JPH06118390A - Liquid crystal composite film - Google Patents

Liquid crystal composite film

Info

Publication number
JPH06118390A
JPH06118390A JP4268894A JP26889492A JPH06118390A JP H06118390 A JPH06118390 A JP H06118390A JP 4268894 A JP4268894 A JP 4268894A JP 26889492 A JP26889492 A JP 26889492A JP H06118390 A JPH06118390 A JP H06118390A
Authority
JP
Japan
Prior art keywords
liquid crystal
composite film
polymer
crystal material
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4268894A
Other languages
Japanese (ja)
Inventor
Toru Kashiwagi
亨 柏木
Koji Hara
浩二 原
Kensaku Takada
憲作 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4268894A priority Critical patent/JPH06118390A/en
Publication of JPH06118390A publication Critical patent/JPH06118390A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a liquid crystal composite film having high turbidity in spite of formation of a thin film of, for example, about <=10mum so that a good contrast and low-voltage driving is obtd. by evaporating a solvent from a uniform soln. prepd. by dissolving a liquid crystal material and a specific high polymer in the common solvent for both, thereby forming a micro phase separation structure. CONSTITUTION:This liquid crystal composite film is formed by evaporating the solvent from the uniform soln. prepd. by dissolving the liquid crystal material and the high polymer which is the polymer of >=1 kinds of monomers to be uniformly mixed with the liquid crystal material and satisfies the conditions of equation I and equation II in the common solvent for both. In the equation, equation III denotes a weight average mol. wt. in terms of polystyrene. In the equation II, equation IV denotes a number average mol. wt. in terms of polystyrene. Then, the equation II indicates that the variance of the mol.wt. expressed by the ratio of the weight average mol. wt. and the number average mol. wt. is 4. As a result, the liquid crystal composite film has the high turbidity in spite of formation of the thin film of, for example, about <=10mum. The good contrast is thus obtd. and the higher contrast and lower voltage driving of the thin film are resulted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示素子等に使用
される、電界の印加により白濁⇔透明の変化(電気光学
効果)を示す液晶複合膜に関し、とくに白濁時における
白濁度の高い液晶複合膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal composite film used for a liquid crystal display device or the like, which exhibits a change between white turbidity and transparency (electro-optical effect) when an electric field is applied, and particularly a liquid crystal having a high white turbidity during white turbidity. It relates to a composite membrane.

【0002】[0002]

【従来の技術】高分子と液晶材料とからなり、白濁⇔透
明の電気光学効果を示す液晶複合膜には、その形成法か
ら種々ものがあり、たとえば液晶材料をカプセルに封入
したもの(J.L.Fergason、特表昭58−501631号
公報)、オリゴマーの熱硬化により液晶を粒状に析出さ
せたもの(J.W.Doane 、特表昭61−502128号公
報)、オリゴマーの光硬化により液晶を粒状に析出させ
たもの(Vaz 、特開昭62−2231号公報)などが知
られている。これらの複合膜はいずれも、液晶材料が膜
中に粒子状に分散したものである。
2. Description of the Related Art There are various types of liquid crystal composite films composed of a polymer and a liquid crystal material and exhibiting an electro-optical effect of opaque and transparent. For example, the liquid crystal material is encapsulated (JLFergason, (Japanese Patent Publication No. 58-501631), a liquid crystal is precipitated by thermosetting an oligomer (JW Doane, Japanese Patent Publication No. 61-502128), and a liquid crystal is precipitated by photo-curing an oligomer ( Vaz, Japanese Patent Laid-Open No. 62-2231) and the like are known. In all of these composite films, a liquid crystal material is dispersed in the film in the form of particles.

【0003】一方、高分子と液晶材料とを両者の共通溶
媒に溶解した均一な溶液から、溶媒を蒸発させて液晶複
合膜を形成することが、1979年に九州大学の梶山千
里教授らのグループによって始めて提案された[CHEMIS
TRY LETTERS,p.679-682,1979]。その複合膜は、溶媒蒸
発時の高分子と液晶材料との相分離により、スポンジ状
の高分子マトリクスの連続した孔内に、液晶材料が3次
元ネットワーク状に充填された構造(ミクロ相分離構
造)を有するものであることが報告されている[J.App
l.Polym.Sci.,29,3955-3964(1984)]。また、溶媒蒸発
法により形成した複合膜の電気光学効果は、特表昭63
−501512号公報、特開平1−230693号公報
等にも開示されている。
On the other hand, a method of forming a liquid crystal composite film by evaporating a solvent from a uniform solution in which a polymer and a liquid crystal material are dissolved in a common solvent is a group of professor Chisato Kajiyama of Kyushu University in 1979. First proposed by [CHEMIS
TRY LETTERS, p.679-682,1979]. The composite film has a structure in which the liquid crystal material is filled in a three-dimensional network in the continuous pores of the sponge-like polymer matrix due to phase separation between the polymer and the liquid crystal material during solvent evaporation (micro phase separation structure). ) Have been reported [J.App
L. Polym. Sci., 29, 3955-3964 (1984)]. In addition, the electro-optical effect of the composite film formed by the solvent evaporation method is
It is also disclosed in Japanese Patent Laid-Open No. 501512/1990, Japanese Patent Laid-Open No. 1-230693, and the like.

【0004】上記液晶複合膜においては、無電圧時に
は、孔内の液晶分子がランダムな状態にあるため、入射
光が散乱されて、複合膜は不透明な状態になっている。
そして、複合膜を挾んだ一対の導電基材間に電圧が印加
されると、Δε>0[但し、Δεは誘電率異方性であっ
て、式:
In the above liquid crystal composite film, when no voltage is applied, the liquid crystal molecules in the pores are in a random state, so that the incident light is scattered and the composite film is in an opaque state.
Then, when a voltage is applied between the pair of conductive base materials sandwiching the composite film, Δε> 0 [where Δε is the dielectric anisotropy, and the formula:

【0005】[0005]

【数3】 [Equation 3]

【0006】で表される(なお、It is represented by

【0007】[0007]

【外4】 [Outside 4]

【0008】は分子軸方向の誘電率、Is the dielectric constant in the molecular axis direction,

【0009】[0009]

【外5】 [Outside 5]

【0010】は分子軸に対して直交方向の誘電率を示
す)]のとき、液晶分子が電場方向に配向し、高分子の
屈折率nP と液晶の常光線屈折率nO がほぼ一致してい
れば、入射光が散乱されずに複合膜を通過できるように
なり、複合膜が透明な状態に転換する電気光学効果を示
す。上記構成からなる液晶複合膜は、高分子と液晶材料
とを含有する溶液を塗布、乾燥させるだけで製造できる
ため、たとえば液晶表示素子等の大面積化が可能とな
る。しかも、高分子化合物の選択により複合膜に可撓性
を付与できるので、表面に導電膜を形成する等して導電
性を付与した可撓性のフィルム等を導電基材として組み
合わせることにより、液晶表示素子への可撓性の付与が
可能になるという利点がある。
Indicates the dielectric constant in the direction orthogonal to the molecular axis)], the liquid crystal molecules are oriented in the direction of the electric field, and the refractive index n P of the polymer and the ordinary refractive index n O of the liquid crystal are substantially the same. If so, the incident light can pass through the composite film without being scattered, and the electro-optical effect of converting the composite film to a transparent state is exhibited. The liquid crystal composite film having the above structure can be manufactured simply by applying and drying a solution containing a polymer and a liquid crystal material, and thus it is possible to increase the area of, for example, a liquid crystal display element. Moreover, since flexibility can be imparted to the composite film by selecting a polymer compound, by combining a flexible film or the like to which conductivity has been imparted by forming a conductive film on the surface as a conductive base material, the liquid crystal There is an advantage that flexibility can be given to the display element.

【0011】上記複合膜の製造における特徴は、高分子
と液晶材料とを溶媒中に溶解した均一な混合溶液を導電
基材上に流延塗布すると、溶媒が蒸発するにしたがって
高分子と液晶材料が非相溶状態となるため相分離して3
次元網目状の構造を形成することである。要は、相分離
が溶媒蒸発により引き起こされるものである。このよう
な複合膜の形成方法は前述した文献によって公知であ
る。
A feature of the production of the above composite film is that when a uniform mixed solution of a polymer and a liquid crystal material dissolved in a solvent is cast on a conductive substrate, the polymer and the liquid crystal material evaporate as the solvent evaporates. Becomes phase incompatible because 3 becomes incompatible.
It is to form a three-dimensional mesh-like structure. In essence, the phase separation is caused by solvent evaporation. The method for forming such a composite film is known from the aforementioned documents.

【0012】本発明の基礎となる複合膜の製造におけ
る、「溶剤蒸発による相分離」は、先に示した他の方法
と全く異なる独自の方法であり、梶山らが前記した文献
においてはじめて公としたものである。また、膜中にお
いてスポンジ状の高分子マトリクスの連続した孔中に、
液晶材料は、粒子状ではなく、3次元ネットワーク状の
連続相として存在している。これも梶山らの複合膜の大
きな特徴である。
"Phase separation by solvent evaporation" in the production of the composite membrane, which is the basis of the present invention, is a unique method which is completely different from the other methods described above, and is the first published document by Kajiyama et al. It was done. In the continuous pores of the sponge-like polymer matrix in the film,
The liquid crystal material exists as a continuous phase having a three-dimensional network shape rather than a particle shape. This is also a major feature of the composite film of Kajiyama et al.

【0013】[0013]

【発明が解決しようとする課題】梶山らの液晶複合膜
は、以上のようにすぐれた特性を有するものであるが、
その駆動に、20〜30V以上、場合によっては100
V以上の高電圧を必要とするため、液晶テレビジョン等
への応用展開が難しいという問題があった。すなわち、
液晶テレビジョン等において一般的に使用される、TF
T、MIM等の非線形能動素子を駆動に用いた液晶表示
素子は、周辺の駆動回路の耐圧が数V程度であるため、
上記のような高電圧を必要とする液晶複合膜は使用不可
能であった。
The liquid crystal composite film of Kajiyama et al. Has excellent properties as described above.
To drive it, 20-30V or more, and in some cases 100
Since a high voltage of V or more is required, there is a problem that it is difficult to apply and develop the liquid crystal television. That is,
TF commonly used in liquid crystal televisions, etc.
A liquid crystal display element using a non-linear active element such as T or MIM for driving has a withstand voltage of a peripheral drive circuit of about several volts,
The liquid crystal composite film that requires a high voltage as described above cannot be used.

【0014】上記の対策としては、駆動電圧を下げるべ
く液晶複合膜の膜厚を薄くすることが考えられるが、そ
の場合には、白濁時の液晶複合膜の白濁度(電圧OFF
時の光散乱度合い)が低下し、電界ON−OFFによる
コントラストが著しく低下するという問題があった。本
発明は以上の事情に鑑みてなされたものであって、たと
えば10μm以下程度の薄膜としても高い白濁度を有
し、したがって良好なコントラストが得られる液晶複合
膜を提供することを目的としている。
As a countermeasure for the above, it is conceivable to reduce the film thickness of the liquid crystal composite film in order to lower the driving voltage. In that case, the white turbidity of the liquid crystal composite film at the time of white turbidity (voltage OFF).
However, there is a problem in that the degree of light scattering at the time) is reduced, and the contrast due to the electric field ON-OFF is significantly reduced. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquid crystal composite film having a high white turbidity even when it is a thin film having a thickness of, for example, about 10 μm or less, and thus obtaining a good contrast.

【0015】[0015]

【課題を解決するための手段および作用】上記課題を解
決するため、本発明者らは、液晶複合膜を構成する高分
子および液晶材料の物性と、形成される液晶複合膜の構
造との関係について種々検討を行い、その結果、以下の
事実を見出した。すなわち、溶媒蒸発による相分離構造
の複合膜において、その全体に亘って均一なミクロ相分
離構造を形成するには、高分子の原料であるモノマーと
液晶材料とが親和性にすぐれたものである必要がある。
In order to solve the above problems, the inventors of the present invention have studied the relationship between the physical properties of the polymer and liquid crystal material constituting the liquid crystal composite film and the structure of the liquid crystal composite film to be formed. As a result of various studies, the following facts were found. That is, in order to form a uniform microphase-separated structure over the whole in a composite film having a phase-separated structure by solvent evaporation, a monomer as a raw material of a polymer and a liquid crystal material have excellent affinity. There is a need.

【0016】つまり、モノマーと液晶材料との親和性が
小さく、互いに相溶しない場合には、そのモノマーを重
合した高分子と液晶材料とを均一に溶解する溶媒を見出
すことは困難であり、また、もしそのような溶媒があっ
たとしても、溶媒蒸発によって均一なミクロ相分離構造
を得ることはできず、巨視的にも完全に分離した状態と
なることを避け得ない。たとえばシアノビフェニル系の
液晶材料を使用する場合に、フッ素系あるいはシロキサ
ン系のモノマーを使用した場合には、モノマー段階でも
両者は均一に混合せず、したがって、これらモノマーの
重合体は、シアノビフェニル系の液晶材料と組み合わせ
ても、均一な相分離構造が得られない。
That is, when the affinity between the monomer and the liquid crystal material is small and they are incompatible with each other, it is difficult to find a solvent capable of uniformly dissolving the polymer obtained by polymerizing the monomer and the liquid crystal material, and Even if such a solvent is present, a uniform microphase-separated structure cannot be obtained by solvent evaporation, and it is unavoidable that macroscopically complete separation occurs. For example, when using a cyanobiphenyl-based liquid crystal material, when a fluorine-based or siloxane-based monomer is used, the two do not mix uniformly even at the monomer stage. Therefore, the polymer of these monomers is a cyanobiphenyl-based liquid crystal material. Even if it is combined with the above liquid crystal material, a uniform phase separation structure cannot be obtained.

【0017】したがって、溶媒蒸発による液晶複合膜の
製造に際しては、使用する液晶材料との親和性にすぐれ
たモノマーを重合させた高分子を使用する必要がある。
また、溶媒蒸発による相分離の主たる原因は、液晶材料
と高分子との分子量の違いにある。つまり両者の分子量
差が小さい程、相分離は不明確であり、分子量差が大き
い程、相分離はより明確となる。極端なことを言えば、
高分子の原料であるモノマーと液晶材料が、上記のよう
に親和性にすぐれ、完全に均一に混合する場合には、モ
ノマーと液晶材料とは溶媒蒸発によって相分離しない
が、このモノマーから形成された高分子は、その重合度
が高くなるにつれて相分離状態が生じてくると考えられ
る。
Therefore, in the production of a liquid crystal composite film by solvent evaporation, it is necessary to use a polymer obtained by polymerizing a monomer having a good affinity with the liquid crystal material used.
The main cause of phase separation due to solvent evaporation is the difference in molecular weight between the liquid crystal material and the polymer. That is, the smaller the molecular weight difference between the two, the more unclear the phase separation, and the larger the molecular weight difference, the more clear the phase separation. In extreme terms,
When the monomer, which is the raw material for the polymer, and the liquid crystal material have excellent affinity as described above and are mixed in a uniform manner, the monomer and the liquid crystal material do not undergo phase separation by solvent evaporation, but are formed from this monomer. It is considered that the polymer has a phase-separated state as the degree of polymerization increases.

【0018】そして、高分子の重合度が低く、液晶材料
との相分離が明確でない場合には、形成された複合膜に
おいて、高分子マトリクス中により多くの液晶材料が溶
解した状態となり、高分子マトリクスの屈折率が液晶の
平均屈折率(電界OFF時の屈折率)に近づいて、白濁
度が低下し、電界ON−OFFによるコントラストが十
分に得られなくなる。これに対し、高分子の重合度が高
く、液晶材料との相分離が明確になる程、白濁度が高く
なって、電界ON−OFFによるコントラストが向上す
るのである。
When the degree of polymerization of the polymer is low and phase separation from the liquid crystal material is not clear, more liquid crystal material is dissolved in the polymer matrix in the formed composite film, The index of refraction of the matrix approaches the average index of refraction of the liquid crystal (refractive index when the electric field is OFF), the white turbidity decreases, and sufficient contrast cannot be obtained due to ON-OFF of the electric field. On the other hand, the higher the degree of polymerization of the polymer and the clearer the phase separation from the liquid crystal material, the higher the white turbidity and the higher the contrast due to the electric field ON-OFF.

【0019】したがって、複合膜に使用する高分子は、
平均分子量が大きく、しかも分子量の分散が小さくて低
分子量の成分を多く含まないものである必要がある。そ
こで本発明者らは、10μm以下程度の薄膜としても十
分な白濁度ひいては十分なコントラストが得られる程、
液晶材料との相分離が明確になる高分子の平均分子量の
範囲、および分子量の分散の範囲についてさらに検討を
行った。そして、市販されている液晶材料の一般的な分
子量は200〜1000程度であり、10μm以下程度
の薄膜においても十分な白濁度が得られる程、明確な相
分離を達成するためには、高分子の分子量が上記液晶材
料の分子量の100倍を超えること、つまり重量平均分
子量で10万を超える必要があること、また、重量平均
分子量と数平均分子量の比
Therefore, the polymer used for the composite membrane is
It is necessary that the average molecular weight is large, the dispersion of the molecular weight is small, and the low molecular weight component is not included in large amount. Therefore, the inventors of the present invention can obtain a sufficient white turbidity and thus a sufficient contrast even with a thin film of about 10 μm or less,
The range of the average molecular weight of the polymer and the range of the dispersion of the molecular weight in which the phase separation from the liquid crystal material becomes clear were further investigated. In addition, a general molecular weight of a commercially available liquid crystal material is about 200 to 1000, and in order to achieve clear phase separation such that a sufficient white turbidity can be obtained even in a thin film of about 10 μm or less, a polymer is required. Has a molecular weight of more than 100 times the molecular weight of the liquid crystal material, that is, a weight average molecular weight of more than 100,000, and a ratio of the weight average molecular weight to the number average molecular weight.

【0020】[0020]

【外6】 [Outside 6]

【0021】で表される分子量の分散は4未満である必
要があること、を見出し本発明を完成するに至った。し
たがって、本発明の液晶複合膜は、液晶材料と、当該液
晶材料と均一に混合する1種類以上のモノマーの重合体
であり、かつ下記の条件を満足する高分子とを、両者の
共通溶媒に溶解した均一な溶液から、溶媒を蒸発させ
て、ミクロ相分離構造を形成したことを特徴とする。
The present invention has been completed by finding that the dispersion of the molecular weight represented by is required to be less than 4. Therefore, the liquid crystal composite film of the present invention comprises a liquid crystal material and a polymer, which is a polymer of one or more kinds of monomers uniformly mixed with the liquid crystal material, and which satisfies the following conditions, in both common solvents. The solvent was evaporated from the dissolved homogeneous solution to form a microphase-separated structure.

【0022】[0022]

【数4】 [Equation 4]

【0023】[0023]

【数5】 [Equation 5]

【0024】(但し(However,

【0025】[0025]

【外7】 [Outside 7]

【0026】はポリスチレン換算の重量平均分子量、Is a polystyrene-equivalent weight average molecular weight,

【0027】[0027]

【外8】 [Outside 8]

【0028】はポリスチレン換算の数平均分子量、Is a polystyrene-equivalent number average molecular weight,

【0029】[0029]

【外9】 [Outside 9]

【0030】は分子量の分散を示す。)上記構成からな
る本発明の液晶複合膜は、高分子と液晶材料との相分離
が明確で、しかも、複合膜の全体に亘って均一なミクロ
相分離構造を有するため、たとえば10μm以下程度の
薄膜としても高い白濁度を有し、したがって良好なコン
トラストを得ることができる。
Indicates the molecular weight distribution. ) The liquid crystal composite film of the present invention having the above structure has a clear phase separation between the polymer and the liquid crystal material, and has a uniform micro phase separation structure over the entire composite film. As a thin film, it also has a high opacity, so that good contrast can be obtained.

【0031】以下に本発明を説明する。本発明に使用す
る液晶材料は、良好な光散乱性を得るために、屈折率異
方性Δnが大きく(好ましくはΔn>0.15、より好
ましくはΔn>0.2の範囲内)、かつ電界印加時に良
好な透明性を得るために、前記のように常光線屈折率n
O が、高分子の屈折率nP とほぼ等しいことが必要であ
る。また、高速応答のためには、誘電率異方性Δεが大
きい方が良い。また液晶材料は、後述する高揮発性の溶
媒に溶解可能である必要がある。
The present invention will be described below. Used in the present invention
In order to obtain good light scattering properties, the liquid crystal material
Has large anisotropy Δn (preferably Δn> 0.15,
(Preferably within the range of Δn> 0.2) and good when an electric field is applied.
In order to obtain good transparency, the ordinary refractive index n as described above
OIs the refractive index n of the polymerPShould be approximately equal to
It Also, for high-speed response, the dielectric anisotropy Δε is large.
Better to hear. The liquid crystal material has a high volatility, which will be described later.
It must be soluble in the medium.

【0032】このような液晶材料としては、たとえばビ
フェニル系、ターフェニル系、エステル系、フェニルシ
クロヘキサン系、フェニルピリジン系、トラン系等の種
々の骨格のものがあげられる。また、誘電率異方性Δε
を大きくするには、上記骨格の末端基を−CN基または
−Cl基に置換するのが好ましい。またとくに、前述した
非線形能動素子で駆動する場合、液晶材料は、好ましく
は1012Ω以上、より好ましくは1013Ω以上の高抵抗
率である必要があり、液晶材料の抵抗率を上記の範囲に
するには、やはり、末端基を−CN基または−Cl基に置
換するのがよい。液晶材料の分子量は、前述のように2
00〜1000程度である。
Examples of such liquid crystal materials include those having various skeletons such as biphenyl, terphenyl, ester, phenylcyclohexane, phenylpyridine, and tolan. Also, the dielectric anisotropy Δε
In order to increase, it is preferable to replace the terminal group of the skeleton with a -CN group or a -Cl group. In particular, when driven by the above-mentioned nonlinear active element, the liquid crystal material needs to have a high resistivity of preferably 10 12 Ω or higher, more preferably 10 13 Ω or higher. In order to achieve the above, it is preferable to substitute the terminal group with a -CN group or a -Cl group. The molecular weight of the liquid crystal material is 2 as described above.
It is about 00 to 1000.

【0033】上記の要件を満たす、本発明に好適な液晶
材料の具体例としては、たとえば市販のネマティック系
液晶とコレステリック系液晶の混合液晶等があげられ
る。上記液晶材料とともに、本発明の液晶複合膜を構成
する高分子としては、前記のように、モノマーレベルで
の液晶材料との親和性がよく、均一に混合する1種類以
上(好ましくは3〜4種)のモノマーの重合体が使用さ
れる。また上記重合体は、後述する高揮発性の溶媒に溶
解可能である必要がある。具体的には、たとえばアクリ
ル酸エステル、メタクリル酸エステル、スチレン、アク
リロニトリル、ビニルエーテル等のビニル重合性のモノ
マーの重合体が好適なものとしてあげられ、中でもとく
にアクリル酸エステル、メタクリル酸エステルの重合体
が、重合度の制御、単量体材料の選択種の多さ、液晶材
料との親和性、液晶材料との屈折率の一致、溶媒への溶
解性等の点で、最も好都合である。
Specific examples of the liquid crystal material suitable for the present invention which satisfies the above requirements include, for example, commercially available mixed liquid crystal of nematic liquid crystal and cholesteric liquid crystal. As the polymer that constitutes the liquid crystal composite film of the present invention together with the above liquid crystal material, as described above, one or more kinds (preferably 3 to 4) which have a good affinity with the liquid crystal material at the monomer level and are uniformly mixed. Polymers of monomers of species) are used. Further, the polymer needs to be soluble in a highly volatile solvent described later. Specific examples thereof include polymers of vinyl polymerizable monomers such as acrylic acid esters, methacrylic acid esters, styrene, acrylonitrile, and vinyl ethers. Among them, polymers of acrylic acid esters and methacrylic acid esters are particularly preferable. It is most convenient in terms of control of polymerization degree, selection of monomer materials, affinity with liquid crystal materials, matching of refractive index with liquid crystal materials, solubility in solvents, and the like.

【0034】上記高分子は、前記のように、ポリスチレ
ン換算の重量平均分子量
As described above, the above polymer has a polystyrene-equivalent weight average molecular weight.

【0035】[0035]

【数6】 [Equation 6]

【0036】で、かつ分子量の分散And the molecular weight dispersion

【0037】[0037]

【数7】 [Equation 7]

【0038】である必要がある。高分子の重量平均分子
量が上記範囲を下回った場合には、液晶材料との相分離
が不明確になって、複合膜の白濁度が低下し、コントラ
ストが不十分になる。また、分子量の分散が上記範囲を
超えた場合には、低分子量の成分を多く含むため、やは
り、液晶材料との相分離が不明確になって、複合膜の白
濁度が低下し、コントラストが不十分になる。
Must be When the weight average molecular weight of the polymer is below the above range, the phase separation from the liquid crystal material becomes unclear, the white turbidity of the composite film decreases, and the contrast becomes insufficient. Further, when the dispersion of the molecular weight exceeds the above range, since a large amount of low-molecular weight components are included, the phase separation from the liquid crystal material becomes unclear, and the white turbidity of the composite film decreases, resulting in a poor contrast. Becomes insufficient.

【0039】なお、上記重量平均分子量は、50万を超
える範囲であるのが好ましく、100万を超える範囲で
あるのがより好ましい。また分子量の分散は、2未満で
あるのが好ましく、1.5未満であるのがより好まし
い。重量平均分子量の上限についてはとくに限定されな
いが、溶媒への溶解性等を考慮すると、500万以下程
度が好ましい。
The weight average molecular weight is preferably in the range of more than 500,000, more preferably in the range of more than 1,000,000. The molecular weight dispersion is preferably less than 2, and more preferably less than 1.5. The upper limit of the weight average molecular weight is not particularly limited, but considering solubility in a solvent and the like, it is preferably about 5,000,000 or less.

【0040】また上記高分子は、側鎖に、架橋剤と結合
し得る側鎖結合基を導入して、これを適当な架橋剤と反
応させることで、相分離時または相分離後に架橋させて
もよい。この場合には、架橋による分子量の増加によっ
て、相分離がより一層明確化され、複合膜の白濁度が向
上して、コントラストがさらに良くなるという利点があ
る。さらに、高分子には、第2の高分子成分をブレンド
してもよいし、有機あるいは無機の種々の添加剤を配合
してもよい。
Further, in the above-mentioned polymer, a side chain-bonding group capable of binding to a cross-linking agent is introduced into the side chain, and this is reacted with an appropriate cross-linking agent to cross-link during or after phase separation. Good. In this case, there is an advantage that the phase separation is further clarified by the increase in the molecular weight due to the crosslinking, the white turbidity of the composite film is improved, and the contrast is further improved. Further, the polymer may be blended with the second polymer component, or may be blended with various organic or inorganic additives.

【0041】かかる高分子の合成方法としては、ラジカ
ル重合法、イオン重合法(アニオン重合法、カチオン重
合法)、光重合法、配位重合法等の、従来公知の種々の
重合法が採用できるが、上記の要件を満たす重合体を製
造するには、ラジカル重合法とアニオン重合法が実際的
である。ラジカル重合法では、共重合させるモノマーの
組成(組み合わせ)にもよるが、一般に高分子量の重合
体の製造が容易である。重合に使用する溶媒の種類、モ
ノマーの濃度、反応温度、使用する重合開始剤の種類等
の条件を調整することにより、最高で、重量平均分子量
数100万の高分子を製造することができる。但しラジ
カル重合法では、高分子量化する程、分子量の分散が拡
がる傾向にあり、分散を4未満にするには、製造した重
合体を、再沈澱法等によって分子量毎に分格する必要が
ある。
As a method for synthesizing such a polymer, various conventionally known polymerization methods such as radical polymerization method, ionic polymerization method (anionic polymerization method, cationic polymerization method), photopolymerization method and coordination polymerization method can be adopted. However, the radical polymerization method and the anion polymerization method are practical for producing a polymer satisfying the above requirements. In the radical polymerization method, it is generally easy to produce a high-molecular weight polymer, although it depends on the composition (combination) of the monomers to be copolymerized. By adjusting conditions such as the type of solvent used for polymerization, the concentration of monomers, the reaction temperature, and the type of polymerization initiator used, it is possible to produce a polymer having a weight average molecular weight of several million at the maximum. However, in the radical polymerization method, the higher the molecular weight, the more the dispersion of the molecular weight tends to spread, and in order to make the dispersion less than 4, it is necessary to classify the produced polymer by the molecular weight by a reprecipitation method or the like. .

【0042】一方アニオン重合法では、通常より分子量
の分散が小さい(1.1〜1.3程度)の重合体が得ら
れるが、重合体の重合度はあまり高くならない傾向があ
る。しかし、重合開始剤を選択することにより、重量平
均分子量20万程度の重合体を得ることはできるので、
本発明に使用する高分子の製造方法としては、アニオン
重合法がより理想的である。
On the other hand, by the anionic polymerization method, a polymer having a smaller molecular weight dispersion than usual (about 1.1 to 1.3) can be obtained, but the degree of polymerization of the polymer tends not to be so high. However, since a polymer having a weight average molecular weight of about 200,000 can be obtained by selecting a polymerization initiator,
The anionic polymerization method is more ideal as the method for producing the polymer used in the present invention.

【0043】本発明において、理想的な構造の液晶複合
膜を得るためのもう一つの重要な要素は、相分離に使用
する溶媒の選択である。相分離で液晶複合膜を作製する
ためには、高揮発性で蒸発速度の速い溶媒を使用する必
要がある。また溶媒は、上記液晶材料および高分子を、
ともに溶解可能である必要がある。上記の要件を満たす
溶媒の具体例としては、たとえばジクロロメタン、1,
2−ジクロロエタン、クロロホルム、酢酸メチル、酢酸
エチル等があげられる。
In the present invention, another important factor for obtaining a liquid crystal composite film having an ideal structure is selection of a solvent used for phase separation. In order to produce a liquid crystal composite film by phase separation, it is necessary to use a solvent having high volatility and a high evaporation rate. In addition, the solvent, the liquid crystal material and the polymer,
Both must be soluble. Specific examples of the solvent satisfying the above requirements include, for example, dichloromethane, 1,
2-dichloroethane, chloroform, methyl acetate, ethyl acetate and the like can be mentioned.

【0044】高揮発性の溶媒を用い、溶液を塗布後、急
速に乾燥させることで、液晶材料と高分子とがミクロに
相分離した構造が得られる。蒸発速度の遅い溶媒を使用
した場合には、液晶のドメイン径が大きくなり、複合膜
の白濁度が低下して、コントラストが不十分になる。蒸
発速度の遅い溶媒であっても、加温すれば蒸発速度は向
上する。しかし、加温することによって液晶材料および
高分子の運動エネルギーが増加する結果、高分子マトリ
クス中に多くの液晶材料が溶解するため、高分子マトリ
クスの屈折率が液晶の平均屈折率に近づいてしまう。ま
た、液晶のドメイン径は依然として大きいので、複合膜
の白濁度は低下し、コントラストが不十分になる。
A structure in which the liquid crystal material and the polymer are microscopically phase-separated can be obtained by rapidly drying after applying the solution using a highly volatile solvent. When a solvent having a slow evaporation rate is used, the domain diameter of the liquid crystal becomes large, the white turbidity of the composite film decreases, and the contrast becomes insufficient. Even if the solvent has a slow evaporation rate, the evaporation rate can be improved by heating. However, as the kinetic energy of the liquid crystal material and the polymer increases due to heating, many liquid crystal materials dissolve in the polymer matrix, and the refractive index of the polymer matrix approaches the average refractive index of the liquid crystal. . Further, since the domain diameter of the liquid crystal is still large, the white turbidity of the composite film is lowered and the contrast becomes insufficient.

【0045】複合膜の膜厚は、本発明ではとくに限定さ
れないが、本発明によれば、たとえば理想的な分子量特
性の高分子と、屈折率異方性Δnの大きい液晶材料とを
組み合わせることにより、たとえば7〜8μm程度の薄
膜であっても、良好なコントラストを得ることが可能と
なる。また、誘電率の大きい高分子を使用すれば、上記
7〜8μm程度の膜厚の液晶複合膜を、5V程度の低電
圧で駆動させることができ、すぐれた特性を有する液晶
複合膜の、液晶テレビジョン等への応用展開が可能とな
る。
The thickness of the composite film is not particularly limited in the present invention, but according to the present invention, for example, by combining a polymer having an ideal molecular weight characteristic with a liquid crystal material having a large refractive index anisotropy Δn. Good contrast can be obtained even with a thin film of, for example, about 7 to 8 μm. Further, when a polymer having a large dielectric constant is used, the liquid crystal composite film having a film thickness of about 7 to 8 μm can be driven at a low voltage of about 5 V, and a liquid crystal of a liquid crystal composite film having excellent characteristics can be obtained. It can be applied to televisions and other applications.

【0046】上記本発明の液晶複合膜は、たとえば従来
の液晶複合膜と同様に、一対の導電基材で挟着すること
で、液晶表示素子等に使用される。本発明の液晶複合膜
を備えた液晶表示素子の製造方法は従来と同様であっ
て、高分子と液晶材料とを溶媒中に溶解した均一な混合
溶液を導電基材上に塗布し、溶媒を蒸発させて、相分離
により、本発明の液晶複合膜を導電基材上に形成した
後、その上にもう1枚の導電基材を積層すればよい。
The liquid crystal composite film of the present invention is used for a liquid crystal display element or the like by being sandwiched between a pair of conductive base materials, like the conventional liquid crystal composite film. The method for producing a liquid crystal display device provided with the liquid crystal composite film of the present invention is the same as the conventional method, a uniform mixed solution of a polymer and a liquid crystal material dissolved in a solvent is applied onto a conductive substrate, and the solvent is removed. After evaporation, the liquid crystal composite film of the present invention is formed on the conductive substrate by phase separation, and then another conductive substrate may be laminated thereon.

【0047】導電基材としては、ガラス、プラスチック
フィルム[たとえばポリエチレンテレフタレート(PE
T)、ポリエーテルサルホン(PES)]等の基材の表
面に、ITO(インジウム・チン・オキサイド)やSnO
2 等の導電膜を蒸着法、スパッタリング法あるいは塗布
法等で形成したものがあげられる他、通常の液晶パネル
に用いられる透明導電ガラスやフィルムも使用できる。
また、素子を反射型とする場合には、一方の導電基材の
裏面に、金属薄膜等からなる反射膜を形成するか、対向
電極を金属薄膜で形成して反射膜を兼ねさせればよい。
As the conductive substrate, glass or plastic film [eg polyethylene terephthalate (PE
T), polyether sulfone (PES), etc., on the surface of a substrate such as ITO (Indium-Tin-Oxide) or SnO
In addition to those obtained by forming a conductive film such as 2 by a vapor deposition method, a sputtering method, a coating method, or the like, a transparent conductive glass or film used in a normal liquid crystal panel can also be used.
When the element is of a reflective type, a reflective film made of a metal thin film or the like may be formed on the back surface of one of the conductive base materials, or the counter electrode may be formed of a metal thin film to serve also as the reflective film. .

【0048】なお、複合膜には、液晶表示素子をカラー
表示タイプにするため、従来公知の各種二色性色素を配
合することもできる。
The composite film may contain various conventionally known dichroic dyes in order to make the liquid crystal display device a color display type.

【0049】[0049]

【実施例】以下に本発明を、実施例、比較例に基づいて
説明する。実施例1〜3、比較例1〜3 下記表1に示す分子量特性の高分子(アクリル/メタク
リル系共重合体、水酸基含有)30重量部と、液晶材料
(メルクジャパン社製の品番E31LV、屈折率異方性
Δn=0.23)70重量部とを、ジクロロメタンに溶
解し、さらに、ポリイソシアネート系架橋剤(武田薬品
工業社製)を、そのイソシアネート基当量が、上記高分
子中の水酸基当量と同当量となる量添加して、塗布液を
作製した。
EXAMPLES The present invention will be described below based on Examples and Comparative Examples. Examples 1 to 3 and Comparative Examples 1 to 30 30 parts by weight of a polymer (acrylic / methacrylic copolymer, containing a hydroxyl group) having the molecular weight characteristics shown in Table 1 below, and a liquid crystal material (product number E31LV manufactured by Merck Japan Ltd., refraction) Anisotropy Δn = 0.23) 70 parts by weight is dissolved in dichloromethane, and a polyisocyanate cross-linking agent (manufactured by Takeda Pharmaceutical Co., Ltd.) is used, and the isocyanate group equivalent is the hydroxyl group equivalent in the polymer. A coating solution was prepared by adding the same amount as.

【0050】つぎにこの塗布液を、透明導電ガラスの導
電面に、バーコート法によって塗布し、100℃で1時
間乾燥させて、表1に示す膜厚の液晶複合膜を得た。そ
してこの複合膜上に、前記と同じもう1枚の透明導電ガ
ラスを、導電面が複合膜と接するように重ね合わせて、
試験用の液晶表示セルを作製した。そして各セルを分光
光度計(島津製作所製の型番UV160)にセットし、
電界を印加しない状態での、波長600nmの光の透過率
0 (%)を測定して、白濁度を評価した。結果を表1
に示す。
Next, this coating solution was applied to the conductive surface of transparent conductive glass by a bar coating method and dried at 100 ° C. for 1 hour to obtain a liquid crystal composite film having a film thickness shown in Table 1. Then, on this composite film, another transparent conductive glass same as the above is laminated so that the conductive surface is in contact with the composite film,
A liquid crystal display cell for testing was prepared. Then, set each cell in a spectrophotometer (model number UV160 manufactured by Shimadzu Corporation),
The opacity was evaluated by measuring the transmittance T 0 (%) of light having a wavelength of 600 nm without applying an electric field. The results are shown in Table 1.
Shown in.

【0051】[0051]

【表1】 [Table 1]

【0052】上記表1の結果より、重量平均分子量が1
0万を超え、かつ分子量の分散が4未満である高分子を
使用した実施例1〜3はいずれも、分子量の分散が4を
上回る比較例1〜3にくらべて、透過率T0 が著しく小
さく、このことから、高い白濁度を有することが確認さ
れた。
From the results shown in Table 1 above, the weight average molecular weight was 1
In each of Examples 1 to 3 in which the polymer having a molecular weight dispersion of more than 0,000 and less than 4 was used, the transmittance T 0 was remarkably higher than that of Comparative Examples 1 to 3 in which the molecular weight dispersion was more than 4. It was small, which confirmed that it had a high white turbidity.

【0053】[0053]

【発明の効果】以上詳述したように、本発明の液晶複合
膜は、たとえば10μm以下程度の薄膜としても高い白
濁度を有し、良好なコントラストが得られる。したがっ
て本発明によれば、すぐれた特性を有する液晶複合膜
の、薄膜での高コントラスト化と、低電圧駆動化を実現
でき、液晶テレビジョン等への応用展開が可能となる。
As described above in detail, the liquid crystal composite film of the present invention has a high white turbidity even if it is a thin film of about 10 μm or less, and a good contrast can be obtained. Therefore, according to the present invention, a liquid crystal composite film having excellent characteristics can be realized as a thin film with high contrast and low voltage drive, and can be applied to liquid crystal televisions and the like.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】液晶材料と、当該液晶材料と均一に混合す
る1種類以上のモノマーの重合体であり、かつ下記の条
件を満足する高分子とを、両者の共通溶媒に溶解した均
一な溶液から、溶媒を蒸発させて、ミクロ相分離構造を
形成したことを特徴とする液晶複合膜。 【数1】 【数2】 (但し 【外1】 はポリスチレン換算の重量平均分子量、 【外2】 はポリスチレン換算の数平均分子量、 【外3】 は分子量の分散を示す。)
1. A uniform solution in which a liquid crystal material and a polymer which is a polymer of one or more kinds of monomers which are uniformly mixed with the liquid crystal material and which satisfies the following conditions are dissolved in a common solvent for both. The liquid crystal composite film is characterized in that a solvent is evaporated to form a microphase-separated structure. [Equation 1] [Equation 2] (However, [External 1] Is the polystyrene-equivalent weight average molecular weight, [External 2] Is the polystyrene equivalent number average molecular weight, and Indicates the molecular weight distribution. )
【請求項2】液晶材料が正の誘電率異方性を持ち、かつ
屈折率異方性Δn>0.15である請求項1記載の液晶
複合膜。
2. The liquid crystal composite film according to claim 1, wherein the liquid crystal material has a positive dielectric anisotropy and a refractive index anisotropy Δn> 0.15.
JP4268894A 1992-10-07 1992-10-07 Liquid crystal composite film Pending JPH06118390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4268894A JPH06118390A (en) 1992-10-07 1992-10-07 Liquid crystal composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4268894A JPH06118390A (en) 1992-10-07 1992-10-07 Liquid crystal composite film

Publications (1)

Publication Number Publication Date
JPH06118390A true JPH06118390A (en) 1994-04-28

Family

ID=17464750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4268894A Pending JPH06118390A (en) 1992-10-07 1992-10-07 Liquid crystal composite film

Country Status (1)

Country Link
JP (1) JPH06118390A (en)

Similar Documents

Publication Publication Date Title
US5368770A (en) Method of preparing thin liquid crystal films
KR100257886B1 (en) Polymer liquid crystal
KR100312883B1 (en) Optically anisotropic material, its manufacturing method and phase difference plate and liquid crystal display device using the same
JPH07507083A (en) Liquid crystal light modulation devices and materials
JPH05119302A (en) High-polymer-dispersed liquid crystal display element and its production
CN1790118A (en) Preparation method of polymer dispersed liquid crystal film
JP3659975B2 (en) Liquid crystal display element and manufacturing method thereof
TWI285770B (en) A display device and an electro-optical device using a colloidal liquid crystal composite
JP3030973B2 (en) Liquid crystal display device
JP2002214653A (en) Light controllable material, light controllable film and method of manufacturing light controllable film
JP2002508858A (en) Reverse-mode electro-optic film consisting of interdispersion of polymer and liquid crystal
JPH05127150A (en) Liquid crystal display film and formation of the same
JP2782293B2 (en) Liquid crystal element, display device, and display method using the same
JPH06118390A (en) Liquid crystal composite film
WO1996020425A1 (en) Liquid-crystal display element and process for production thereof
CN108164652A (en) A kind of polymer dispersed liquid-crystal film material and preparation method
JP2001209035A (en) Liquid crystal optical shutter
JP3343338B2 (en) Liquid crystal display device
JPH04319911A (en) Liquid crystal display element and its manufacture
JPH06228240A (en) High molecular compound for liquid crystal display, liquid crystal display element using the same and production of the display
JP3097096B2 (en) Liquid crystal electro-optical element
JPH04310922A (en) Liquid crystal device
JPH11349949A (en) Polymer dispersion type liquid crystal element and its production
KR101999967B1 (en) Liquid Crystal Composition
JPH0540254A (en) Liquid crystal display element and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120901

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120901

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130901

EXPY Cancellation because of completion of term