JPH06117860A - Vibratory gyro - Google Patents

Vibratory gyro

Info

Publication number
JPH06117860A
JPH06117860A JP3162331A JP16233191A JPH06117860A JP H06117860 A JPH06117860 A JP H06117860A JP 3162331 A JP3162331 A JP 3162331A JP 16233191 A JP16233191 A JP 16233191A JP H06117860 A JPH06117860 A JP H06117860A
Authority
JP
Japan
Prior art keywords
piezoelectric element
vibrator
voltage
output
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3162331A
Other languages
Japanese (ja)
Other versions
JP2583691B2 (en
Inventor
Kokichi Terajima
厚吉 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akai Electric Co Ltd
Original Assignee
Akai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akai Electric Co Ltd filed Critical Akai Electric Co Ltd
Priority to JP3162331A priority Critical patent/JP2583691B2/en
Priority to DE69210679T priority patent/DE69210679T2/en
Priority to DE69225505T priority patent/DE69225505T2/en
Priority to EP92109569A priority patent/EP0517259B1/en
Priority to EP95115256A priority patent/EP0692698B1/en
Priority to US07/894,017 priority patent/US5270607A/en
Publication of JPH06117860A publication Critical patent/JPH06117860A/en
Application granted granted Critical
Publication of JP2583691B2 publication Critical patent/JP2583691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make a vibratory gyro to always make stable self-exciting vibrations and to detect the angular velocity of the gyro with high accuracy by giving three functions of a driving, feeding back, and detecting functions to a pair of piezoelectric elements. CONSTITUTION:By applying an AC voltage across piezoelectric elements 21 and 22 respectively stuck to side faces 1a and 1b of a vibrating body 1 from a driving device 7, a vibrator 6 is caused to make self-exciting vibrations in the X-axis direction. When the vibrator 6 makes the vibrations, the outputs of connecting sections 24 and 25 become the resultant outputs of the voltage supplied from the device 7 and voltage outputted from the elements 21 and 22. Therefore, when the sum of both resultant outputs are passed through a differential amplifier 27 and only the voltages generated from the elements 21 and 22 are extracted based on the vibrations in the X-axis direction, and then, the extracted voltages are fed back to the device 7 after both resultant outputs are added 26 to each other, the self-exciting vibrations of the vibrator 6 are stabilized. When the vibrator 6 is rotated around the Z-axis while the vibrator 6 makes the self-exciting vibrations, the vibrator 6 starts to make vibrations in the Y-axis direction due to a Coriolis force and a difference is generated between the output voltages of the connecting sections 24 and 25. Therefore, when both output voltages are amplified by means of a differential amplifier 8, the voltages resulting from the Coriolis force can be separately detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、一対の圧電素子に、
駆動、帰還および検出の各機能を発揮させることによ
り、常に安定した自励振動および検出を可能ならしめる
振動ジャイロに関するものである。
This invention relates to a pair of piezoelectric elements,
The present invention relates to a vibration gyro that makes it possible to always perform stable self-excited vibration and detection by exhibiting drive, feedback, and detection functions.

【0002】[0002]

【従来の技術】従来既知の振動ジャイロとしては、例え
ば、図4および図5にブロック線図で示すようなものが
知られている。図4に示す振動ジャイロでは、横断面形
状が四角形をなす振動体1の一側面に駆動用圧電素子2
を貼着するとともに、その側面と対向する反対側の側面
には帰還用圧電素子3を貼着し、また、これらと直交す
る他の二側面には、それぞれの検出用圧電素子4, 5を
貼着することによって振動子6が構成されており、駆動
装置7からの出力を駆動用圧電素子2に供給する一方、
帰還用圧電素子3の出力をその駆動装置7に帰還させる
ことにより、振動子6は、直交三次元座標系のX軸方向
に所定の自励振動を行うようになっている。そして、か
かる自励振動の下で、振動子6がZ軸の周りに回転され
ると、振動子6はコリオリの力の発生によってY軸方向
の振動を惹起され、このY軸方向の振動に伴う電圧が、
それぞれの検出用圧電素子4, 5に発生するので、それ
らの電圧を、差動増幅器8, 同期検波器9および直流増
幅器10に順次に通過させることによって、振動子6の角
速度、直接的にはコリオリの力が直流出力として求めら
れる。
2. Description of the Related Art Conventionally known vibration gyros are known, for example, as shown in block diagrams in FIGS. 4 and 5. In the vibrating gyro shown in FIG. 4, the driving piezoelectric element 2 is provided on one side surface of the vibrating body 1 having a rectangular cross section.
And the feedback piezoelectric element 3 on the opposite side surface facing the side surface, and the detection piezoelectric elements 4 and 5 on the other two side surfaces orthogonal to these. The vibrator 6 is formed by sticking the output, and while supplying the output from the driving device 7 to the driving piezoelectric element 2,
By feeding back the output of the feedback piezoelectric element 3 to the driving device 7, the vibrator 6 performs predetermined self-excited vibration in the X-axis direction of the orthogonal three-dimensional coordinate system. When the vibrator 6 is rotated around the Z axis under such self-excited vibration, the vibrator 6 is caused to vibrate in the Y axis direction due to the generation of Coriolis force, and this vibration in the Y axis direction occurs. The accompanying voltage
Since the voltage is generated in each of the detecting piezoelectric elements 4 and 5, the voltages are sequentially passed through the differential amplifier 8, the synchronous detector 9 and the DC amplifier 10, so that the angular velocity of the vibrator 6 is directly changed. Coriolis force is required as DC output.

【0003】また、図5に示す振動ジャイロは、横断面
形状が三角形をなす振動体1の二側面のそれぞれに、駆
動用圧電素子11, 12を貼着するとともに、他の一側面に
帰還用圧電素子3を貼着し、そして、駆動装置7からの
出力を、それぞれの抵抗13,14を介して駆動用圧電素子1
1, 12に供給する一方、帰還用圧電素子3からの出力を
駆動装置7に帰還させることによって、X軸方向に自励
振動する振動子6を構成したものである。ここでは、検
出用圧電素子を兼ねるそれぞれの駆動用圧電素子11, 12
に発生する電圧を差動増幅し、同期検波した後に直流増
幅することで、振動子6がZ軸の周りに回転されること
によって発生するY軸方向のコリオリの力、ひいては、
角速度を検出することができる。
Further, in the vibrating gyro shown in FIG. 5, driving piezoelectric elements 11 and 12 are attached to each of two side surfaces of a vibrating body 1 having a triangular cross-sectional shape, and the other side surface is used for returning. The piezoelectric element 3 is attached, and the output from the driving device 7 is applied to the driving piezoelectric element 1 via the resistors 13 and 14, respectively.
The vibrator 6 that is self-oscillated in the X-axis direction is configured by feeding back the output from the feedback piezoelectric element 3 to the driving device 7 while supplying the vibrations to 1 and 12. Here, the driving piezoelectric elements 11 and 12 which also function as detection piezoelectric elements
By differentially amplifying the voltage generated at, the DC detection is performed after the synchronous detection, the Coriolis force in the Y-axis direction generated by the rotation of the vibrator 6 around the Z-axis, and by extension,
The angular velocity can be detected.

【0004】[0004]

【発明が解決しようとする課題】ところで、図4に示す
振動ジャイロにあっては、それぞれの圧電素子2, 3,
4, 5がともに、エポキシ樹脂その他の接着剤によって
振動体1に接着されていることから、周囲温度の変化に
起因する接着剤の強度、弾性的性質その他の変化によっ
て、たとえば、駆動用圧電素子2と帰還用圧電素子3と
の間の特性差が変化して、振動条件に変動を来し、それ
によって振動子6の自励振動が不安定なものとなる問題
があった。また、温度サイクルなどが加わった時には、
接着剤の性質が経時的に変化して駆動条件にヒステリシ
スを生じる問題もあり、さらには、検出用圧電素子4,
5の接着強度の変化がドリフトの原因ともなるという問
題もあった。
By the way, in the vibration gyro shown in FIG. 4, the respective piezoelectric elements 2, 3,
Since both 4 and 5 are adhered to the vibrating body 1 by an epoxy resin or other adhesive, for example, the driving piezoelectric element may change due to changes in the adhesive strength, elastic properties, etc. due to changes in ambient temperature. There is a problem that the characteristic difference between the piezoelectric element 3 for feedback and the feedback piezoelectric element 3 changes, and the vibration condition fluctuates, so that the self-excited vibration of the vibrator 6 becomes unstable. Also, when a temperature cycle is added,
There is also a problem that the properties of the adhesive change with time and a hysteresis occurs in the driving condition. Furthermore, the detection piezoelectric element 4,
There was also a problem that the change in the adhesive strength of No. 5 also causes the drift.

【0005】また、各圧電素子2, 3, 4, 5の特性の
ばらつき、振動体1の断面形状の非対称性などにより、
理想的には、振動子6の非回転時には発生しないY軸方
向の振動が、現実には発生して、いわゆる漏れ電圧を生
じる。ところが、この漏れ電圧の大きさ等もまた、駆動
電圧その他の駆動条件に依存して変化し、ドリフトの原
因になるという問題があった。さらには、この従来技術
の場合、振動体1の各側面に、各圧電素子を高い精度で
接着させる必要から、振動子6の組立作業が甚だ面倒で
あるという他の問題もあった。
Further, due to variations in the characteristics of the piezoelectric elements 2, 3, 4, 5 and the asymmetry of the sectional shape of the vibrating body 1,
Ideally, vibration in the Y-axis direction, which does not occur when the vibrator 6 is not rotating, actually occurs, causing a so-called leakage voltage. However, there is a problem in that the magnitude of the leakage voltage also changes depending on the driving voltage and other driving conditions and causes drift. Further, in the case of this conventional technique, there is another problem that the work of assembling the vibrator 6 is extremely troublesome because each piezoelectric element needs to be bonded to each side surface of the vibrating body 1 with high accuracy.

【0006】なお、図5に示す従来技術では、それぞれ
の抵抗13, 14を介して駆動装置7に接続したそれぞれの
駆動用圧電素子11, 12を、検出用圧電素子としても機能
させることから、接着剤の変化に起因する漏れ電圧の変
化を、図4に示す従来技術のそれよりも低減することは
できる。しかしながら、この従来技術においてもまた、
帰還用圧電素子3を、図4に示すものと同様に別途設け
ているため、振動条件に関しては、前述したと同様の問
題が残ることになる。
In the prior art shown in FIG. 5, the driving piezoelectric elements 11 and 12 connected to the driving device 7 through the resistors 13 and 14 also function as detection piezoelectric elements. The change in leakage voltage due to the change in adhesive can be reduced more than that of the prior art shown in FIG. However, also in this conventional technique,
Since the feedback piezoelectric element 3 is separately provided like the one shown in FIG. 4, the same problem as described above remains with respect to the vibration condition.

【0007】この発明は、従来技術のこのような問題を
有利に解決することを目的とするものであり、帰還用圧
電素子を特別に設けることなく、一対の圧電素子を、駆
動,帰還および検出用のそれぞれの圧電素子として機能
させることにより、振動子の組立作業を容易ならしめて
なお、接着剤の影響による振動条件および駆動条件の変
動を有効に低減し、また、漏れ電圧の変化を十分小さく
抑制することができる振動ジャイロを提供するものであ
る。
An object of the present invention is to solve the above problems of the prior art in an advantageous manner, and to drive, return and detect a pair of piezoelectric elements without specially providing a return piezoelectric element. By functioning as each piezoelectric element for vibration, the assembly work of the vibrator is facilitated and the fluctuation of the vibration condition and the driving condition due to the influence of the adhesive is effectively reduced, and the change of the leakage voltage is sufficiently small. A vibration gyro that can be suppressed is provided.

【0008】[0008]

【課題を解決するための手段】この発明の振動ジャイロ
は、横断面形状が多角形をなす振動体の第1の側面に第
1の圧電素子を貼着するとともに、その第1の側面に平
行とならない第2の側面に第2の圧電素子を貼着して振
動子を構成し、この振動子の第1および第2の圧電素子
それぞれを、それぞれのインピーダンス素子を介して一
の前記振動子振動用駆動手段に接続したところにおい
て、各圧電素子とインピーダンス素子との接続部を、た
とえば、加算器および加算出力と基準交流電圧との差動
を行う差動増幅器を順次に介して駆動手段に接続する一
方、前記各接続部を、それらの接続部の出力の相互の差
動を行う差動増幅器にも接続したもの、または、各圧電
素子とインピーダンス素子との接続部を、例えば、それ
らの接続部の出力の相互の差動を行う差動増幅器およ
び、差動出力と基準交流電圧との差動を行う他の差動増
幅器を順次に介して駆動手段に接続する一方、前記各接
続部を加算器にも接続したものである。
A vibrating gyroscope according to the present invention has a first piezoelectric element attached to a first side surface of a vibrating body having a polygonal transverse cross section and parallel to the first side surface. A second piezoelectric element is attached to a second side surface that does not become a vibrator to form a vibrator, and each of the first and second piezoelectric elements of the vibrator is connected to one of the vibrators via an impedance element. When connected to the vibration driving means, the connecting portion between each piezoelectric element and the impedance element is connected to the driving means through, for example, an adder and a differential amplifier that performs differential between the added output and the reference AC voltage in order. On the other hand, while connecting, each of the connection parts is also connected to a differential amplifier that differentially outputs the outputs of the connection parts, or a connection part of each piezoelectric element and an impedance element, for example, Output of connection A differential amplifier that performs a differential between the two and another differential amplifier that performs a differential between a differential output and a reference AC voltage are sequentially connected to the driving means, and each of the connection parts is also connected to an adder. It is connected.

【0009】また、この発明の他の振動ジャイロは、横
断面形状が多角形をなす振動体の第1の側面に第1の圧
電素子を貼着するとともに、その第1の側面に平行とな
らない第2の側面に第2の圧電素子を貼着して振動子を
構成し、この振動子の第1および第2の圧電素子それぞ
れを、それぞれのインピーダンス素子を介して一の前記
振動子振動用駆動手段に接続したところにおいて、各圧
電素子とインピーダンス素子との接続部を、各接続部の
出力と各基準交流電圧との差動を行うそれぞれの差動増
幅器および加算器を順次に介して駆動手段に接続する一
方、前記各接続部を、それらの接続部の出力の相互の差
動を行う差動増幅器にも接続したもの、または、各圧電
素子とインピーダンス素子との接続部を、各接続部の出
力と各基準交流電圧との差動を行うそれぞれの差動増幅
器および加算器を順次に介して駆動手段に接続する一
方、前記それぞれの差動増幅器を、それらの各差動増幅
器からの差動出力の相互の差動を行う他の差動増幅器に
も接続したものである。
Further, in another vibrating gyroscope of the present invention, the first piezoelectric element is attached to the first side surface of the vibrating body having a polygonal transverse cross section, and the vibrating body is not parallel to the first side surface. A second piezoelectric element is attached to the second side surface to form a vibrator, and each of the first and second piezoelectric elements of the vibrator is connected to one of the vibrators via the impedance element. When connected to the driving means, the connection portion between each piezoelectric element and the impedance element is sequentially driven through each differential amplifier and adder that performs the differential between the output of each connection portion and each reference AC voltage. On the other hand, each of the connection parts is also connected to a differential amplifier that differentially outputs the outputs of the connection parts, or a connection part of each piezoelectric element and an impedance element is connected to each connection. Output and each reference AC power The differential amplifiers and the adders that perform differential with each other are sequentially connected to the driving means, and the differential amplifiers are connected to each other and the differential outputs of the differential amplifiers are mutually differential. It is also connected to another differential amplifier for performing.

【0010】ところで、前述したそれぞれの振動ジャイ
ロにおいて、より好ましくは、各基準交流電圧を、イン
ピーダンス素子を介して駆動手段に接続した容量素子
と、そのインピーダンス素子との接続部の電圧とする。
In each of the above-mentioned vibration gyros, more preferably, each reference AC voltage is a voltage at a connecting portion between the capacitive element connected to the driving means via the impedance element and the impedance element.

【0011】[0011]

【作用】圧電素子は、それに応力を加えると、ひずみを
発生するとともに、圧電効果によって応力に比例した電
気変位を生じる一方、電界を加えると、電気変位を生じ
るとともに、逆圧電効果によって電界に比例したひずみ
を生じる。従って、圧電素子に、インピーダンス素子を
介して交流電圧を印加すると、その圧電素子とインピー
ダンス素子との接続部では、印加された交流電圧と、圧
電素子のひずみに伴って発生する電圧との合成された電
圧が観察される。
When a stress is applied to the piezoelectric element, the piezoelectric element generates strain and the piezoelectric effect causes an electric displacement proportional to the stress. When an electric field is applied, the piezoelectric element causes an electric displacement and the inverse piezoelectric effect causes a proportional electric field. Strain. Therefore, when an AC voltage is applied to the piezoelectric element through the impedance element, the applied AC voltage and the voltage generated due to the distortion of the piezoelectric element are combined at the connection portion between the piezoelectric element and the impedance element. Voltage is observed.

【0012】そこで、本発明の振動ジャイロでは、振動
体の、相互に平行とならない二側面に貼着した一対の圧
電素子への交流電圧の印加によって、振動子の自励振動
をもたらすとともに、それらの圧電素子の、各方向のひ
ずみに伴って発生する電圧を、ひずみ方向毎に分離して
取出すことによって、一対の圧電素子に、駆動, 帰還お
よび検出の三つの機能をもたせることとした。
Therefore, in the vibrating gyroscope of the present invention, by applying an AC voltage to a pair of piezoelectric elements attached to two side surfaces of the vibrating body which are not parallel to each other, self-excited vibration of the vibrator is caused and It was decided that the pair of piezoelectric elements have three functions of drive, feedback, and detection by separating and extracting the voltage generated by the strain of the piezoelectric element in each direction in each strain direction.

【0013】このことによって、本発明の振動ジャイロ
では、振動条件および駆動条件に及ぼす接着剤の影響を
低減して、振動体の安定な自励振動をもたらすととも
に、温度サイクルなどが加わったときにも駆動条件にヒ
ステリシスが生じるのを抑制して、漏れ電圧の変化を十
分小さく抑えることができる。さらに、本発明の振動ジ
ャイロによれば、一対の圧電素子を振動体に貼着するだ
けで足りるので、振動子の組立作業を、極めて簡易迅速
に行うことができる。
As a result, in the vibrating gyroscope of the present invention, the influence of the adhesive on the vibration condition and the driving condition is reduced to bring about stable self-excited vibration of the vibrating body, and when a temperature cycle is applied. Also, it is possible to suppress the occurrence of hysteresis in the driving condition, and to suppress the change in the leakage voltage to be sufficiently small. Furthermore, according to the vibrating gyroscope of the present invention, it suffices to attach the pair of piezoelectric elements to the vibrating body, so that the work of assembling the vibrator can be performed extremely simply and quickly.

【0014】[0014]

【実施例】以下にこの発明の実施例を図面に基づいて説
明する。図1は、この発明の一実施例を示すブロック線
図であり、図中従来技術で述べた部分と同様の部分はそ
れらと同一の番号で示す。この具体例では、横断面形状
が三角形をなす振動体1の一側面1aに第1の圧電素子21
を貼着するとともに、その側面1aと隣接する他の側面1b
に、第2の圧電素子22を貼着することによって振動子6
を構成し、そして、それらのそれぞれの圧電素子21, 22
を、それぞれのインピーダンス素子Z1, Z2を介して駆動
装置7に接続するとともに、その駆動装置7を、他のイ
ンピーダンス素子Z3を介して容量素子23にも接続するこ
とにより、駆動装置7からの交流電圧を、両圧電素子2
1, 22および容量素子23のそれぞれに同時に印加可能に
してある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention, in which the same parts as those described in the prior art are designated by the same reference numerals. In this specific example, the first piezoelectric element 21 is provided on one side surface 1a of the vibrating body 1 having a triangular cross section.
And the other side surface 1b adjacent to the side surface 1a.
By attaching the second piezoelectric element 22 to the vibrator 6,
, And their respective piezoelectric elements 21, 22
Is connected to the driving device 7 via the impedance elements Z 1 and Z 2 respectively, and the driving device 7 is also connected to the capacitance element 23 via another impedance element Z 3 so that the driving device 7 AC voltage from both piezoelectric elements 2
It is possible to apply the voltage to both 1, 22 and the capacitive element 23 at the same time.

【0015】一方、前記各インピーダンス素子素子Z1,
Z2と、それぞれの圧電素子21, 22との接続部24, 25を、
加算器26を介して差動増幅器27に接続し、加算器26で
は、それらの両接続部24, 25からの出力を加算し、そし
て、差動増幅器27では、インピーダンス素子Z3と容量素
子23との接続部28からの出力と、加算器26からの出力を
差動増幅して、そこからの差動出力を駆動装置7に帰還
させる。
On the other hand, each of the impedance element elements Z 1 ,
Z 2 and the connecting portions 24 and 25 between the piezoelectric elements 21 and 22, respectively,
It is connected to the differential amplifier 27 via the adder 26, and the adder 26 adds the outputs from both the connection parts 24 and 25, and in the differential amplifier 27, the impedance element Z 3 and the capacitive element 23 are connected. The output from the connection section 28 and the output from the adder 26 are differentially amplified, and the differential output therefrom is fed back to the drive unit 7.

【0016】ところで、ここにおけるそれぞれのインピ
ーダンス素子Z1, Z2,Z3としては、抵抗型、容量型およ
び誘導型のいずれのタイプのものをも用いることができ
る。そしてさらには、それぞれのインピーダンス素子
Z1, Z2と、それぞれの圧電素子21, 22との接続部24, 25
を他の差動増幅器8に接続し、この差動増幅器8を、従
来技術と同様に、同期検波器9および直流増幅器10に順
次に接続する。
By the way, as each of the impedance elements Z 1 , Z 2 and Z 3 herein, any type of resistance type, capacitance type and inductive type can be used. And further, each impedance element
Connection parts 24, 25 between Z 1 , Z 2 and the respective piezoelectric elements 21, 22
Is connected to another differential amplifier 8, and this differential amplifier 8 is sequentially connected to the synchronous detector 9 and the DC amplifier 10 as in the prior art.

【0017】以上のように構成してなる振動ジャイロに
よれば、駆動装置7からそれぞれの圧電素子21, 22への
交流電圧の印加によって、振動子6をX軸方向に自励振
動させることができる。かかる振動状態においては、そ
れぞれの接続部24, 25からの出力は、駆動装置7からの
供給電圧と、それぞれの圧電素子21, 22のひずみに伴っ
て、それらの各圧電素子21, 22から出力される電圧との
合成出力となる。従って、それらの両合成出力を、加算
器26で加算した後、差動増幅器27に通過させることによ
り、X軸方向の振動に基づいて圧電素子21, 22から発生
された電圧だけを抽出し、そしてそれを駆動装置7に帰
還させると、振動子6の自励振動を十分安定なものとす
ることができる。
According to the vibrating gyroscope constructed as described above, the vibrator 6 can be caused to self-oscillate in the X-axis direction by applying an AC voltage from the driving device 7 to the respective piezoelectric elements 21 and 22. it can. In such an oscillating state, the outputs from the respective connecting portions 24 and 25 are output from the respective piezoelectric elements 21 and 22 in accordance with the voltage supplied from the driving device 7 and the strain of the respective piezoelectric elements 21 and 22. It is a composite output with the applied voltage. Therefore, after adding both of these combined outputs in the adder 26, they are passed through the differential amplifier 27 to extract only the voltage generated from the piezoelectric elements 21 and 22 based on the vibration in the X-axis direction, Then, by feeding it back to the driving device 7, the self-excited vibration of the vibrator 6 can be made sufficiently stable.

【0018】ここで、振動子6のこのような自励振動の
下で、その振動子6がZ軸の廻りに回転されると、振動
子6には、コリオリの力に基づくY軸方向の振動が発生
し、これにより、接続部24, 25の出力電圧に差を生じ
る。そこで、これらの両出力電圧を、差動増幅器8にて
差動増幅することにより、コリオリの力の発生に伴う電
圧を分離検出することができる。
When the vibrator 6 is rotated around the Z axis under such self-excited vibration, the vibrator 6 moves in the Y axis direction based on the Coriolis force. Vibration is generated, which causes a difference in the output voltage of the connection portions 24 and 25. Therefore, by differentially amplifying both of these output voltages by the differential amplifier 8, it is possible to separately detect the voltage associated with the generation of the Coriolis force.

【0019】図2は、図1に示す実施例の変形例であ
り、これは、振動体1のそれぞれの側面1a, 1bに貼着し
た各圧電素子21a, 22aのいずれか一方の分極方向を、図
1に示したものとは逆にし、これによって、ひずみや出
力電圧を、両圧電素子21a, 22a間で相互に逆転させたも
のである。従って、それぞれの接続部24a, 25aの出力を
差動することは、図1に示す例において加算することと
同様の意義を有し、また、それらの出力を加算すること
は、図1において差動することと同様の意義を有する。
FIG. 2 shows a modification of the embodiment shown in FIG. 1, in which the polarization direction of either one of the piezoelectric elements 21a, 22a attached to the respective side faces 1a, 1b of the vibrating body 1 is changed. , Which is the reverse of that shown in FIG. 1, whereby the strain and the output voltage are mutually reversed between the piezoelectric elements 21a and 22a. Therefore, differentiating the outputs of the respective connection parts 24a and 25a has the same meaning as adding in the example shown in FIG. 1, and adding these outputs is different in FIG. It has the same meaning as moving.

【0020】このため、それぞれのインピーダンス素子
Z1, Z2と、それぞれの圧電素子21a,22aとの接続部24a,
25aを、それらの接続部24a, 25aからの出力を相互に差
動する差動増幅器29に接続し、そしてこの差動増幅器29
を、そこからの差動出力を基準交流電圧と差動する差動
増幅器27を介して駆動装置7に接続する一方、それらの
両接続部24a, 25aを、加算器30を介して同期検波器9に
も接続する。なおここでは、それぞれの圧電素子21a, 2
2aに供給する駆動電圧のいずれか一方の位相を180度反
転させるものとする。このような振動ジャイロによって
も、図1について述べたものと同様の作用をもたらし得
ることはもちろんである。
Therefore, each impedance element
Z 1, and Z 2, each of the piezoelectric elements 21a, 22a and the connecting portion 24a,
25a is connected to a differential amplifier 29 which differentiates the outputs from those connections 24a, 25a from each other, and this differential amplifier 29
Is connected to the drive device 7 via a differential amplifier 27 that differentially outputs a differential output from the reference AC voltage, and both connection portions 24a and 25a thereof are connected via an adder 30 to a synchronous detector. Connect to 9. In addition, here, each piezoelectric element 21a, 2
It is assumed that one of the phases of the drive voltage supplied to 2a is inverted by 180 degrees. It is needless to say that such a vibration gyro can bring about the same operation as that described with reference to FIG.

【0021】図3は、この発明の他の実施例を示すブロ
ック線図である。この例は、駆動装置7を、それぞれの
インピーダンス素子Z1, Z2を介してそれぞれの圧電素子
21, 22に接続するとともに、他のそれぞれのインピーダ
ンス素子Z4, Z5を介してそれぞれの容量素子31, 32に接
続し、そして、それぞれの接続部24, 25を、基準交流電
圧との差動を行うそれぞれの差動増幅器33, 34を介して
加算器25に接続する点において、図1に示す実施例と相
違する。
FIG. 3 is a block diagram showing another embodiment of the present invention. In this example, the driving device 7 is connected to each piezoelectric element via each impedance element Z 1 and Z 2.
21 and 22, and also connected to the respective capacitive elements 31 and 32 via the other respective impedance elements Z 4 and Z 5 , and the respective connection parts 24 and 25 to the difference from the reference AC voltage. The present embodiment is different from the embodiment shown in FIG. 1 in that it is connected to the adder 25 via respective differential amplifiers 33 and 34 which operate.

【0022】ここで、差動増幅器33は、インピーダンス
素子Z4と容量素子31との接続部36からの出力と、接続部
24からの出力とを差動増幅し、差動増幅器34は、インピ
ーダンス素子Z5と容量素子32との接続部37からの出力
と、接続部25からの出力とを差動増幅する。また、加算
器35は、それらの両差動増幅出力を加算することによっ
て、振動子6のX軸方向の振動によって発生する電圧だ
けを分離検出し、そして、この検出電圧を駆動装置7に
帰還させて、振動子6の安定した自励振動をもたらす。
Here, the differential amplifier 33 includes the output from the connecting portion 36 of the impedance element Z 4 and the capacitive element 31, and the connecting portion
The output from 24 is differentially amplified, and the differential amplifier 34 differentially amplifies the output from the connecting portion 37 between the impedance element Z 5 and the capacitive element 32 and the output from the connecting portion 25. Further, the adder 35 separates and detects only the voltage generated by the vibration of the vibrator 6 in the X-axis direction by adding the two differential amplified outputs, and feeds back the detected voltage to the drive device 7. Thus, stable self-excited vibration of the vibrator 6 is brought about.

【0023】このような振動ジャイロでは、振動子6の
回転時におけるコリオリの力は、それぞれの接続部24,
25の出力を他の差動増幅器8に入力して差動することに
よって分離検出することができる。
In such a vibrating gyro, the Coriolis force during rotation of the vibrator 6 is generated by the respective connecting portions 24,
The output of 25 is input to another differential amplifier 8 and differentially detected, so that the differential detection can be performed.

【0024】なお、上述したところでは、接続部24, 25
の出力を、差動増幅器8に直接的に入力させることとし
ているが、それぞれの差動増幅器33, 34からの出力をそ
の差動増幅器8に入力することによっても、図3に示す
ものと同様にコリオリの力、ひいては、角速度を検出す
ることが可能である。そしてまた、この発明では、振動
体1の横断面形状を、三角形以外の任意の多角形形状と
することもできる。
In the above-mentioned place, the connecting portions 24, 25
Although the output of the differential amplifier 8 is directly input to the differential amplifier 8, the output from the differential amplifiers 33 and 34 is input to the differential amplifier 8 as in the case of FIG. It is possible to detect the Coriolis force and eventually the angular velocity. Further, in the present invention, the cross-sectional shape of the vibrating body 1 may be any polygonal shape other than the triangular shape.

【0025】[0025]

【発明の効果】以上に述べたところから明らかなよう
に、この発明によれば、振動体の、相互に平行をなさな
い二側面にそれぞれの圧電素子を設けることにより、帰
還用圧電素子を特別に設けることなく、常に安定した自
励振動をもたらすことができ、また、高い精度にて角速
度を検出することができる。すなわち、一対の圧電素子
に、駆動、帰還および検出の三つの機能を発揮させるこ
とによって、駆動条件に及ぼす接着剤の影響を十分に低
減して、温度サイクル等が加わったときの、駆動条件へ
のヒステリシスの発生を有効に抑制し、また、漏れ電圧
の変化を十分小さく抑え、この結果として、常に安定し
た自励振動をもたらすとともに、高い検出精度を確保す
ることができる。
As is apparent from the above description, according to the present invention, by providing the piezoelectric elements on the two side surfaces of the vibrating body which are not parallel to each other, the feedback piezoelectric element is specially provided. It is possible to always provide stable self-excited vibration, and to detect the angular velocity with high accuracy, without providing the above. That is, by making the pair of piezoelectric elements perform the three functions of driving, returning, and detecting, the influence of the adhesive on the driving condition can be sufficiently reduced, and the driving condition when the temperature cycle or the like is added is changed. The occurrence of hysteresis is effectively suppressed, and the change in leakage voltage is suppressed sufficiently small. As a result, stable self-excited vibration is always provided, and high detection accuracy can be secured.

【0026】そしてさらには、ここでは、振動体1に一
対の圧電素子を貼着するだけで振動子を構成することが
できるので、振動子の組立を極めて簡易迅速に行うこと
ができる。
Further, in this case, since the vibrator can be constructed only by sticking the pair of piezoelectric elements to the vibrating body 1, the vibrator can be assembled very easily and quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すブロック線図であ
る。
FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1に示す例の変形例を示すブロック線図であ
る。
FIG. 2 is a block diagram showing a modified example of the example shown in FIG.

【図3】この発明の他の実施例を示すブロック線図であ
る。
FIG. 3 is a block diagram showing another embodiment of the present invention.

【図4】従来例を示すブロック線図である。FIG. 4 is a block diagram showing a conventional example.

【図5】他の従来例を示すブロック線図である。FIG. 5 is a block diagram showing another conventional example.

【図6】この発明の他の実施例を示すブロック線図であ
る。
FIG. 6 is a block diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 振動体 1a, 1b 側面 6 振動子 7 駆動装置 8, 27, 29, 33, 34 差動増幅器 9 同期検波器 10 直流増幅器 21, 21a, 22, 22a 圧電素子 23, 31, 32 容量素子 24, 24a, 25, 25a, 28, 36, 37 接続部 26, 30, 35 加算器 Z1, Z2, Z3, Z4, Z5 インピーダンス素子1 Vibrating body 1a, 1b Side surface 6 Transducer 7 Driving device 8, 27, 29, 33, 34 Differential amplifier 9 Synchronous detector 10 DC amplifier 21, 21a, 22, 22a Piezoelectric element 23, 31, 32 Capacitive element 24, 24a, 25, 25a, 28, 36, 37 Connection 26, 30, 35 Adder Z 1 , Z 2 , Z 3 , Z 4 , Z 5 Impedance element

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月16日[Submission date] June 16, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 横断面形状が多角形をなす振動体の第1
の側面に第1の圧電素子を、その第1の側面に平行とな
らない第2の側面に第2の圧電素子をそれぞれ貼着して
なる振動子の、かかる第1および第2の圧電素子それぞ
れを、各インピーダンス素子を介して一の振動用駆動手
段に接続したところにおいて、 各圧電素子とインピーダンス素子との接続部の各出力の
和を基準交流電圧と差動して前記駆動手段に帰還させる
一方、前記接続部の各出力を相互に差動して取出すこと
を特徴とする振動ジャイロ。
1. A first vibrating body having a polygonal cross section.
Of the first piezoelectric element on the side surface of the first piezoelectric element and the second piezoelectric element on the second side surface that is not parallel to the first side surface, respectively. Is connected to one vibration driving means via each impedance element, and the sum of the respective outputs of the connecting portion of each piezoelectric element and the impedance element is differentiated with the reference AC voltage and fed back to the driving means. On the other hand, a vibrating gyro, wherein the respective outputs of the connection section are taken out differentially with respect to each other.
【請求項2】 横断面形状が多角形をなす振動体の第1
の側面に第1の圧電素子を、その第1の側面に平行とな
らない第2の側面に第2の圧電素子をそれぞれ貼着して
なる振動子の、かかる第1および第2の圧電素子それぞ
れを、各インピーダンス素子を介して一の振動用駆動手
段に接続したところにおいて、 各圧電素子とインピーダンス素子との接続部の各出力を
相互に差動し、その差動出力を基準交流電圧と差動して
前記駆動手段に帰還させる一方、前記接続部の各出力を
加算して取出すことを特徴とする振動ジャイロ。
2. A first vibrating body having a polygonal cross section.
Of the first piezoelectric element on the side surface of the first piezoelectric element and the second piezoelectric element on the second side surface that is not parallel to the first side surface, respectively. Is connected to one vibration driving means via each impedance element, the outputs of the connection portion of each piezoelectric element and the impedance element are mutually differentiated, and the differential output is different from the reference AC voltage. A vibrating gyro, wherein the vibrating gyro is characterized in that the output of the connecting portion is added and taken out while being moved and returned to the driving means.
【請求項3】 横断面形状が多角形をなす振動体の第1
の側面に第1の圧電素子を、その第1の側面に平行とな
らない第2の側面に第2の圧電素子をそれぞれ貼着して
なる振動子の、かかる第1および第2の圧電素子それぞ
れを、各インピーダンス素子を介して一の振動用駆動手
段に接続したところにおいて、 各圧電素子とインピーダンス素子との接続部の各出力を
基準交流電圧と差動して、各差動出力の和を前記駆動手
段に帰還させる一方、前記接続部の各出力を相互に差動
して取出すことを特徴とする振動ジャイロ。
3. A first vibrating body having a polygonal cross section.
Of the first piezoelectric element on the side surface of the first piezoelectric element and the second piezoelectric element on the second side surface that is not parallel to the first side surface, respectively. Is connected to one vibration driving means via each impedance element, each output of the connecting portion between each piezoelectric element and the impedance element is differentiated from the reference AC voltage, and the sum of each differential output is calculated. A vibrating gyro, wherein each output of the connecting portion is differentially extracted while being fed back to the driving means.
【請求項4】 横断面形状が多角形をなす振動体の第1
の側面に第1の圧電素子を、その第1の側面に平行とな
らない第2の側面に第2の圧電素子をそれぞれ貼着して
なる振動子の、かかる第1および第2の圧電素子それぞ
れを、各インピーダンス素子を介して一の振動用駆動手
段に接続したところにおいて、 各圧電素子とインピーダンス素子との接続部の各出力を
基準交流電圧と差動して、各差動出力の和を前記駆動手
段に帰還させる一方、 前記各差動出力を相互に差動して取出すことを特徴とす
る振動ジャイロ。
4. A first vibrating body having a polygonal cross section.
Of the first piezoelectric element on the side surface of the first piezoelectric element and the second piezoelectric element on the second side surface that is not parallel to the first side surface, respectively. Is connected to one vibration driving means via each impedance element, each output of the connecting portion between each piezoelectric element and the impedance element is differentiated from the reference AC voltage, and the sum of each differential output is calculated. A vibrating gyro, wherein each of the differential outputs is taken out while being differentially fed back to the driving means.
【請求項5】 前記基準交流電圧を、インピーダンス素
子を介して駆動手段に接続した容量素子と、そのインピ
ーダンス素子の接続部の電圧とすることを特徴とする請
求項1〜4のいずれか1項に記載の振動ジャイロ。
5. The voltage according to claim 1, wherein the reference AC voltage is a voltage of a capacitive element connected to a driving means via an impedance element and a voltage at a connecting portion of the impedance element. Vibration gyro described in.
JP3162331A 1991-06-07 1991-06-07 Vibrating gyro Expired - Fee Related JP2583691B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3162331A JP2583691B2 (en) 1991-06-07 1991-06-07 Vibrating gyro
DE69210679T DE69210679T2 (en) 1991-06-07 1992-06-05 Vibration control device
DE69225505T DE69225505T2 (en) 1991-06-07 1992-06-05 Vibration control device
EP92109569A EP0517259B1 (en) 1991-06-07 1992-06-05 Vibration control apparatus
EP95115256A EP0692698B1 (en) 1991-06-07 1992-06-05 Vibration control apparatus
US07/894,017 US5270607A (en) 1991-06-07 1992-06-06 Vibration control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3162331A JP2583691B2 (en) 1991-06-07 1991-06-07 Vibrating gyro

Publications (2)

Publication Number Publication Date
JPH06117860A true JPH06117860A (en) 1994-04-28
JP2583691B2 JP2583691B2 (en) 1997-02-19

Family

ID=15752518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3162331A Expired - Fee Related JP2583691B2 (en) 1991-06-07 1991-06-07 Vibrating gyro

Country Status (1)

Country Link
JP (1) JP2583691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783897A (en) * 1994-12-27 1998-07-21 Murata Manufacturing Co., Ltd. Vibrating gyroscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160809A (en) * 1981-12-08 1983-09-24 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Gyroscope
JPH02223818A (en) * 1989-02-25 1990-09-06 Murata Mfg Co Ltd Oscillation circuit
JPH02266214A (en) * 1989-04-06 1990-10-31 Murata Mfg Co Ltd Vibration gyro
JPH0310113A (en) * 1989-06-08 1991-01-17 Tokimec Inc Gyroscope apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160809A (en) * 1981-12-08 1983-09-24 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Gyroscope
JPH02223818A (en) * 1989-02-25 1990-09-06 Murata Mfg Co Ltd Oscillation circuit
JPH02266214A (en) * 1989-04-06 1990-10-31 Murata Mfg Co Ltd Vibration gyro
JPH0310113A (en) * 1989-06-08 1991-01-17 Tokimec Inc Gyroscope apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783897A (en) * 1994-12-27 1998-07-21 Murata Manufacturing Co., Ltd. Vibrating gyroscope

Also Published As

Publication number Publication date
JP2583691B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
EP0692698B1 (en) Vibration control apparatus
JP4599848B2 (en) Angular velocity sensor
JPH08152328A (en) Angular speed sensor and its using method
JP3494096B2 (en) Vibrating gyro
JP2529786B2 (en) Vibrating gyro
JP2583691B2 (en) Vibrating gyro
JPWO2007125615A1 (en) Tuning fork type bimorph piezoelectric vibrator, vibration gyro module using the same, and method for manufacturing tuning fork type bimorph piezoelectric vibrator
JP2006010408A (en) Vibratory gyro
JPH0429012A (en) Vibration gyro
US5850119A (en) Vibration gyroscope
JP3265840B2 (en) Drive detection circuit for piezoelectric vibrator
JP2686209B2 (en) Vibrating gyro
JPH03276013A (en) Angular velocity sensor
JP4600590B2 (en) Angular velocity sensor
JP2547910B2 (en) Vibrating gyro
JPH05126585A (en) Vibration gyro
JPH03150409A (en) Vibration gyro
JP3122925B2 (en) Piezoelectric vibrator for piezoelectric vibrating gyroscope
JP2620007B2 (en) Vibrator for vibrating gyroscope
JPH05118853A (en) Vibration gyro
JP2622331B2 (en) Vibrating gyro
JP3149712B2 (en) Vibrating gyro
JP2571893B2 (en) Vibrating gyro
JPH0384413A (en) Angular speed sensor
JPH05133754A (en) Vlbratory gyroscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees