and 13 are
As shown in the sensor of FIG. 4 with the addition of a thermometer 16 ', the temperature of the outer wall of the pipe at the point distant from the heater is different from that of the sensor of FIGS. 8 and 9, respectively. A thermometer 16 'for measuring is added.

次に上記センサを用いて付着物3の厚さを求める方法、
装置について説明する。
Next, a method for determining the thickness of the deposit 3 using the above sensor,
The device will be described.

第4図(a),(b)の温度計を用いるセンサAに対しては、
第14図(a)に示すように電源21からセンサAのヒー
タ1へ一定の電流又は電圧22を数10秒〜数分間のパル
ス、或いは連続的に与え発熱させる。パルス加熱の時間
は、加熱による温度上昇が一定値に達するまでの時間で
よく、パイプ2の材料、大きさ寸法などによってきま
る。冷却水、被冷却水の温度が変動しないときは、パル
ス加熱、連続加熱いずれでもよい。しかし、変動する場
合はパルス加熱とする。こうすることによって、加熱に
よる温度上昇のみが温度計で検出され、信頼性の高いデ
ータが得られる。
For the sensor A using the thermometer of FIGS. 4 (a) and 4 (b),
As shown in FIG. 14 (a), a constant current or voltage 22 is pulsed from the power source 21 to the heater 1 of the sensor A for several tens of seconds to several minutes or continuously to generate heat. The pulse heating time may be the time until the temperature rise due to heating reaches a certain value, and depends on the material of pipe 2, size and the like. If the temperature of the cooling water or the water to be cooled does not change, pulse heating or continuous heating may be used. However, if it fluctuates, pulse heating is used. By doing so, only the temperature rise due to heating is detected by the thermometer, and reliable data can be obtained.

温度差(T−T′)を求めるには、単位時間に一定
の発熱量をヒータ1から発熱させ、付着物3のない初期
状態における温度T′を求めておく。そして、その
後、継時的に上昇する温度Tを第14図(a)に示す温
度計測装置19で計測すれば(T−T′)が得られ
る。また、第6図に示すように流体の中心温度(ヒータ
1より充分離れたパイプ1の外壁温度T′と同じ)T
を測定すれば(T−T)が得られる。
In order to obtain the temperature difference (T o −T o ′), a constant amount of heat generation is generated from the heater 1 per unit time, and the temperature T o ′ in the initial state without the deposit 3 is obtained. Thereafter, if measured by the temperature measuring device 19 indicating the temperature T o which over time to increase in FIG. 14 (a) (T o -T o ') is obtained. Further, as shown in FIG. 6, the center temperature of the fluid (the same as the outer wall temperature T f ′ of the pipe 1 sufficiently separated from the heater 1) T
If f is measured, (T o −T f ) can be obtained.

この一定発熱方式は第7図に示す熱流計17、又は1
7′を用いるセンサも同様で、付着物が付着することに
より、一定加熱によってパイプ2側へ流れる熱流は減少
し、その分だけ外側に流れる熱流が増加するので、第7
図に示すようにこの熱流を熱流計17、或いは17′で
検出し、第14図(b)に示すように熱流計測装置20で
計測する。
This constant heat generation method is the heat flow meter 17 or 1 shown in FIG.
The same applies to the sensor using 7 ', and since the adhered matter adheres to the pipe 2, the heat flow flowing to the pipe 2 side decreases due to constant heating, and the heat flow flowing to the outside increases by that amount.
As shown in the figure, this heat flow is detected by the heat flow meter 17 or 17 ', and is measured by the heat flow measuring device 20 as shown in FIG. 14 (b).

また、第8図、第9図、第10図のセンサにおいては、
ヒータ1からパルス的、或いは連続的に発熱させること
は同様であるが、(T−T′)の温度差を、例えば
5℃と想定し、第14図(c)に示すように差が5℃とな
るヒータ1への投入電力量を計測装置23、或いは、熱
流値を計測装置20によって計測して付着物の付着状況
を知るものである。
Further, in the sensors of FIGS. 8, 9 and 10,
It is the same as making the heater 1 generate heat in a pulsed or continuous manner, but assuming that the temperature difference of (T o −T o ′) is, for example, 5 ° C., the difference is as shown in FIG. 14 (c). The amount of electric power supplied to the heater 1 at which the temperature becomes 5 ° C. is measured by the measuring device 23 or the heat flow value is measured by the measuring device 20 to know the adhesion state of the adhered matter.

さらに、第11図、第12図、第13図では同様にして
温度差(T−T)を一定値とするように管の温度を
モニタしてヒータへの投入電力を変えるものである。こ
の場合、いずれのセンサも熱流計測素子又は温度計が一
定発熱方式に対して多く、コストアップとなるほか、付
着物が付いていない状態では、ヒータへの投入電力量は
極めて大となるので、検知における加熱の調整は面倒で
あるが、若干付着した状態から徐々に付着が増加すると
きには有効に使える。
Further, in FIG. 11, FIG. 12 and FIG. 13, similarly, the temperature of the tube is monitored so that the temperature difference (T o −T f ) is a constant value, and the electric power supplied to the heater is changed. . In this case, in any of the sensors, the heat flow measuring element or the thermometer is more than the constant heat generation method, which leads to an increase in cost, and the amount of electric power supplied to the heater is extremely large when there is no attached matter, Although the adjustment of heating in the detection is troublesome, it can be effectively used when the adhesion gradually increases from a slightly adhered state.

次にパイプ2内に付着物3が付着した場合の例として、
温度差(T−T′)と付着物3の厚さδとがどのよ
うな関係にあるかを数値計算によって求めた結果、およ
び実際の付着物に対する適用法を説明する。
Next, as an example of the case where the deposit 3 is attached to the pipe 2,
The results obtained by numerical calculation of the relationship between the temperature difference (T o −T o ′) and the thickness δ of the deposit 3 and the application method to the actual deposit will be described.

伝熱管は、外直径:25.4mm、内径22.91mm、ア
ルミブラス製で、熱伝導率:100W/(m・k)と
し、管内を水が平均速流:2m/secで流れており、そ
の水温:15℃とした。また、ヒータ1の長さl:20
mm、でパイプ2の全周を取り巻き、Q:53.4Wと
した。ヒータ1の外側には、熱伝導率:0.06W/
(m.k)の断熱材5が厚さ:10mm、で配設されてお
り、外界への熱伝達率h:20W/(m.k)、T∝:1
5℃とした。
The heat transfer tube is made of aluminum brass with an outer diameter of 25.4 mm, an inner diameter of 22.91 mm, a thermal conductivity of 100 W / (m · k), and water flows in the tube at an average velocity of 2 m / sec. The water temperature was set to 15 ° C. Further, the length of the heater 1 is 20:
mm, the entire circumference of the pipe 2 was surrounded, and Q i was 53.4 W. Outside the heater 1, the thermal conductivity: 0.06 W /
(M.k) heat insulating material 5 is provided with a thickness of 10 mm, and the heat transfer coefficient to the outside is h: 20 W / (m.k), T∝: 1.
The temperature was 5 ° C.

付着物3の熱伝導率は求めることが極めて困難であるの
で、断熱材:0.08W/(m.k)と同等のとき、セラ
ミックスに近い状態のとき:23W/(m・k)および
その中間値:0.587W/(m・k)の3つの熱伝導
率を想定して計算した。付着物3の熱伝導率は、少なく
とも、0.08〜2.3W/(m・k)の範囲に存在す
るものと考えられる。計算結果を第15図(a)に示す。
Since it is extremely difficult to obtain the thermal conductivity of the deposit 3, when the heat insulating material is equivalent to 0.08 W / (m.k), when it is close to ceramics: 23 W / (m · k) and its It was calculated by assuming three thermal conductivities of an intermediate value: 0.587 W / (m · k). It is considered that the thermal conductivity of the deposit 3 is at least in the range of 0.08 to 2.3 W / (m · k). The calculation result is shown in FIG.

λ:0.08W/(m・k)では、付着物3の厚さが2
0μmのとき(T−T′):9℃となり充分検知可
能である。また、λ:23W/(m・k)とした場合で
もδ:50μmの時、(T−T′):0.8℃とな
り充分に検知出来る。温度差が小さい時には、さらに発
熱量を大きくした値で一定として測定する。
At λ s : 0.08 W / (m · k), the thickness of the deposit 3 is 2
When it is 0 μm (T o −T o ′): 9 ° C., which is sufficient for detection. Even when λ s is 23 W / (m · k), when δ is 50 μm, (T o −T o ′) is 0.8 ° C., which is sufficient for detection. When the temperature difference is small, the value is set to a constant value with a larger calorific value.

以上のことから、付着物3の熱伝導率が断熱材と同等の
ものから、ガラス、セラミックスに近い物質であって
も、Qを数10W〜100W、全投入電力Qでは、数
10W〜数100W投入すれば、温度差(T
′)は現状の温度計測技術で検知可能な量として得
られる。
From the above, even if the thermal conductivity of the deposit 3 is equivalent to that of the heat insulating material, even if it is a substance close to glass or ceramics, Q i is several tens to 100 W, and the total input power Q is several tens of W to several watts. If 100 W is applied, the temperature difference (T o
T o ') is obtained as an amount capable of detecting in the state of temperature measurement technology.

そして、付着物3の熱伝導率λは実際のパイプで1
度、付着物の厚さδと(T−T′)を実測すれば定
まり、その後は一定数値として扱える。
The thermal conductivity λ s of the deposit 3 is 1 for the actual pipe.
Degree, the thickness δ of the deposit and (T o −T o ′) can be determined by actual measurement, and thereafter can be treated as a constant value.

なお、第15図(a)の結果を付着物3の熱抵抗δ/λ
と(T−T′)との関係として目盛れば、第15図
(b)に示すように、付着物の熱伝導率によらず、ほぼ1
本の直線関係として得られ、伝熱特性の評価からはこの
グラフの方が使い易い。
In addition, the result of FIG. 15 (a) shows the thermal resistance δ / λ s of the deposit 3.
If it is scaled as the relationship between and (T o −T o ′), FIG.
As shown in (b), it is almost 1 regardless of the thermal conductivity of the deposit.
It is obtained as a linear relationship in the book, and this graph is easier to use from the evaluation of heat transfer characteristics.

次に外界への熱伝達率hが一定とみなせる時、外界への
熱損失Qと付着物3の厚さδとの関係を求めて第16
図に示す。実線は断熱材がない場合、そして点線は、断
熱材が厚さ:10mm存在する場合である。いずれにおい
ても、付着物の厚さδと熱流Qとは、一次式の関係と
して求められるので、この関係を用いて熱流Qから厚
さδが評価出来る。
Next, when the heat transfer coefficient h to the outside world can be regarded as constant, the relationship between the heat loss Q o to the outside world and the thickness δ of the deposit 3 is calculated to obtain the 16th value.
Shown in the figure. The solid line is without insulation, and the dotted line is with insulation thickness: 10 mm. In either case, since the thickness δ of the deposit and the heat flow Q o are obtained as a linear relationship, the thickness δ can be evaluated from the heat flow Q o using this relationship.

本発明の効果 以上述べたように、本発明に係る方法および装置はセン
サと、加熱用電源と、温度検出器および/又は熱流計測
器を用いることによって、付着物の付着状況、厚さが検
知されるので、伝熱特性を把握することができ、ひいて
は、その付着状況に応じて付着物を除去するためのスポ
ンジボールの投入時期が効果的に決められるので、伝熱
効率の低下をきたさないように制御することが可能とな
り、実用上著しい効果を生ずるものである。
EFFECTS OF THE INVENTION As described above, the method and apparatus according to the present invention detect the adhesion state and thickness of the adhered matter by using the sensor, the heating power source, the temperature detector and / or the heat flow measuring instrument. Therefore, the heat transfer characteristics can be grasped, and the sponge ball insertion time for removing the adhered matter can be effectively determined according to the adhered state, so that the heat transfer efficiency is not deteriorated. It becomes possible to control to the above, and a remarkable effect is produced in practical use.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)(b)は、本発明を説明するモデルの一例を示す
もので、第1図(a)は縦断面図、第1図(b)は第1図(a)
のI−I線視断面図、第2図は他のモデルを示す第1図
(b)相当図、第3図は熱交換器にセンサを取付けた状態
を示す縦断面図、第4図(a)(b)ないし第13図は、パイ
プ全周に加熱ヒータを有するセンサーの図で、第4図
(a)は、ヒータの範囲内に管外壁温度を測定する温度計
を取付けたセンサの縦断面図、第4図(b)は、第4図(a)
のIV−IV線視断面図、第5図(a)は第4図を2つ割りと
したセンサの第4図(b)は相当図、第5図(b)はヒータの
配設状態を示す図、第6図はヒータの範囲、およびヒー
タより離れた管外壁に温度計を有するセンサの縦断面
図、第7図は、ヒータの内側又は外側に熱流計を取付け
たセンサの縦断面図、第8図はヒータの範囲内の管外壁
に温度計を取付け、ヒータ外側に熱流計を取付けたセン
サの縦断面図、第9図はヒータの範囲内の管外壁に温度
計を取付け、ヒータの内側に熱流計を取付けたセンサの
縦断面図、第10図はヒータの範囲の管外壁に温度計を
取付け、この温度計の温度が一定となるような電力計測
装置を設けたセンサの縦断面図、第11図、第12図、
第13図はそれぞれ、第8図、第9図第10図のセンサ
にヒータの範囲より離れた管外壁に温度計を取付けたセ
ンサの縦断面図、第14図(a)(b)(c)は、種々なセンサ
に対する電源、温度計測装置、熱流計測装置の接続状態
を示す図、第15図(a)は、異なる熱伝導率の付着物の
厚さδと(T−T′)との関係を示す図、第15図
(b)は、付着物の厚さを付着物の熱伝導率で割った数値
と(T−T′)との関係を示す図、第16図は、外
界への熱伝達率が一定とみなせる時、付着物の厚さと外
界への熱損失との関係を、断熱材がある場合とない場合
について示した図である。 1……ヒータ、2……管(パイプ)、3……付着物、4
……流体、5……断熱材、11……通常のパイプに取付
けたセンサ、12……ダミーパイプに取付けたセンサ、
13……ダミーパイプ、14……リード線、15……ハ
ッチ、16・16′……温度計、17・17′……熱流
計、18……構造材、19……温度計測装置、20……
熱流計測装置、21……電源、22……一定電力、23
……電力計測装置、A……センサ、l……パイプ長さ方
向の部分、P……ヒータの長さ方向中心、δ……付着物
の厚さ、Q……ヒータの全発熱量、Q……内側への熱
流、Q……外側への熱流、T……付着物のあるパイ
プ外壁温度、T′……付着物のないパイプ外壁温度、
……パイプ内壁温度、λ……パイプ材料の熱伝導
率、γ……パイプの外半径、γ……パイプの内半
径、T……付着物の流体側表面温度、λ……付着物
の熱伝導率、γ……付着物の内面までの半径、T
…パイプ中央を流れる流体温度、T′……ヒータから
充分離れたパイプ外壁温度、α……熱伝達率、T∝……
外界温度、h……断熱材表面からの熱伝達率、λ……
断熱材の熱伝導率、γ……断熱材外面までの半径。
1 (a) and 1 (b) show an example of a model for explaining the present invention. FIG. 1 (a) is a longitudinal sectional view, and FIG. 1 (b) is FIG. 1 (a).
FIG. 2 is a sectional view taken along line I-I of FIG.
(b) Corresponding figure, FIG. 3 is a longitudinal sectional view showing a state in which the sensor is attached to the heat exchanger, and FIGS. 4 (a) and (b) to 13 show a sensor having a heater on the entire circumference of the pipe. Fig. 4
(a) is a longitudinal sectional view of a sensor in which a thermometer for measuring the temperature of the outer wall of the tube is attached within the range of the heater. Fig. 4 (b) is Fig. 4 (a).
IV-IV sectional view taken along line IV-IV of FIG. 5, FIG. 5 (a) shows a sensor in which FIG. 4 is divided into two parts, FIG. 4 (b) shows a corresponding view, and FIG. 5 (b) shows the arrangement of heaters. FIG. 6 is a vertical cross-sectional view of a sensor having a heater and a thermometer on the outer wall of a tube apart from the heater. FIG. 7 is a vertical cross-sectional view of a sensor having a heat flow meter inside or outside the heater. Fig. 8 is a longitudinal sectional view of a sensor in which a thermometer is attached to the outer wall of the heater within the range of the heater, and a heat flow meter is attached to the outer side of the heater. Fig. 10 is a vertical cross-sectional view of a sensor with a heat flow meter installed inside the sensor. Fig. 10 shows a vertical section of the sensor with a thermometer installed on the outer wall of the tube in the range of the heater and an electric power measuring device that keeps the temperature of this thermometer constant. Plan, FIG. 11, FIG. 12,
FIG. 13 is a longitudinal sectional view of the sensor shown in FIG. 8 and FIG. 9 and FIG. 10 in which a thermometer is attached to the outer wall of the tube which is separated from the heater range, and FIGS. 14 (a) (b) (c). ) Is a diagram showing a connection state of a power source, a temperature measuring device, and a heat flow measuring device to various sensors, and FIG. 15 (a) is a thickness δ of the deposits having different thermal conductivities and (T o −T o ′). Fig. 15 showing the relationship with
(b) is a diagram showing the relationship between the value obtained by dividing the thickness of the deposit by the thermal conductivity of the deposit and (T o −T o ′). FIG. 16 shows that the heat transfer coefficient to the outside is constant. FIG. 6 is a diagram showing the relationship between the thickness of the deposit and the heat loss to the outside, when the heat insulating material is present and when it is not. 1 ... Heater, 2 ... Pipe, 3 ... Adhesion matter, 4
...... Fluid, 5 …… Insulation material, 11 …… Sensor mounted on ordinary pipe, 12 …… Sensor mounted on dummy pipe,
13 ... Dummy pipe, 14 ... Lead wire, 15 ... Hatch, 16.16 '... Thermometer, 17.17' ... Heat flow meter, 18 ... Structural material, 19 ... Temperature measuring device, 20 ... …
Heat flow measuring device, 21 ... Power supply, 22 ... Constant power, 23
...... Power measurement device, A ... Sensor, l ... Pipe length direction part, P ... heater length center, δ ... adhesion thickness, Q ... heater total heat generation amount, Q i ...... inside to heat flow, Q o ...... outside to heat flow, T o ...... deposits of certain pipe outer wall temperature, T o 'no ...... deposits pipe outer wall temperature,
T i ∙ pipe inner wall temperature, λ ∙ thermal conductivity of pipe material, γ o ∙ pipe outer radius, γ i ∙ pipe inner radius, T s ∶ fluid surface temperature of deposit, λ s ...... The thermal conductivity of the deposit, γ s , the radius to the inner surface of the deposit, T f ...
… Temperature of the fluid flowing through the center of the pipe, T f …… Temperature of the outer wall of the pipe sufficiently distant from the heater, α …… Heat transfer coefficient, T∝ ……
Ambient temperature, h ... Heat transfer coefficient from heat insulating material surface, λ a
Thermal conductivity of heat insulating material, γ a ... Radius to outer surface of heat insulating material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 繁 福岡県春日市大和町1丁目4番2号 (72)発明者 荒川 美明 神奈川県横浜市旭区若葉台4−22―1006 (56)参考文献 山内弘「機械工学ポケットブック」3版 (昭33−7−31)オーム社P.620−621 一色尚次「伝熱工学」5版(昭46−1− 10)森北出版P.16−27 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigeru Koyama 1-2-2 Yamato-cho, Kasuga-shi, Fukuoka (72) Inventor Miaki Arakawa 4-22-1006 Wakabadai, Asahi-ku, Yokohama-shi, Kanagawa (56) Reference Reference Hiroshi Yamauchi "Mechanical Engineering Pocketbook" 3rd Edition (Sho 33-7-31) Ohmsha P. 620-621 Shoji Isshiki "Heat Transfer Engineering" 5th Edition (Sho 46-1-10) Morikita Publishing P.P. 16-27

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】流体の流れる管の外周に単位時間に一定の
熱量を与え、管内に付着する付着物によって生ずる管外
壁の温度変化、又は熱流の変化を測定することを特徴と
する流体管内の付着物状況検知方法。
Claim: What is claimed is: 1. A constant amount of heat is applied per unit time to the outer circumference of a pipe through which a fluid flows, and the temperature change of the outer wall of the pipe or the change of heat flow caused by the deposits adhering to the inside of the pipe is measured. Adhesion situation detection method.
【請求項2】流体の流れる管の外周に可変の熱量を与
え、管内付着物によって生ずる管外壁の温度変化を変化
させないように、管の温度をモニタして上記可変の熱量
を供給し、その熱量又は熱流を測定することを特徴とす
る流体管内の付着物状況検知方法。
2. A variable heat quantity is supplied to the outer circumference of a tube through which a fluid flows, and the variable heat quantity is supplied by monitoring the temperature of the tube so as not to change the temperature change of the outer wall of the tube caused by deposits in the tube. A method for detecting the state of deposits in a fluid pipe, characterized by measuring the amount of heat or the heat flow.
【請求項3】流体の流れる管の外周の所定範囲に設けら
れて上記管の外周に単位時間に一定の熱量を与えるヒー
タと、少なくとも上記ヒータが設けられた管の外周部分
に設けられて上記管の外壁温度変化を測定する1個以上
の温度計とを具備してなることを特徴とする流体管内の
付着物状況検知装置。
3. A heater provided in a predetermined range on the outer circumference of a pipe through which a fluid flows to give a constant amount of heat to the outer circumference of the pipe per unit time, and a heater provided at least on the outer circumference of the pipe provided with the heater. An adhering matter state detecting device in a fluid pipe, comprising: one or more thermometers for measuring a change in outer wall temperature of the pipe.
【請求項4】温度計が、管外周側の上記ヒータの取付部
分と、該ヒータの取付部分から離れた管の外周部分にそ
れぞれ設けられてなることを特徴とする特許請求の範囲
第3項記載の流体管内の付着物状況検知装置。
4. A thermometer is provided at each of the heater mounting portion on the outer peripheral side of the tube and the outer peripheral portion of the tube remote from the heater mounting portion. A device for detecting a state of adhered matter in a fluid pipe as described above.
【請求項5】流体の流れる管の外周の所定範囲に設けら
れて上記管の外周に単位時間に一定の熱量を与えるヒー
タと、少なくとも上記ヒータが設けられた管の外周側に
設けられて上記管の外壁の熱流変化を測定する1個以上
の熱流計とを具備してなることを特徴とする流体管内の
付着物状況検知装置。
5. A heater provided in a predetermined range on the outer periphery of a pipe through which a fluid flows to give a constant amount of heat to the outer periphery of the pipe, and a heater provided at least on the outer peripheral side of the pipe provided with the heater. An adhering matter state detecting device in a fluid pipe, comprising: one or more heat flow meters for measuring a change in heat flow of an outer wall of the pipe.
【請求項6】流体の流れる管の外周の所定範囲に設けら
れて上記管の外周に可変の熱量を与えるヒータと、少な
くとも上記ヒータが設けられた管の外周に設けられて上
記管の外壁温度を測定する1個以上の温度計と、管内付
着物によって生じようとする管外壁の温度変化を生じさ
せないように、管の外壁温度モニタの結果に応じて上記
管へのヒータによる可変の熱量の増減を行なう電源と、
上記ヒータへの投入電力量を測定する計測装置とを具備
してなることを特徴とする流体管内の付着物状況検知装
置。
6. A heater provided in a predetermined range on the outer periphery of a pipe through which a fluid flows to give a variable amount of heat to the outer periphery of the pipe, and an outer wall temperature of the pipe provided at least on the outer periphery of the pipe provided with the heater. One or more thermometers for measuring the temperature of the pipe and a variable amount of heat by the heater for the pipe depending on the result of the temperature monitor of the pipe outer wall so as not to cause the temperature change of the pipe outer wall due to the deposits in the pipe. Power supply to increase and decrease,
An adhering condition detecting device in a fluid pipe, comprising: a measuring device for measuring the amount of electric power supplied to the heater.
【請求項7】温度計が、管外周側の上記ヒータの取付部
分と、該ヒータの取付部分から離れた管の外周部分にそ
れぞれ設けられてなることを特徴とする特許請求の範囲
第6項記載の流体管内の付着物状況検知装置。
7. A thermometer is provided at each of the heater mounting portion on the outer peripheral side of the tube and the outer peripheral portion of the tube remote from the heater mounting portion. A device for detecting a state of adhered matter in a fluid pipe as described above.
JP14738884A 1984-07-16 1984-07-16 Method and apparatus for detecting state of adhered matter in fluid pipe Expired - Lifetime JPH061185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14738884A JPH061185B2 (en) 1984-07-16 1984-07-16 Method and apparatus for detecting state of adhered matter in fluid pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14738884A JPH061185B2 (en) 1984-07-16 1984-07-16 Method and apparatus for detecting state of adhered matter in fluid pipe

Publications (2)

Publication Number Publication Date
JPS6126809A JPS6126809A (en) 1986-02-06
JPH061185B2 true JPH061185B2 (en) 1994-01-05

Family

ID=15429129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14738884A Expired - Lifetime JPH061185B2 (en) 1984-07-16 1984-07-16 Method and apparatus for detecting state of adhered matter in fluid pipe

Country Status (1)

Country Link
JP (1) JPH061185B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250554A (en) * 1987-04-08 1988-10-18 Fujita Corp Method and device for corrosion diagnosis
JPH0296644A (en) * 1988-10-03 1990-04-09 Kurita Water Ind Ltd Fouling sensor
JPH02126145A (en) * 1988-11-04 1990-05-15 Central Res Inst Of Electric Power Ind Thermal resistance measuring method
JPH09166568A (en) * 1995-12-14 1997-06-24 Snow Brand Milk Prod Co Ltd Method for measuring fouling degree of manufacturing equipment and cleaning effect to it
WO2000005572A1 (en) * 1998-07-22 2000-02-03 Unilever N.V. Monitoring apparatus
FR2897930B1 (en) * 2006-02-28 2008-05-16 Commissariat Energie Atomique PLATE HEAT EXCHANGER INCLUDING A DEVICE FOR EVALUATING ITS ENCRYPTION CONDITION
JP5369831B2 (en) * 2009-03-31 2013-12-18 栗田工業株式会社 Cooling water state measuring device and cooling tower
JP5526936B2 (en) * 2010-03-31 2014-06-18 栗田工業株式会社 Attachment detection device
FR3037389B1 (en) * 2015-06-09 2019-11-29 Mersen France Py Sas TUBULAR HEAT EXCHANGER COMPRISING A CRACKING CONTROL MEMBER, ITS IMPLEMENTATION METHOD AND ITS MOUNTING METHOD
JP7006766B2 (en) * 2018-02-28 2022-01-24 富士通株式会社 Piping diagnostic method, piping diagnostic device, and piping diagnostic system
US10760742B2 (en) * 2018-03-23 2020-09-01 Rosemount Inc. Non-intrusive pipe wall diagnostics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一色尚次「伝熱工学」5版(昭46−1−10)森北出版P.16−27
山内弘「機械工学ポケットブック」3版(昭33−7−31)オーム社P.620−621

Also Published As

Publication number Publication date
JPS6126809A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
US3913378A (en) Apparatus for measuring fouling on metal surfaces
US5233868A (en) Non-intrusive mass flow measuring apparatus and method
CA1058287A (en) Corrosion probe for use in measuring corrosion rate under specified heat transfer conditions
US1902427A (en) Flow meter
CA1070515A (en) Apparatus for determining heat transfer efficiency
JPH061185B2 (en) Method and apparatus for detecting state of adhered matter in fluid pipe
US3336804A (en) Means and techniques useful in fluid flow determinations
US20110098943A1 (en) Thermal, flow measuring device
NO803528L (en) PROCEDURE AND MEASURES FOR MEASURING HEAT QUANTITIES
US4339949A (en) Process and apparatus for the thermal measurement of mass flow
JP2962695B2 (en) Fluid detector
US4654623A (en) Thermometer probe for measuring the temperature in low-convection media
JP5369831B2 (en) Cooling water state measuring device and cooling tower
US2525197A (en) Thermal flowmeter
JP2010101841A (en) Deposit detection unit and detection device
US5582628A (en) Unit and system for sensing fluid velocity
US3286174A (en) Apparatus and method for measuring high temperature corrosion and fluid flow rates
US20220397438A1 (en) Non-invasive thermometer
CN110945325A (en) Thermal flowmeter
EP0019480B1 (en) Method and apparatus for measuring the temperature of hot gases
JP5526936B2 (en) Attachment detection device
JP2005291766A (en) Flow measuring method and flow measuring apparatus using temperature sensor
Baughn et al. Instrument for the measurement of heat flux from a surface with uniform temperature
SU1670417A1 (en) Flowmeter sensor
RU95119496A (en) METHOD FOR DETERMINING SMALL COSTS AND SENSOR FOR MEASURING SMALL COSTS