JP5369831B2 - Cooling water state measuring device and cooling tower - Google Patents

Cooling water state measuring device and cooling tower Download PDF

Info

Publication number
JP5369831B2
JP5369831B2 JP2009086821A JP2009086821A JP5369831B2 JP 5369831 B2 JP5369831 B2 JP 5369831B2 JP 2009086821 A JP2009086821 A JP 2009086821A JP 2009086821 A JP2009086821 A JP 2009086821A JP 5369831 B2 JP5369831 B2 JP 5369831B2
Authority
JP
Japan
Prior art keywords
water
cooling water
temperature
cooling
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009086821A
Other languages
Japanese (ja)
Other versions
JP2010237107A (en
Inventor
信明 長尾
邦幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009086821A priority Critical patent/JP5369831B2/en
Publication of JP2010237107A publication Critical patent/JP2010237107A/en
Application granted granted Critical
Publication of JP5369831B2 publication Critical patent/JP5369831B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device of properties of cooling water for precisely detecting deposits in a cooling tower by easily installing in the cooling tower, and to provide the cooling tower including the measuring device of properties of cooling water. <P>SOLUTION: Water in the cooling tower 30 passes through a pump 32 and a heat exchanger 34 and returns to the cooling tower 30, and is poured to a filler 40 from a water supply pipe 36. Water traveling and falling from the filler 40 is collected by a water collecting section 41 in an upper opening container shape, is poured to a water reception section 43 in an upper opening container shape via piping 42, is introduced to a measurement chamber 45 from piping 44, and flows out via the piping 46. A sensor 1 is installed in the measurement chamber 45 and abuts on cooling water introduced into the measurement chamber 45. A slime occurrence situation in the circulation cooling water system is detected by detection temperatures T<SB>1</SB>, T<SB>2</SB>of the sensor 1. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、循環式冷却水系などの冷却塔におけるスライムやスケールの検知に好適に用いられる冷却水性状測定装置と、この冷却水性状測定装置を備えた冷却塔に関する。   The present invention relates to a cooling water state measuring device suitably used for detecting slime and scale in a cooling tower such as a circulating cooling water system, and a cooling tower equipped with this cooling water state measuring device.

冷却塔等の循環水中に発生する微生物によって熱交換器や配管等の壁面に形成される微生物膜厚さの増加量を検知する方法として、特開昭61−26809号には、配管内や配管外部に設けた発熱部を発熱させ、配管周囲に設けられた感温部(熱伝対等)で計測した伝熱部の温度と、予め計測された配管内の流体温度から伝熱量を計測し、配管内側壁面に付着した微生物膜(スライム)や析出物(スケール)等による伝熱阻害を前記伝熱量の変化より検出する方法が記載されている。   As a method for detecting an increase in the thickness of a microorganism film formed on a wall surface of a heat exchanger or a pipe by microorganisms generated in circulating water such as a cooling tower, Japanese Patent Application Laid-Open No. 61-26809 discloses in the pipe and pipe. Heat generation is performed from the temperature of the heat transfer section measured by the temperature sensing section (thermocouple, etc.) provided around the pipe and the fluid temperature in the pipe measured in advance. A method is described in which heat transfer inhibition due to microbial films (slime), precipitates (scale), etc. adhering to the inner wall surface of the pipe is detected from changes in the heat transfer amount.

この特開昭61−26809号の方法は、配管内側壁面に付着する付着物によって生じる伝熱阻害を配管管肉内部に埋め込んだ測温体の温度上昇によって検出する方法であり、経時的な観察が可能であり、付着の短時間での検出が可能な方法である。しかしながら、(1)水温を計測する計測部を別途用意する必要がある。(2)測温体を埋め込んだ特別な配管を通常の配管以外に別途用意する必要がある。(3)加熱部を前記配管内に埋め込む又は配管外部に固定し、配管側への熱供給量を安定化させるために、配管外への放熱量を一定に保つ(外気温を一定にしたり保温する等)といった操作が必要となるため、計測のための手段の準備は容易ではない。   The method disclosed in Japanese Patent Laid-Open No. 61-26809 is a method for detecting the heat transfer inhibition caused by the deposits adhering to the inner wall surface of the pipe by the temperature rise of the temperature measuring element embedded in the pipe pipe wall. It is a method that can detect adhesion in a short time. However, (1) it is necessary to prepare a measuring unit for measuring the water temperature. (2) It is necessary to prepare a special piping with a temperature sensor embedded in addition to the normal piping. (3) In order to stabilize the heat supply amount to the pipe side by embedding the heating part in the pipe or fixing it outside the pipe, keep the heat radiation outside the pipe constant. It is not easy to prepare a means for measurement.

特開平10−332610号には、平板上に白金等の抵抗体をパターン状に形成したヒーターを発熱させた時の抵抗変化から、前記平板上に形成されたスライムによって阻害される放熱量の減少を、計測温度の上昇(抵抗値の増加)によって計測する方法が記載されている。この方法によれば、小型の計測部を循環水系に浸漬することができ、ゴム板法や特開昭61−26809号の方法に比べて計測操作は容易になる。しかしながら、特開平10−332610号では、水温や水流速度を計測していないために、水温や流速の変動による放熱量の変化と、スライム付着による放熱量の変化の区別が不可能であり、前記水温や流速の変化を別途計測する手段を設ける必要があった。   In Japanese Patent Laid-Open No. 10-332610, a decrease in the amount of heat dissipated by the slime formed on the flat plate is caused by a resistance change when a heater in which a resistor such as platinum is formed in a pattern on the flat plate is heated. Is described by measuring the temperature rise (increase in resistance value). According to this method, a small measuring unit can be immersed in the circulating water system, and the measurement operation is facilitated as compared with the rubber plate method and the method disclosed in Japanese Patent Application Laid-Open No. 61-26809. However, in Japanese Patent Laid-Open No. 10-332610, since the water temperature and the water flow velocity are not measured, it is impossible to distinguish the change in the heat release amount due to the fluctuation of the water temperature or the flow velocity and the change in the heat release amount due to the slime adhesion. It was necessary to provide a means for separately measuring changes in water temperature and flow velocity.

特開昭61−26809号JP 61-26809 A 特開平10−332610号JP-A-10-332610

上記特開昭61−26809のように、ヒーターを発熱させた時の配管に埋め込んだ測温体の出力と、予め計測された配管内を流れる流体の温度から放熱量を計測する方法により、配管壁面等への付着物を常時検出することは可能である。しかしながら、循環水系においては、循環水ポンプによって冷却塔内の水が熱交換器に通水されて冷却塔に戻される様になっており、この冷却塔に上記特開昭61−26809のような方法でセンサを設置しようとした場合には、センサを埋め込んだ新たな配管を追加する工事を必要とするため、大きなコストがかかる。   As described in Japanese Patent Laid-Open No. Sho 61-26809, piping is measured by a method of measuring the amount of heat radiation from the output of the temperature measuring element embedded in the piping when the heater is heated and the temperature of the fluid flowing in the piping measured in advance. It is possible to always detect deposits on the wall surface. However, in the circulating water system, the water in the cooling tower is passed through the heat exchanger by the circulating water pump and returned to the cooling tower, and the cooling tower as described in JP-A-61-26809 is used. If it is attempted to install the sensor by this method, a construction for adding a new pipe in which the sensor is embedded is required.

また、特開昭61−26809及び特開平10−332610号にあっては、流速による放熱量が流速変動により変化する場合、付着物による温度の変動と流速による変動との識別が困難であり、安定した計測のためには水流の影響を軽減する必要がある。特に特開平10−332610号の計測手段を用いる場合、水の流れが直接計測手段にあたるときには、水流速の変化の影響を直接受けることとなる。   In JP-A-61-26809 and JP-A-10-332610, when the amount of heat release due to flow velocity changes due to flow rate fluctuations, it is difficult to distinguish between temperature fluctuations due to deposits and fluctuations due to flow rates, It is necessary to reduce the influence of water flow for stable measurement. In particular, when using the measuring means of Japanese Patent Laid-Open No. 10-332610, when the flow of water directly hits the measuring means, it is directly affected by the change in the water flow velocity.

本発明は、上記従来技術の問題点を解決し、冷却塔に簡易に設置して冷却塔における付着物を精度良く検出することができる冷却水性状測定装置と、この冷却水性状測定装置を備えた冷却塔を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and includes a cooling water state measuring device that can be easily installed in a cooling tower and can accurately detect deposits on the cooling tower, and this cooling water state measuring device. An object is to provide a cooling tower.

請求項1の冷却水性状測定装置は、冷却塔内部を流下する冷却水を集水する集水部と、該集水部からの冷却水が通過する通水部と、該通水部に設置された、冷却水の性状を計測するセンサと、を備え、前記通水部は、前記集水部からの冷却水を満水又はオーバーフローの状態を保ちながら受け入れる、上部が開口した受水部と、該受水部からの冷却水が通過する計測チャンバとを備え、該計測チャンバに前記センサが設置されていることを特徴とするものである。 The cooling water state measuring device according to claim 1 is installed in a water collecting part for collecting cooling water flowing down inside the cooling tower, a water passing part through which cooling water from the water collecting part passes, and the water passing part. And a sensor for measuring the properties of the cooling water, and the water passing portion receives the cooling water from the water collecting portion while maintaining a full or overflow state, and a water receiving portion having an open top, A measuring chamber through which cooling water from the water receiving section passes, and the sensor is installed in the measuring chamber.

請求項の冷却水性状測定装置は、請求項1において、前記センサは、金属管と、該金属管内に挿入された発熱体及び測温体と、該発熱体及び測温体と該金属管の内面との間に充填された充填物とを備えていることを特徴とするものである。 Cooling aqueous shape measuring apparatus according to claim 2, Oite to claim 1, wherein the sensor is a metal tube and a heating element and temperature sensing element is inserted into the metal tube, the heat generating body and the temperature sensing element and said It is characterized by comprising a filler filled between the inner surface of the metal tube.

請求項の冷却水性状測定装置は、請求項において、前記発熱体への通電制御手段と、前記測温体の計測温度から該金属管外面への付着物の付着判定を行う判定手段とを備え、該判定手段は、該発熱体への通電量を変化させた際に該測温体で計測される温度の変化に基づいて該金属管外面への付着物の付着を判定するものであることを特徴とするものである。 According to a third aspect of the present invention, there is provided the cooling water state measuring apparatus according to the second aspect , wherein the energization control means for the heating element, and the judgment means for judging the adhesion of the deposit on the outer surface of the metal tube from the measured temperature of the temperature measuring body. And the determination means determines adhesion of deposits on the outer surface of the metal tube based on a change in temperature measured by the temperature measuring element when the amount of current supplied to the heating element is changed. It is characterized by being.

請求項の冷却水性状測定装置は、請求項において、前記発熱体に定電流iを所定時間t通電した後、所定時間tだけ非通電とするか、または、所定時間tだけ定電流iよりも小さい定電流iとするサイクルを繰り返し行い、該金属管外面への付着物の付着を判定するよう構成されていることを特徴とするものである。 Cooling aqueous shape measuring apparatus according to claim 4, in claim 3, wherein after the heating element constant current i 1 and the predetermined time t 1 current, or a predetermined time t 2 only de-energized, or, the predetermined time t 2 Only a constant current i 2 smaller than the constant current i 1 is repeated, and the adhesion of deposits to the outer surface of the metal tube is determined.

請求項の冷却水性状測定装置は、請求項において、該所定時間tの開始時または該所定時間tの終期における測温体の計測温度Tと、該所定時間tの終期または該所定時間tの開始時における測温体の計測温度Tとの温度差の経時変化に基づいて、該金属管外面への付着物の付着を判定することを特徴とするものである。 Cooling aqueous shape measuring apparatus according to claim 5, in claim 4, the measured temperature T 1 of the temperature sensing element at the beginning or said predetermined end of constant-time t 2 of said predetermined constant-time t 1, said predetermined end of constant-time t 1 or based on temporal change of the temperature difference between the measured temperature T 2 of the temperature sensing element at the beginning of said predetermined constant-time t 2, is characterized in determining the adhesion of the deposit to the metal tube outer surface .

請求項の冷却塔は、請求項1ないしのいずれか1項に記載の冷却水性状測定装置を備えた冷却塔であって、前記集水部は、冷却塔内に設置された充填材に接して設けられ、充填材に沿って流下する冷却水を集水することを特徴とするものである。 A cooling tower according to claim 6 is a cooling tower provided with the cooling water state measuring device according to any one of claims 1 to 5 , wherein the water collecting section is a filler installed in the cooling tower. The cooling water which is provided in contact with the water and flows down along the filler is collected.

本発明の冷却水性状測定装置では、冷却塔上部からの冷却水を集水部で集水して通水部に通水し、この通水部に設けたセンサで冷却水の性状を測定する。   In the cooling water state measuring apparatus of the present invention, cooling water from the upper part of the cooling tower is collected in the water collecting part and passed through the water passing part, and the property of the cooling water is measured by a sensor provided in this water passing part. .

一般に、冷凍機の運転に連動して、循環ポンプによって冷却塔ピット内に溜まった冷却水が冷凍機内の熱交換器を通って冷却塔上部に供給され、冷却塔の上部からは、充填材を伝わって再び冷却塔ピットに戻ってくる。冷却塔上部から落下してくる冷却水を集水部で集めて通水部に供給することにより、無動力で通水部に冷却水を通水し、センサと接触させることができる。集水部からの水を受け入れる受水部がオーバーフローするなど満水位にあるときには、通水部に対し一定の流速で冷却水を通水することができ、冷却水の性状を精度よく測定することができる。   In general, in conjunction with the operation of the refrigerator, the cooling water accumulated in the cooling tower pit by the circulation pump is supplied to the upper part of the cooling tower through the heat exchanger in the refrigerator, and the filler is supplied from the upper part of the cooling tower. It is transmitted and returns to the cooling tower pit again. By collecting the cooling water falling from the upper part of the cooling tower at the water collecting part and supplying it to the water passing part, the cooling water can be passed through the water passing part without power and brought into contact with the sensor. When the water receiving part that receives water from the water collecting part overflows, the cooling water can be passed at a constant flow rate with respect to the water passing part, and the characteristics of the cooling water must be measured accurately. Can do.

この集水部は冷却塔の充填材に接して設置されるのが好ましい。冷却塔の循環ポンプが運転を開始し、冷却塔上部に冷却水が供給されると、冷却水は充填材を伝わって落下する。集水部が充填材壁面を伝わり流れ落ちる冷却水を受ける。集水部の開口面積に比べて十分に小さくしておくと、通常の冷却塔の運転時における冷却塔上部からの落水が集水部を介して導入される受水部は満水またはオーバーフロー状態となり、通水部には一定流速にて冷却水が流れる。これにより、センサによって冷却水の性状を精度よく測定することができる。   This water collecting part is preferably installed in contact with the filler of the cooling tower. When the circulating pump of the cooling tower starts operation and cooling water is supplied to the upper part of the cooling tower, the cooling water falls through the filler. The water collecting part receives cooling water that flows down the filler wall. If the opening area of the water collection part is sufficiently small, the water receiving part where the falling water from the upper part of the cooling tower during normal cooling tower operation is introduced through the water collection part becomes full or overflowed. The cooling water flows through the water passage at a constant flow rate. Thereby, the property of cooling water can be accurately measured by the sensor.

本発明の冷却水性状測定装置に用いるセンサとしては、金属管内部に発熱体と測温体を設置したものが好ましい。通水部に通水して冷却水と該センサとを接触させ、一定時間毎に該発熱体への通電電流量を増減させる。そして、通電量をゼロとした又は少なくしたときに水温に依存した温度を計測し、また、通電量を多くしたときに発熱量に依存した温度を計測する。これにより、一つのセンサーで水温と発熱時の内部温度を計測し、これに基づいてプローブへの付着物の付着状況を検知し、水系におけるスライムの発生状況を精度よく検知することが可能となる。   As a sensor used for the cooling water state measuring device of the present invention, a sensor in which a heating element and a temperature measuring element are installed inside a metal tube is preferable. The cooling water and the sensor are brought into contact with each other through the water passing portion, and the amount of current supplied to the heating element is increased or decreased at regular intervals. Then, the temperature depending on the water temperature is measured when the energization amount is zero or reduced, and the temperature depending on the heat generation amount is measured when the energization amount is increased. This makes it possible to measure the water temperature and the internal temperature at the time of heat generation with a single sensor, detect the adhesion of the deposit on the probe based on this, and accurately detect the occurrence of slime in the water system. .

本発明では、上記のように通水部に冷却水を定量的に通水させることにより、センサからの放熱量は水の温度と、センサへのスライム等の付着物量のみに依存するようになる。このため、通電量をゼロとした(又は少なくした)ときの、水温に依存した内部温度と、通電量を多くしたときの、発熱に依存した内部温度を計測し、この2つの温度の差を算出すれば、スライム付着による伝熱阻害により上昇する内部温度上昇を正確に検出することが可能となる。   In the present invention, the amount of heat released from the sensor depends only on the temperature of the water and the amount of deposits such as slime on the sensor by passing the cooling water quantitatively through the water passing portion as described above. . For this reason, the internal temperature depending on the water temperature when the energization amount is zero (or reduced) and the internal temperature depending on the heat generation when the energization amount is increased are measured, and the difference between these two temperatures is measured. If calculated, it is possible to accurately detect an increase in internal temperature that increases due to heat transfer inhibition due to slime adhesion.

循環冷却水系の系統図である。It is a systematic diagram of a circulating cooling water system. 図1の一部の拡大図である。It is a one part enlarged view of FIG. 計測チャンバを含む通水部の断面図である。It is sectional drawing of the water flow part containing a measurement chamber. 実施の形態に用いられるセンサの断面図である。It is sectional drawing of the sensor used for embodiment. 実施の形態に係る測定装置の回路ブロック図である。It is a circuit block diagram of the measuring apparatus which concerns on embodiment. センサへの通電パターン及び検出温度変化パターン図である。It is an energization pattern to a sensor, and a detection temperature change pattern figure. センサへの通電パターン及び検出温度変化パターン図である。It is an energization pattern to a sensor, and a detection temperature change pattern figure. 管壁付近の温度分布図である。It is a temperature distribution map near a pipe wall. センサ出力と流速との関係を示すグラフである。It is a graph which shows the relationship between a sensor output and a flow velocity. センサの出力特性図である。It is an output characteristic figure of a sensor. 測定結果を示すグラフである。It is a graph which shows a measurement result. 比較例に係る循環冷却水系の系統図である。It is a systematic diagram of the circulating cooling water system which concerns on a comparative example.

以下、図面を参照して実施の形態について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

第1図は実施の形態に係る冷却水性状測定装置を備えた冷却塔の概略的な縦断面図及び開放式循環冷却水系の系統図である。第2図は第1図の一部を拡大した冷却水性状測定装置の側面図、第3図は通水部の断面図、第4図はセンサの断面図、第5図は測定装置のブロック図、第6図及び第7図はセンサの作動説明図、第8図は伝熱壁の模式的な断面図である。   FIG. 1 is a schematic longitudinal sectional view of a cooling tower provided with a cooling water state measuring apparatus according to the embodiment and a system diagram of an open circulating cooling water system. FIG. 2 is a side view of the cooling water state measuring device in which a part of FIG. 1 is enlarged, FIG. 3 is a sectional view of a water flow portion, FIG. 4 is a sectional view of a sensor, and FIG. FIG. 6, FIG. 6 and FIG. 7 are explanatory views of the operation of the sensor, and FIG. 8 is a schematic sectional view of the heat transfer wall.

第1図の通り、冷却塔30内の水が配管31、ポンプ32、配管33、熱交換器34及び配管35を通って冷却塔30に戻り、散水管36から冷却塔30内の充填材40に注ぎかけられる。冷却水は充填材40に沿って伝わり落ち、この間に水の一部が蒸発し、冷却水が冷却される。   As shown in FIG. 1, the water in the cooling tower 30 returns to the cooling tower 30 through the pipe 31, the pump 32, the pipe 33, the heat exchanger 34 and the pipe 35, and the filler 40 in the cooling tower 30 passes through the water spray pipe 36. Pour into. The cooling water travels down along the filler 40, during which part of the water evaporates and the cooling water is cooled.

第2,3図の通り、充填材40を伝わり落ちてきた水は、上開容器状の集水部41で集水され、配管42を介して上開容器状の受水部43に注ぎ込まれる。受水部43内の冷却水は、配管44から計測チャンバ45に導入され、この計測チャンバ45の上部の配管46を介して流出する。計測チャンバ45にセンサ1が設置されており、計測チャンバ45内に導入された冷却水と接触する。このセンサ1の検出温度T,Tによって、この循環冷却水系におけるスライム発生状況が検出される。 As shown in FIGS. 2 and 3, the water that has fallen down through the filler 40 is collected by the water collecting part 41 having an upper container shape and poured into the water receiving part 43 having an upper container shape through a pipe 42. . The cooling water in the water receiving portion 43 is introduced into the measurement chamber 45 from the pipe 44 and flows out through the pipe 46 at the upper part of the measurement chamber 45. The sensor 1 is installed in the measurement chamber 45 and comes into contact with the cooling water introduced into the measurement chamber 45. The slime generation state in the circulating cooling water system is detected by the detected temperatures T 1 and T 2 of the sensor 1.

なお、充填材40は、多数枚のポリ塩化ビニルなどの合成樹脂等よりなる板状体を板面が略鉛直となるように間隙を介して積層状に配列したものである。集水部41は、この充填材40に対し留付部材によって固定されている。集水部41は、上方に向って開放した容器状である。集水部41は、充填材40を伝わり落ちてきた冷却水を受け入れるように上縁の一辺部が充填材40の板面に接している。配管42は、その上端が集水部41の底部に接続されており、下端は受水部43の上方に位置している。   The filler 40 is formed by arranging a large number of plate-like bodies made of a synthetic resin such as polyvinyl chloride in a stacked manner with a gap so that the plate surface is substantially vertical. The water collecting portion 41 is fixed to the filler 40 by a fastening member. The water collection part 41 is a container shape opened upward. In the water collecting portion 41, one side portion of the upper edge is in contact with the plate surface of the filler 40 so as to receive the cooling water that has fallen through the filler 40. The upper end of the pipe 42 is connected to the bottom of the water collecting part 41, and the lower end is located above the water receiving part 43.

受水部43は、上方に向って開放した容器状であり、充填材40又は冷却塔30に取り付けられている。受水部43の底面に配管44の上端が接続されており、配管44の下端が計測チャンバ45の側面の上下方向途中部分に接続されている。計測チャンバ45は、筒軸心方向を上下方向とした筒形であり、その上部に配管46の基端が接続されている。配管46は、下向きU字状ないし略円弧状に湾曲しており、配管46の先端側は下方を指向している。   The water receiving portion 43 has a container shape opened upward, and is attached to the filler 40 or the cooling tower 30. The upper end of the pipe 44 is connected to the bottom surface of the water receiving portion 43, and the lower end of the pipe 44 is connected to the middle part in the vertical direction of the side surface of the measurement chamber 45. The measurement chamber 45 has a cylindrical shape with the cylinder axis direction as the vertical direction, and the base end of the pipe 46 is connected to the upper part thereof. The pipe 46 is curved in a downward U-shape or a substantially arc shape, and the distal end side of the pipe 46 is directed downward.

センサ1は、細長いプローブ状であり、ホルダ47に保持されて計測チャンバ45内に下方から挿入されている。ホルダ47は、パッキン48及びナット49によってチャンバ45に保持されている。   The sensor 1 has an elongated probe shape, is held by a holder 47, and is inserted into the measurement chamber 45 from below. The holder 47 is held in the chamber 45 by a packing 48 and a nut 49.

なお、受水部43、配管44、計測チャンバ45及び配管46によって通水部が構成されている。   The water receiving part 43, the pipe 44, the measurement chamber 45 and the pipe 46 constitute a water passing part.

集水部41の上面の開口面積及び配管42の断面積を配管44又は配管46の断面積よりも大きくとっておくと、集水部41から配管42を介して受水部43に注ぎ込まれる水量は、通水部の通過水量よりも多くなるので、受水部43はオーバーフロー状態となる。そうすると、計測チャンバ45内には、受水部43の上縁と配管46の先端との水頭差hに応じた定流速にて冷却水が通水されることになる。   If the opening area of the upper surface of the water collecting part 41 and the cross-sectional area of the pipe 42 are set larger than the cross-sectional area of the pipe 44 or 46, the amount of water poured from the water collecting part 41 into the water receiving part 43 via the pipe 42. Is larger than the amount of water passing through the water passing portion, so that the water receiving portion 43 is in an overflow state. Then, the cooling water is passed through the measurement chamber 45 at a constant flow rate according to the water head difference h between the upper edge of the water receiving portion 43 and the tip of the pipe 46.

このように、この実施の形態では、定量ポンプ等の高機能機器を用いることなく、一定の水頭差を利用する簡易な機構にて計測チャンバ45に冷却水を定流量にて通水することができる。   As described above, in this embodiment, the cooling water can be passed through the measurement chamber 45 at a constant flow rate with a simple mechanism that uses a constant water head difference without using a high-functional device such as a metering pump. it can.

なお、配管44又は46に流量調節弁を設け、計測チャンバ45への流量を調節するようにしてもよい。   A flow rate adjustment valve may be provided in the pipe 44 or 46 to adjust the flow rate to the measurement chamber 45.

次に、第4図を参照してセンサ1の構造について説明する。   Next, the structure of the sensor 1 will be described with reference to FIG.

このセンサ1は、基端側が開放し先端側が閉じた真鍮、ステンレス等の耐食性金属よりなる金属管2と、該金属管2内に配置した発熱体3及び測温体4と、金属管2の内周面と該発熱体3及び測温体4との間のスペースに充填された電気絶縁性かつ熱良導性の酸化マグネシウム(マグネシア)粒子などの充填物5等を有する。センサ1の基端側はエポキシ樹脂等の樹脂6で封止されている。   The sensor 1 includes a metal tube 2 made of a corrosion-resistant metal such as brass or stainless steel whose base end side is open and its distal end side is closed, a heating element 3 and a temperature measuring body 4 disposed in the metal tube 2, and a metal tube 2. It has a filler 5 such as electrically insulating and thermally conductive magnesium oxide (magnesia) particles filled in a space between the inner peripheral surface and the heating element 3 and the temperature measuring element 4. The base end side of the sensor 1 is sealed with a resin 6 such as an epoxy resin.

金属管2の肉厚は0.05〜0.5mm程度が好適である。金属管2の直径は2〜5mm程度が好適である。   The thickness of the metal tube 2 is preferably about 0.05 to 0.5 mm. The diameter of the metal tube 2 is preferably about 2 to 5 mm.

発熱体3としては、絶縁性基板上に白金薄膜を形成したものなどが好適である。測温体4としては、熱電対やサーミスタ等が好適である。ただし、発熱体3及び測温体4としてはこれら以外のものを用いてもよい。   As the heating element 3, a material in which a platinum thin film is formed on an insulating substrate is suitable. As the temperature measuring element 4, a thermocouple, a thermistor, or the like is suitable. However, the heating element 3 and the temperature measuring element 4 may be other than these.

発熱体3は、金属管2の軸心部に配置されるのが好ましい。測温体4は、発熱体3と金属管2の内周面との間において金属管2の内周面と接するように設けられるのが好ましい。   The heating element 3 is preferably disposed at the axial center of the metal tube 2. The temperature measuring body 4 is preferably provided so as to be in contact with the inner peripheral surface of the metal tube 2 between the heating element 3 and the inner peripheral surface of the metal tube 2.

発熱体3への通電用リード線3a,3bのうち、一方のリード線3aはセンサ1外にまで延在し、他方のリード線3bは金属管2に半田付け等により接続され、金属管2を介してリード線3cに導通しているが、リード線3bもリード線3aと同様にセンサ1外にまで延在してもよい。なお、リード線3cは金属管2の基端に半田付け等により接続されている。測温体4からの2本のリード線4a,4bは、センサ1外に引き出されている。これらのリード線には絶縁被覆が施されている。   One of the lead wires 3a and 3b for energizing the heating element 3 extends to the outside of the sensor 1, and the other lead wire 3b is connected to the metal tube 2 by soldering or the like. However, the lead wire 3b may also extend to the outside of the sensor 1 similarly to the lead wire 3a. The lead wire 3c is connected to the base end of the metal tube 2 by soldering or the like. Two lead wires 4 a and 4 b from the temperature measuring body 4 are drawn out of the sensor 1. These lead wires are provided with an insulating coating.

このセンサ1は、管状ホルダ47の先端に取り付けられている。センサ1の金属管2がホルダ47の先端から計測チャンバ45内に突出している。   This sensor 1 is attached to the tip of a tubular holder 47. The metal tube 2 of the sensor 1 protrudes from the tip of the holder 47 into the measurement chamber 45.

前述の通り、このホルダ47は、パッキン48及びナット49によって計測チャンバ45に固定されている。センサ1の金属管2の先端は、配管44と計測チャンバ45との接続部(流入口)よりも上方に位置している。配管44からの冷却水の流入口にはホルダ47が対面している。   As described above, the holder 47 is fixed to the measurement chamber 45 by the packing 48 and the nut 49. The tip of the metal tube 2 of the sensor 1 is located above the connection (inlet) between the pipe 44 and the measurement chamber 45. A holder 47 faces the inlet of the cooling water from the pipe 44.

センサ1への付着物の検出装置は、この発熱体3への通電制御手段と、測温体4の出力信号を処理して付着物の付着状況の判定を行う判定手段とを有する。この付着物検出装置の回路の構成について第5図を参照して説明する。   The apparatus for detecting an adhering matter to the sensor 1 has an energization control means for the heating element 3 and a judging means for processing the output signal of the temperature measuring element 4 and judging the adhering state of the adhering substance. The circuit configuration of the attached matter detection apparatus will be described with reference to FIG.

この付着物検出装置は、発熱体3に電流を出力する電流出力部21と、測温体4からの温度信号を入力してデジタル信号に変換する温度入力部22と、温度入力部22からの信号を入力して、測温体の温度情報に基づいて電流出力部21が出力すべき電流値を演算すると共に、スライムの付着判定を行う演算部23より構成される。この演算部23はマイクロコンピュータ(μ−CPU)や大規模集積回路(LSI)によって構成された演算処理回路である。演算部23は、発熱体3への通電電流値を周期的に変動させながら、測温体4からの温度データに基づき、センサ1の表面に付着する付着物によって発生する伝熱抵抗の上昇から付着物の付着状況を判定する。   The attached matter detection device includes a current output unit 21 that outputs a current to the heating element 3, a temperature input unit 22 that inputs a temperature signal from the temperature measuring body 4 and converts it into a digital signal, and a temperature input unit 22 A signal is input to calculate a current value to be output by the current output unit 21 based on temperature information of the temperature measuring element, and a calculation unit 23 that performs slime adhesion determination. The arithmetic unit 23 is an arithmetic processing circuit configured by a microcomputer (μ-CPU) or a large scale integrated circuit (LSI). The calculation unit 23 periodically increases the value of the energization current to the heating element 3, and based on the temperature data from the temperature measuring element 4, the increase in the heat transfer resistance generated by the deposits attached to the surface of the sensor 1. Judgment status of deposits is determined

この付着物検出装置を用いて水系のスライム発生状況を観察するには、集水部41で集水した冷却水を定流速にて計測チャンバ45内に通水する。そして、第6図のように発熱体3にパルス状に通電を行い、測温体4の計測温度を検出し、この結果に基づいてセンサ1へのスライムの付着量を判定し、水系におけるスライムの発生状況(発生し易さ)を判定する。   In order to observe the occurrence of water-based slime using this deposit detection apparatus, the cooling water collected by the water collection unit 41 is passed through the measurement chamber 45 at a constant flow rate. Then, as shown in FIG. 6, the heating element 3 is energized in pulses, the measured temperature of the temperature measuring element 4 is detected, the amount of slime attached to the sensor 1 is determined based on this result, and the slime in the water system The occurrence status (ease of occurrence) of the event is determined.

第6図のように、発熱体3に通電を開始すると、発熱体3の発熱が測温体4に伝熱することにより、測温体4の検出温度がTから上昇を開始する。測温体4の検出温度は、発熱体3からの発熱量と、センサ1の表面からの放熱量とがバランス(平衡)するまで上昇する。 As in FIG. 6, when starting the energization of the heating element 3, by heat transfer within temperature sensing element 4 heating of the heating element 3, the detected temperature of the temperature sensing element 4 starts to rise from T 1. The detected temperature of the temperature measuring element 4 rises until the amount of heat generated from the heating element 3 and the amount of heat released from the surface of the sensor 1 are balanced.

通電時間tを、測温体4の検出温度がほぼ平衡温度Tに達するのに十分な時間となるように選定しておく。この時間tは、予め通電試験を行って決定すればよい。ただし、tを過度に長くすると、測定のリアルタイム性が乏しくなるので、実質的に平衡温度とみなせる温度(例えば、最終的な平衡温度との差が0.1℃以内となる温度)まで昇温するのに要する時間をtとして設定すればよい。通常の場合、tは5〜60秒特に5〜20秒程度が好ましい。 The energization time t 1 is selected so that the temperature detected by the temperature measuring element 4 is sufficient to reach the equilibrium temperature T 2 . The time t 1 may be determined by performing a pre-operation test. However, if t 1 is excessively long, the real-time property of the measurement becomes poor, so the temperature rises to a temperature that can be substantially regarded as an equilibrium temperature (for example, a temperature at which the difference from the final equilibrium temperature is within 0.1 ° C.). the time required for temperature may be set as t 1. For normal, t 1 is preferably about 5 to 60 seconds, especially 5 to 20 seconds.

発熱体3への通電を停止すると、センサ1から周囲の水中に放熱することにより、測温体4の検出温度が低下し始める。通電停止時間tを、センサ1にスライムが付着している場合でも測温体4の検出温度が周囲水温とほぼ等しい平衡温度Tに達するのに十分な時間となるように選定しておく。この時間tは、予め通電試験を行って決定すればよい。ただし、tを過度に長くすると、測定のリアルタイム性が乏しくなるので、実質的に平衡温度とみなせる温度(例えば、水温との差が0.1℃以内となる温度)まで低下するのに要する時間をtとして設定すればよい。通常の場合、tは20〜300秒特に60〜300秒程度が好ましい。 When energization of the heating element 3 is stopped, the temperature detected by the temperature measuring element 4 starts to decrease by radiating heat from the sensor 1 to the surrounding water. The energization-stopping time period t 2, the detected temperature of the temperature sensing element 4 even if the slime is attached to the sensor 1 is kept reduced to at sufficient time to reach approximately equal equilibrium temperature T 1 of the ambient temperature . The time t 2 may be determined by performing a pre-operation test. However, if too long a t 2, since the real-time measurement becomes poor, required to decrease to a temperature which can be regarded as substantially equilibrium temperature (e.g., temperature difference between the water temperature is within 0.1 ° C.) time may be set as t 2. Usually, t2 is preferably about 20 to 300 seconds, particularly about 60 to 300 seconds.

なお、第6図ではt時間帯では通電量をゼロとしているが、t時間帯の通電量iに比べて微量の定電流iを通電するようにしてもよい。ただし、i=0とするのが好ましい。 In the FIG. 6 is a zero energization amount at t 2 hours period, but may be energized a constant current i 2 traces than the current amount i 1 of t 1 hour period. However, i 2 = 0 is preferable.

集水部41にて集水される冷却水の水温が変動しない場合、センサ1にスライムが付着していない状態では、1つの通電時間t開始前の計測温度Tと、この通電時間t末期の計測温度Tとはいずれも経時的に一定である。なお、TとTとの差が5〜20℃程度となるように発熱体3への通電量を設定するのが好ましい。 If the water temperature of the cooling water collecting in the water collecting part 41 does not vary, in a state in which slime sensor 1 is not attached, one energization time t 1 before the start measurement temperature T 1, the energization time t both 1 and the measured temperature T 2 of the end which is constant over time. It is preferable to set the amount of current supplied to the heating element 3 so that the difference between T 2 and T 1 is of the order of 5 to 20 ° C..

センサ1にスライムが付着した状態では、通電時間t末期の計測温度Tは、センサ1にスライムが付着してないときに比べて高い温度となる。これは、スライムによってセンサ1から水への伝熱が阻害されるからであり、詳しいメカニズムについては次に述べる。 In a state where slime adheres to the sensor 1, the measured temperature T 2 at the end of the energization time t 1 is higher than when the slime does not adhere to the sensor 1. This is because heat transfer from the sensor 1 to the water is inhibited by slime, and the detailed mechanism will be described next.

従って、第6図に示すパルス通電を繰り返し行いながら温度T,Tを経時的に測定し、TとTとの差(T−T)の経時的変化からセンサ1へのスライムの付着の有無及び付着量を検知することができる。 Accordingly, the temperatures T 1 and T 2 are measured over time while the pulse energization shown in FIG. 6 is repeatedly performed, and the change from T 1 and T 2 (T 2 −T 1 ) over time to the sensor 1 is measured. It is possible to detect the presence and amount of slime adhesion.

上記の温度T,Tからスライムの付着厚さを求める算出式は下記の数1の通りである。なお、この式は、第8図に示す伝熱モデルに基づくものである。 A calculation formula for obtaining the adhesion thickness of the slime from the above temperatures T 1 and T 2 is as follows. This equation is based on the heat transfer model shown in FIG.

Figure 0005369831
Figure 0005369831

第8図において、Tw(水温)はTである。Ts(センサ表面温度)は、センサ内部の熱伝導度がkに比べて無視できる程度に小さい値であるときには、Tに等しい値とすることができる。また、Tw、Ts以外の右辺の項目は、センサの形状、発熱体の抵抗値及び通電量などより求められる定数である。 In Figure 8, Tw (water temperature) is T 1. Ts (sensor surface temperature), when the thermal conductivity of the internal sensor is smaller in negligible compared to k f can be a value equal to T 2. The items on the right side other than Tw and Ts are constants obtained from the shape of the sensor, the resistance value of the heating element, the energization amount, and the like.

例えば、熱流束qについては、発熱体3の電気抵抗値R、発熱体3への通電電流値i,発熱体3のセンサ長手方向の長さL、金属管2の半径rより次式に従って算出することができる。 For example, for the heat flux q, the electrical resistance value R of the heating element 3, the current value i applied to the heating element 3, the length L of the heating element 3 in the longitudinal direction of the sensor, and the radius r 1 of the metal tube 2 are Can be calculated.

Figure 0005369831
Figure 0005369831

従って、TとTを計測することにより、スライム(センサ表面付着物)の厚みを計測することができる。 Thus, by measuring the T 1 and T 2, it is possible to measure the thickness of the slime (sensor surface deposits).

但し、層流境膜伝熱係数を定数と見なすためには、層流境膜の厚みを一定にする必要があり、その為に計測チャンバ45内に水を定流速にて通水する。なお、流速を層流境膜伝熱係数の変動が無視できる速度値以上としてもよい。   However, in order to consider the laminar boundary film heat transfer coefficient as a constant, it is necessary to make the thickness of the laminar boundary film constant, and therefore water is passed through the measurement chamber 45 at a constant flow rate. In addition, it is good also considering the flow rate as the speed value which can ignore the fluctuation | variation of a laminar boundary film heat transfer coefficient.

なお、冷却水を循環させるためのポンプ32が停止した場合には、計測チャンバ45への冷却水流入が停止し、センサ1の出力温度が上昇する。   When the pump 32 for circulating the cooling water is stopped, the inflow of cooling water into the measurement chamber 45 is stopped and the output temperature of the sensor 1 is increased.

即ち、空調用冷凍機などは、夜間や冬季に停止し、循環ポンプ32が停止される場合がある。循環ポンプ32の停止により冷却塔30上部からの給水(散水)が停止すると、集水部41への水の供給がなくなるので、計測チャンバ45への冷却水の供給は停止し、従って計測チャンバ45内の水の流れは停止する。そのため、センサ1からの放熱量が減少し、第7図の通り、センサ1における加熱時(時間帯t)にセンサ1の出力温度が急激に上昇する。また、一旦停止した循環ポンプ32が再度運転を再開した場合には、再び集水部41から計測チャンバ45に冷却水が供給されることとなるため、計測チャンバ45内に流速が発生し、これによりセンサ1の放熱量が増加するため加熱時のセンサ出力温度がポンプ32の停止時に比べて急激に低下する。従って、定期的に繰り返す加熱時の温度上昇速度を監視することで、計測チャンバ45内に流速が生じているかどうかを判断して、冷却塔の循環ポンプの運転状態(ON/OFF)を検知することが可能となる。すなわち、加熱上昇速度の閾値を設定しておき、その閾値を越える加熱上昇速度が検知された場合に、発熱体3への通電をOFFする制御を行うことが可能である。 That is, the air-conditioning refrigerator or the like may stop at night or in winter, and the circulation pump 32 may be stopped. When the water supply (sprinkling) from the upper part of the cooling tower 30 is stopped by stopping the circulation pump 32, the supply of water to the water collecting section 41 is stopped, so the supply of cooling water to the measurement chamber 45 is stopped. The water flow inside stops. As a result, the amount of heat released from the sensor 1 decreases, and the output temperature of the sensor 1 rapidly increases during heating (time zone t 1 ) as shown in FIG. In addition, when the circulating pump 32 once stopped is restarted, the cooling water is supplied again from the water collecting section 41 to the measurement chamber 45, so that a flow velocity is generated in the measurement chamber 45. As a result, the heat radiation amount of the sensor 1 increases, so that the sensor output temperature at the time of heating is drastically lowered as compared to when the pump 32 is stopped. Accordingly, by monitoring the temperature rise rate during heating that is repeated periodically, it is determined whether or not a flow velocity is generated in the measurement chamber 45, and the operation state (ON / OFF) of the circulation pump of the cooling tower is detected. It becomes possible. That is, it is possible to set a threshold value for the heating rise rate and perform control to turn off the power supply to the heating element 3 when a heating rise rate exceeding the threshold value is detected.

このように、循環ポンプ32の動作状況をセンサ1の出力から検知し、加温工程でのセンサへの通電量を自動的に制御することが可能となり、無駄な消費電力の削減、および冷却塔の運転状態に影響を受けにくい適切なスライム付着状況のモニタリングが可能となる。   As described above, it is possible to detect the operation state of the circulation pump 32 from the output of the sensor 1 and to automatically control the energization amount to the sensor in the heating process, thereby reducing wasteful power consumption and cooling towers. It is possible to monitor the state of slime adhesion that is not easily affected by the operating conditions.

[実施例1]
直径3.0mm、肉厚0.1mm、長さ35mmのステンレス製の金属管2内の先端部に、発熱体3として、φ1.7×4.0mmの金属被膜抵抗120Ωを設置した。また、この発熱体3に近接して、測温体4として熱電対を金属管2の内周面に接するように配置した。金属管2の内周面と発熱体3及び測温体4との間に、平均粒径約100μmの酸化マグネシウム粉体を充填した。金属管2の基端はエポキシ樹脂6で封じた。このセンサ1をホルダ47の先端に取り付けた。センサ1のホルダ47からの突出長さは18mmである。
[Example 1]
A metal film resistance 120Ω of φ1.7 × 4.0 mm was installed as a heating element 3 at the tip of a stainless steel metal tube 2 having a diameter of 3.0 mm, a wall thickness of 0.1 mm, and a length of 35 mm. Further, in the vicinity of the heating element 3, a thermocouple as a temperature measuring body 4 was disposed so as to contact the inner peripheral surface of the metal tube 2. A magnesium oxide powder having an average particle size of about 100 μm was filled between the inner peripheral surface of the metal tube 2 and the heating element 3 and the temperature measuring element 4. The base end of the metal tube 2 was sealed with an epoxy resin 6. This sensor 1 was attached to the tip of the holder 47. The protruding length of the sensor 1 from the holder 47 is 18 mm.

このホルダ47を第3図のように計測チャンバ45に取り付け、第5図の如く結線した。計測チャンバ45の内径は20mm、上下方向長さは120mm、ホルダ47の外径は18mmである。試験的にこの計測チャンバ41に冷却水を流し、センサ1の発熱体3に対し、t=60sec,t=60sec、通電時の電流値i=40mAにて通電した。通水流速とT−Tとの関係を第9図に示す。また、このセンサ1に徐々にスライムが付着したときのスライム厚さとT−Tとの関係を第10図に示した。 The holder 47 was attached to the measurement chamber 45 as shown in FIG. 3 and connected as shown in FIG. The inner diameter of the measurement chamber 45 is 20 mm, the length in the vertical direction is 120 mm, and the outer diameter of the holder 47 is 18 mm. Pilot steers the cooling water in the measurement chamber 41, to the heating element 3 of the sensor 1 was energized at t 1 = 60sec, t 2 = 60sec, the current value i = 40 mA during energization. FIG. 9 shows the relationship between the water flow rate and T 2 -T 1 . FIG. 10 shows the relationship between slime thickness and T 2 -T 1 when slime gradually adheres to the sensor 1.

この計測チャンバ45及び集水部41を第1図のように冷却塔30に設置した。集水部41としては、上面の開口面積200cmのものを用いた。配管42の内径は20mm、配管44の内径は8mm、配管46の内径は8mmである。その結果、計測チャンバ45の通水量は300cm/minの一定流量であった。この通水流速では、センサ1の金属管2の表面に沿う被検水の流れは乱流となり、金属管2の表面からは均一に熱が水に伝達する。 The measurement chamber 45 and the water collecting part 41 were installed in the cooling tower 30 as shown in FIG. As the water collection part 41, the thing of the opening area of 200 cm < 2 > of an upper surface was used. The inner diameter of the pipe 42 is 20 mm, the inner diameter of the pipe 44 is 8 mm, and the inner diameter of the pipe 46 is 8 mm. As a result, the amount of water flow through the measurement chamber 45 was a constant flow rate of 300 cm 3 / min. At this water flow velocity, the flow of the test water along the surface of the metal tube 2 of the sensor 1 becomes a turbulent flow, and heat is uniformly transferred from the surface of the metal tube 2 to the water.

センサ1の発熱体3に対し、t=60sec,t=60sec、通電時の電流値i=40mAにて通電した。T−Tの経時変化を第11図に示す。 The heating element 3 of the sensor 1 was energized at t 1 = 60 sec, t 2 = 60 sec, and a current value i = 40 mA during energization. FIG. 11 shows the change with time of T 2 -T 1 .

この実施例1より、第10図の如くセンサ1の出力温度からスライム付着厚さが検知可能であることが確認された。また、第11図の通り、センサ1の出力温度に基づいて循環ポンプ32のON/OFFを検知できることも確認された。   From this Example 1, it was confirmed that the slime adhesion thickness can be detected from the output temperature of the sensor 1 as shown in FIG. Further, as shown in FIG. 11, it was confirmed that ON / OFF of the circulation pump 32 could be detected based on the output temperature of the sensor 1.

[比較例1]
第12図に示すように、配管36、ポンプ37、フローセル11及び配管38よりなる計測専用循環ラインを設け、フローセル11にセンサ1を設置した。冷却塔30のピットの水が、採取用配管36、定量ポンプ37を介してフローセル11内に導入され、フローセル11内に設置されたプローブ1と接触した後、配管38を経てピットに返送される。このプローブ1の検出温度T,Tを測定し、第11図に示した。
[Comparative Example 1]
As shown in FIG. 12, a measurement-dedicated circulation line including a pipe 36, a pump 37, a flow cell 11 and a pipe 38 was provided, and the sensor 1 was installed in the flow cell 11. The water in the pit of the cooling tower 30 is introduced into the flow cell 11 via the sampling pipe 36 and the metering pump 37, contacts the probe 1 installed in the flow cell 11, and then returned to the pit via the pipe 38. . The detection temperatures T 1 and T 2 of the probe 1 were measured and shown in FIG.

第11図の通り、比較例1では定量ポンプ37を用いて計測チャンバ45に通水するので、循環ポンプ42の停止時でもセンサ1の出力は殆ど変動しない。   As shown in FIG. 11, in Comparative Example 1, water is passed through the measurement chamber 45 using the metering pump 37, so that the output of the sensor 1 hardly fluctuates even when the circulation pump 42 is stopped.

1 プローブ
2 金属管
3 発熱体
4 測温体
5 充填物
10 付着物検出ユニット
11 フローセル
21 電流出力部
22 温度入力部
23 演算部
30 冷却塔
32 循環ポンプ
34 熱交換器
37 定量ポンプ
40 充填材
41 集水部
42,44,46 配管
43 受水部
45 計測チャンバ
DESCRIPTION OF SYMBOLS 1 Probe 2 Metal pipe 3 Heating element 4 Temperature measuring body 5 Packing thing 10 Adhering matter detection unit 11 Flow cell 21 Current output part 22 Temperature input part 23 Calculation part 30 Cooling tower 32 Circulation pump 34 Heat exchanger 37 Metering pump 40 Filling material 41 Water collecting part 42, 44, 46 Piping 43 Water receiving part 45 Measuring chamber

Claims (6)

冷却塔内部を流下する冷却水を集水する集水部と、
該集水部からの冷却水が通過する通水部と、
該通水部に設置された、冷却水の性状を計測するセンサと、
を備えた冷却水性状測定装置であって、
前記通水部は、前記集水部からの冷却水を満水又はオーバーフローの状態を保ちながら受け入れる、上部が開口した受水部と、該受水部からの冷却水が通過する計測チャンバとを備え、該計測チャンバに前記センサが設置されていることを特徴とする冷却水性状測定装置。
A water collecting section for collecting cooling water flowing down the cooling tower;
A water flow section through which cooling water from the water collection section passes;
A sensor installed in the water flow section for measuring the properties of cooling water;
A cooling water state measuring device comprising :
The water flow section includes a water receiving section having an upper opening that receives the cooling water from the water collecting section while maintaining a full or overflow state, and a measurement chamber through which the cooling water from the water receiving section passes. A cooling water state measuring apparatus, wherein the sensor is installed in the measuring chamber.
請求項1において、前記センサは、金属管と、該金属管内に挿入された発熱体及び測温体と、該発熱体及び測温体と該金属管の内面との間に充填された充填物とを備えていることを特徴とする冷却水性状測定装置。 Oite to claim 1, wherein the sensor includes a metal tube, which is filled between the heating element and the temperature sensing element is inserted into the metal tube, the inner surface of the heat generating member and the temperature sensing element and the metal tube A cooling water state measuring device comprising a filler. 請求項において、
前記発熱体への通電制御手段と、
前記測温体の計測温度から該金属管外面への付着物の付着判定を行う判定手段とを備え、
該判定手段は、該発熱体への通電量を変化させた際に該測温体で計測される温度の変化に基づいて該金属管外面への付着物の付着を判定するものであることを特徴とする冷却水性状測定装置。
In claim 2 ,
Energization control means to the heating element;
A determination means for performing adhesion determination of the deposit on the outer surface of the metal tube from the measured temperature of the temperature measuring body,
The determination means determines adhesion of an adhering substance to the outer surface of the metal pipe based on a change in temperature measured by the temperature measuring element when the energization amount to the heating element is changed. A cooling water quality measuring device.
請求項において、前記発熱体に定電流iを所定時間t通電した後、所定時間tだけ非通電とするか、または、所定時間tだけ定電流iよりも小さい定電流iとするサイクルを繰り返し行い、該金属管外面への付着物の付着を判定するよう構成されていることを特徴とする冷却水性状測定装置。 The constant current i according to claim 3 , wherein a constant current i 1 is energized to the heating element for a predetermined time t 1 and then de-energized for a predetermined time t 2 , or a constant current i smaller than the constant current i 1 for a predetermined time t 2. The cooling water state measuring apparatus is configured to repeatedly perform a cycle of 2 and determine adhesion of an adhering substance to the outer surface of the metal pipe. 請求項において、該所定時間tの開始時または該所定時間tの終期における測温体の計測温度Tと、該所定時間tの終期または該所定時間tの開始時における測温体の計測温度Tとの温度差の経時変化に基づいて、該金属管外面への付着物の付着を判定することを特徴とする冷却水性状測定装置。 In claim 4, the measured temperature T 1 of the temperature sensing element at the beginning or said predetermined end of constant-time t 2 of said predetermined constant-time t 1, measuring at the start of the end or said predetermined constant-time t 2 of said predetermined constant-time t 1 based on the temporal change of the temperature difference between the measured temperature T 2 of the temperature sensing element, the cooling water like measuring apparatus characterized by determining the adhesion of the deposit to the metal tube outer surface. 請求項1ないしのいずれか1項に記載の冷却水性状測定装置を備えた冷却塔であって、
前記集水部は、冷却塔内に設置された充填材に接して設けられ、充填材に沿って流下する冷却水を集水することを特徴とする冷却塔。
A cooling tower comprising the cooling water state measuring device according to any one of claims 1 to 5 ,
The said water collection part is provided in contact with the filler installed in the cooling tower, and collects the cooling water which flows down along a filler, The cooling tower characterized by the above-mentioned.
JP2009086821A 2009-03-31 2009-03-31 Cooling water state measuring device and cooling tower Expired - Fee Related JP5369831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086821A JP5369831B2 (en) 2009-03-31 2009-03-31 Cooling water state measuring device and cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086821A JP5369831B2 (en) 2009-03-31 2009-03-31 Cooling water state measuring device and cooling tower

Publications (2)

Publication Number Publication Date
JP2010237107A JP2010237107A (en) 2010-10-21
JP5369831B2 true JP5369831B2 (en) 2013-12-18

Family

ID=43091550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086821A Expired - Fee Related JP5369831B2 (en) 2009-03-31 2009-03-31 Cooling water state measuring device and cooling tower

Country Status (1)

Country Link
JP (1) JP5369831B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201219764D0 (en) * 2012-11-02 2012-12-19 Epsco Ltd Method and apparatus for inspection of cooling towers
JP5935741B2 (en) * 2013-03-29 2016-06-15 栗田工業株式会社 Open circulation cooling system
JP6274505B2 (en) * 2013-11-29 2018-02-07 栗田工業株式会社 Dirt monitoring sensor and dirt monitoring device
CN107131975B (en) * 2017-06-19 2023-11-10 广东新菱空调科技有限公司 Filling temperature measuring cup and using method thereof
US20210108917A1 (en) * 2018-04-17 2021-04-15 National University Corporation Tokyo University Of Marine Science And Technology Scale thickness estimation system, scale thickness estimation method, and scale thickness estimation program
CN114577842B (en) * 2022-05-07 2022-07-01 江苏双辉环境科技有限公司 Cooling tower filler performance test bench

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061185B2 (en) * 1984-07-16 1994-01-05 住友軽金属工業株式会社 Method and apparatus for detecting state of adhered matter in fluid pipe
JPS62170558U (en) * 1986-04-21 1987-10-29
JPH0296644A (en) * 1988-10-03 1990-04-09 Kurita Water Ind Ltd Fouling sensor
JPH03249134A (en) * 1990-02-27 1991-11-07 Kobe Steel Ltd Head tank for hot strip cooler
JP2657270B2 (en) * 1992-08-12 1997-09-24 東京瓦斯株式会社 Cleaning equipment for strainer in cooling tower
JP2583549Y2 (en) * 1993-12-15 1998-10-22 三菱樹脂株式会社 cooling tower
JP2926534B2 (en) * 1994-02-25 1999-07-28 出光興産株式会社 Pour point measuring device and measuring method
JPH09126994A (en) * 1995-11-07 1997-05-16 Nikon Corp Light absorption measuring apparatus
JP3277847B2 (en) * 1997-06-05 2002-04-22 栗田工業株式会社 Scale or slime adhesion detection device and detection method
JP3257453B2 (en) * 1997-06-05 2002-02-18 栗田工業株式会社 Slime detection method
JP2000039270A (en) * 1998-07-22 2000-02-08 Mitsubishi Plastics Ind Ltd Cooling tower
JP2005189212A (en) * 2003-12-26 2005-07-14 Hakuto Co Ltd Apparatus and method for measuring amount of adhered contamination
JP4923664B2 (en) * 2006-03-24 2012-04-25 栗田工業株式会社 Scale adhesion inhibitor and cooling water treatment method
US7757891B2 (en) * 2007-03-14 2010-07-20 Chemflow Systems, Inc. Method and apparatus for providing constant liquid rates and dispensing precisely repeatable liquid volumes
JP5033457B2 (en) * 2007-03-30 2012-09-26 アクアス株式会社 Water treatment chemical injection method
JP5157822B2 (en) * 2008-10-27 2013-03-06 栗田工業株式会社 Adherent detection unit and detection apparatus

Also Published As

Publication number Publication date
JP2010237107A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5369831B2 (en) Cooling water state measuring device and cooling tower
US8672537B2 (en) Method and device for the detection and/or measurement of fouling in heat exchangers
JP5822076B2 (en) Scale detection device and scale detection method
KR100206660B1 (en) Heat plate contamination rate detection and device and method thereof
CN111094906A (en) Thermal flowmeter
JP5157821B2 (en) Attachment detection apparatus and detection method
JP5157822B2 (en) Adherent detection unit and detection apparatus
US20180306618A1 (en) Adhesive flow meter
JPH07146263A (en) Estimation method for fouling coefficient of heat exchanger
WO2013084641A1 (en) Sensor for detecting deposit and deposit detection device
JPH061185B2 (en) Method and apparatus for detecting state of adhered matter in fluid pipe
JP2011214878A (en) Deposit detection device
JP2010117159A (en) Micro-flow meter and micro-flow measuring method
JPH0296644A (en) Fouling sensor
JP2020020735A (en) Method and device for monitoring corrosion
JP4796283B2 (en) Flow rate measuring method and flow rate measuring device using temperature sensor
JP2006284416A (en) Pipe thinning prediction device and method
JP5962134B2 (en) Cooling water line contamination monitoring method and chemical injection control method
JP2005189212A (en) Apparatus and method for measuring amount of adhered contamination
JP3257453B2 (en) Slime detection method
JP2004069667A (en) Thermal mass flow meter for liquid
JP3277847B2 (en) Scale or slime adhesion detection device and detection method
JPH0274856A (en) Scale monitor
NL2006802C2 (en) A combined sensor-actuator system and method for detecting and / or combating attack on a surface.
JP2014115230A (en) Sensor for detecting deposits and apparatus for detecting deposits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees