JPH05126585A - Vibration gyro - Google Patents

Vibration gyro

Info

Publication number
JPH05126585A
JPH05126585A JP3260224A JP26022491A JPH05126585A JP H05126585 A JPH05126585 A JP H05126585A JP 3260224 A JP3260224 A JP 3260224A JP 26022491 A JP26022491 A JP 26022491A JP H05126585 A JPH05126585 A JP H05126585A
Authority
JP
Japan
Prior art keywords
vibration
vibrator
elements
output
piezoelectric elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3260224A
Other languages
Japanese (ja)
Inventor
Kokichi Terajima
厚吉 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akai Electric Co Ltd
Original Assignee
Akai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akai Electric Co Ltd filed Critical Akai Electric Co Ltd
Priority to JP3260224A priority Critical patent/JPH05126585A/en
Publication of JPH05126585A publication Critical patent/JPH05126585A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To bring about a stable self-induced vibration of a vibrator, to ensure also high precision in detection of an angular velocity and, besides, to enable easy and quick assembly of the vibrator. CONSTITUTION:A vibrator 6 is constructed by sticking two sets of piezoelectric elements 21 and 22 on the lateral surfaces 1a and 1b of a vibrating body having a polygonal cross section and the respective sets of the piezoelectric elements 21 and 22 of this vibrator 6 are connected to one driving means 7 for vibration through their capacity elements C1 and C2 respectively, while this driving means 7 for vibration is connected also to two resistance elements R1 and R2 connected in series to each other. The sum of outputs of connecting parts 24 and 25 of the respective sets of the piezoelectric elements 21 and 22 with the capacity elements C1 and C2 is fed back to the driving means 7 for vibration differentially with a reference output of a connecting part 28 of the resistance elements R1 and R2, while the respective outputs of the connecting parts 24 and 25 of the respective sets of the piezoelectric elements 21 and 22 with the capacity elements C1 and C2 are taken out differentially with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、二組の圧電素子に、
駆動, 帰還および検出の各機能を発揮させるとともに、
正確な基準電圧を発生させることによって、振動子の、
常に安定した自励振動をもたらし、また、角速度の、高
い精度での検出を可能ならしめる振動ジャイロに関する
ものである。
This invention relates to two sets of piezoelectric elements,
In addition to demonstrating the drive, feedback and detection functions,
By generating an accurate reference voltage,
The present invention relates to a vibration gyro that always provides stable self-excited vibration and enables detection of angular velocity with high accuracy.

【0002】[0002]

【従来の技術】従来の振動ジャイロとしては、例えば、
図8および図9にブロック線図で示すようなものが知ら
れている。ここで、図8に示す振動ジャイロでは、横断
面形状が四角形をなす振動体1の一側面に駆動用圧電素
子2を貼着するとともに、その側面とは反対側の側面に
帰還用圧電素子3を貼着し、また、これらの側面と直交
する他の二側面には、それぞれの検出用圧電素子4, 5
を貼着することによって振動子6が構成されており、こ
の振動子6は、駆動装置7からの出力を駆動用圧電素子
2に供給する一方、帰還用圧電素子3の出力をその駆動
装置7に直接的に帰還させることによって、直交三次元
座標系のX軸方向に所定の自励振動を行う。そして、か
かる自励振動の下で、振動子6がZ軸の周りに回転され
ると、振動子6はコリオリの力の発生によってY軸方向
の振動を惹起され、このY軸方向の振動に伴う電圧が、
それぞれの検出用圧電素子4, 5に発生するので、それ
らの各出力電圧を、差動増幅器8, 同期検波器9および
直流増幅器10に順次に通過させることによって、振動子
6の角速度が直流出力として求められる。
2. Description of the Related Art As a conventional vibrating gyroscope, for example,
The ones shown in block diagrams in FIGS. 8 and 9 are known. Here, in the vibrating gyroscope shown in FIG. 8, the driving piezoelectric element 2 is attached to one side surface of the vibrating body 1 having a quadrangular cross-sectional shape, and the feedback piezoelectric element 3 is provided on the side surface opposite to the side surface. Is attached, and the other two side faces orthogonal to these side faces are provided with the detection piezoelectric elements 4, 5 respectively.
The vibrator 6 is configured by sticking the above. The vibrator 6 supplies the output from the driving device 7 to the driving piezoelectric element 2, while the output of the feedback piezoelectric element 3 is applied to the driving device 7. By directly returning to, the predetermined self-excited vibration is performed in the X-axis direction of the orthogonal three-dimensional coordinate system. When the vibrator 6 is rotated around the Z axis under such self-excited vibration, the vibrator 6 is caused to vibrate in the Y axis direction by the generation of Coriolis force, and the vibration in the Y axis direction occurs. The accompanying voltage
Since they are generated in the respective detection piezoelectric elements 4 and 5, their respective output voltages are sequentially passed through the differential amplifier 8, the synchronous detector 9 and the DC amplifier 10, so that the angular velocity of the vibrator 6 is DC output. Is required as.

【0003】また、図9に示す振動ジャイロは、横断面
形状が三角形をなす振動体1の二側面のそれぞれに、駆
動用圧電素子11, 12を貼着するとともに、他の一側面に
帰還用圧電素子3を貼着することによって振動子6を構
成し、駆動装置7からの出力を、それぞれの抵抗13, 14
を介して駆動用圧電素子11, 12に供給し、帰還用圧電素
子3からの出力を駆動装置7にこれも直接的に帰還させ
ることによって、振動子6をX軸方向に自励振動させる
ものである。ここでは、検出用圧電素子を兼ねるそれぞ
れの駆動用圧電素子11, 12に発生する電圧を差動増幅
し、同期検波した後に直流増幅することで、振動子6が
Z軸の周りに回転されることによって発生するY軸方向
のコリオリの力、ひいては、角速度を検出することがで
きる。
The vibrating gyro shown in FIG. 9 has driving piezoelectric elements 11 and 12 attached to each of two side surfaces of the vibrating body 1 whose cross-sectional shape is a triangle, and the other side surface for returning. The vibrator 6 is configured by sticking the piezoelectric element 3, and the output from the driving device 7 is transmitted to the respective resistors 13, 14
To vibrate the vibrator 6 by self-excited oscillation in the X-axis direction by supplying it to the driving piezoelectric elements 11 and 12 via the actuator and directly returning the output from the feedback piezoelectric element 3 to the driving device 7 as well. Is. Here, the oscillator 6 is rotated around the Z-axis by differentially amplifying the voltage generated in each of the driving piezoelectric elements 11 and 12 which also serve as the detecting piezoelectric element, performing synchronous detection, and then performing DC amplification. It is possible to detect the Coriolis force in the Y-axis direction, and thus the angular velocity, generated by the above.

【0004】[0004]

【発明が解決しようとする課題】ところで、図8に示す
前者の振動ジャイロにあっては、それぞれの圧電素子
2, 3, 4, 5がともに、エポキシ樹脂その他の接着剤
によって振動体1に接着されていることから、周囲温度
の変化に起因する接着剤の強度、弾性的性質その他の物
性変化によって、たとえば、駆動用圧電素子2と帰還用
圧電素子3との間の特性差が変化して、振動条件に変動
を来し、それによって振動子6の自励振動が不安定なも
のとなる問題があった。また、温度サイクルなどが加わ
った時には、接着剤の性質が時効的に変化して駆動条件
にヒステリシスを生じる問題もあり、さらには、検出用
圧電素子4, 5の接着強度の変化がドリフトの原因とも
なるという問題もあった。
By the way, in the former vibrating gyro shown in FIG. 8, the respective piezoelectric elements 2, 3, 4, 5 are bonded to the vibrating body 1 by an epoxy resin or other adhesive. Therefore, due to changes in the adhesive strength, elastic properties, and other physical properties due to changes in ambient temperature, for example, the characteristic difference between the driving piezoelectric element 2 and the feedback piezoelectric element 3 changes. However, there is a problem in that the vibration conditions fluctuate, which makes the self-excited vibration of the vibrator 6 unstable. In addition, when a temperature cycle is applied, there is also a problem that the properties of the adhesive change over time, causing hysteresis in the driving conditions. Furthermore, the change in the adhesive strength of the detection piezoelectric elements 4 and 5 causes the drift. There was also the problem of becoming.

【0005】また、各圧電素子2, 3, 4, 5の特性の
ばらつき、振動体1の断面形状の非対称性などにより、
理想的には、振動子6の非回転時には発生しないY軸方
向の振動が、現実には発生してしまい、いわゆる漏れ電
圧を生じる。しかも、この漏れ電圧の大きさ等もまた、
駆動電圧その他の駆動条件に依存して変化してドリフト
の原因になるという問題があった。さらには、この従来
技術の場合、振動体1の各側面に、各圧電素子を高い精
度で接着させる必要から、振動子6の組立作業が甚だ面
倒であるという問題もあった。
Further, due to variations in the characteristics of the piezoelectric elements 2, 3, 4, 5 and the asymmetry of the sectional shape of the vibrating body 1,
Ideally, vibration in the Y-axis direction, which does not occur when the vibrator 6 is not rotating, actually occurs, causing a so-called leakage voltage. Moreover, the magnitude of this leakage voltage is also
There is a problem that the voltage changes depending on the driving voltage and other driving conditions and causes a drift. Further, in the case of this conventional technique, there is a problem that the assembly work of the vibrator 6 is extremely troublesome because each piezoelectric element needs to be bonded to each side surface of the vibrating body 1 with high accuracy.

【0006】なお、図9に示す従来技術では、駆動用圧
電素子11, 12を、検出用圧電素子としても用いることか
ら、接着剤の物性変化に起因する漏れ電圧の変化を、図
8に示す従来技術のそれよりも低減することはできる。
しかしながら、この従来技術においてもまた、帰還用圧
電素子3を、図8に示すものと同様に別途設けているた
め、振動条件に関しては、前述したと同様の問題が残る
ことになる。
In the prior art shown in FIG. 9, since the driving piezoelectric elements 11 and 12 are also used as the detecting piezoelectric elements, the change in leakage voltage due to the change in the physical properties of the adhesive is shown in FIG. It can be reduced from that of the prior art.
However, also in this conventional technique, since the feedback piezoelectric element 3 is separately provided as in the case of FIG. 8, the same problem as described above remains with respect to the vibration condition.

【0007】この発明は、従来技術のこのような問題を
有利に解決するものであり、振動子の組立作業を容易な
らしめてなお、接着剤の影響による駆動条件の変動を有
効に低減し、また、漏れ電圧の変化を十分小さく抑制す
ることができる振動ジャイロを提供するものである。
The present invention advantageously solves such a problem of the prior art, facilitates the assembly work of the vibrator, and effectively reduces the fluctuation of the driving condition due to the influence of the adhesive. Provided is a vibration gyro which can suppress a change in leakage voltage to a sufficiently small level.

【0008】[0008]

【課題を解決するための手段】この発明の振動ジャイロ
は、横断面形状が多角形をなす振動体の側面に二組の圧
電素子を貼着して振動子を構成し、この振動子のそれぞ
れの組の圧電素子を、それぞれの容量素子を介して一の
振動用駆動手段に接続するとともに、この振動用駆動手
段を、相互に直列接続した二個の抵抗素子にも接続した
ところにおいて、各組の圧電素子と容量素子との接続部
の各出力の和を、それぞれの抵抗素子の接続部の基準出
力と差動して振動用駆動手段に帰還させるとともに、各
組の圧電素子と容量素子との接続部の各出力を相互に差
動させて取り出すものである。ここで、より好ましく
は、相互に直列接続した二個の抵抗素子を、一の可変抵
抗器とすることにより、前記基準出力を、一方の固定端
子を振動用駆動手段に接続したその可変抵抗器の可動端
子から取り出す。
A vibrating gyroscope of the present invention comprises a vibrator in which two sets of piezoelectric elements are attached to the side surfaces of a vibrating body whose cross-sectional shape is polygonal. The piezoelectric elements of the group are connected to one vibration driving means through the respective capacitive elements, and this vibration driving means is also connected to two resistance elements connected in series. The sum of the respective outputs of the connecting portions of the piezoelectric element and the capacitive element of the set is fed back to the vibration drive means by making a differential with the reference output of the connecting portion of the respective resistance elements, and the piezoelectric element and the capacitive element of each set This is to take out the outputs of the connection parts of and by making them differential with each other. Here, more preferably, the two resistance elements connected in series to each other are made into one variable resistor, so that the reference output is connected to one of the fixed terminals to the vibration driving means. Take out from the movable terminal of.

【0009】また、他の振動ジャイロは、とくに、一の
振動用駆動手段を、それぞれの容量素子を介してそれぞ
れの組の圧電素子に接続することに加え、相互に直列接
続した二個の抵抗素子の二組にもそれぞれ並列に接続し
たところにおいて、各組の圧電素子と容量素子との接続
部の各出力を、各組のそれぞれの抵抗素子の接続部の基
準出力と差動させ、各差動出力の和を振動用駆動手段に
帰還させるとともに、各組の圧電素子と容量素子との接
続部の各出力を相互に差動させて取り出すものであり、
ここにおいてもまたより好ましくは、各組の抵抗素子接
続構体を可変抵抗器とすることによって、それぞれの基
準出力を、一方の固定端子を振動用駆動手段に接続した
それぞれの可変抵抗器のそれぞれの可動端子から取り出
す。
Further, in another vibration gyro, in particular, one vibration driving means is connected to each set of piezoelectric elements via each capacitance element, and two resistances connected in series are also used. When two sets of elements were also connected in parallel, each output of the connection section of the piezoelectric element and the capacitive element of each set was differentiated from the reference output of the connection section of each resistance element of each set, and The sum of the differential outputs is fed back to the vibration drive means, and each output of the connecting portion between the piezoelectric element and the capacitive element of each set is differentially obtained and taken out.
Here again, it is more preferable that the resistance element connection structure of each set is a variable resistor so that each reference output is connected to each of the variable resistors whose one fixed terminal is connected to the vibration driving means. Take out from the movable terminal.

【0010】[0010]

【作用】圧電素子は、それに応力を加えると、ひずみを
発生するとともに、圧電効果によって応力に比例した電
気変位を生じる一方、電界を加えると、電気変位を生じ
るとともに、逆圧電効果によって電界に比例したひずみ
を生じる。従って、圧電素子に、容量素子を介して交流
電圧を印加すると、その圧電素子と容量素子との接続部
では、印加された交流電圧と、圧電素子のひずみに伴っ
て発生する電圧との合成された電圧が観察される。
When a stress is applied to the piezoelectric element, the piezoelectric element generates strain and the piezoelectric effect causes an electric displacement proportional to the stress. When an electric field is applied, the piezoelectric element causes an electric displacement and the inverse piezoelectric effect causes a proportional electric field. Strain. Therefore, when an AC voltage is applied to the piezoelectric element via the capacitive element, the applied AC voltage and the voltage generated due to the distortion of the piezoelectric element are combined at the connection portion between the piezoelectric element and the capacitive element. Voltage is observed.

【0011】そこで、この発明の振動ジャイロでは、振
動体の側面に貼着した二組の圧電素子への交流電圧の印
加によって、振動子の自励振動をもたらすとともに、そ
れらの圧電素子の、各方向のひずみに伴って発生する電
圧を、ひずみ方向毎に分離して取出すことによって、二
組の圧電素子に、駆動, 帰還および検出の三つの機能を
もたせることとし、併せて、帰還信号のための基準出力
を十分正確なものとした。
Therefore, in the vibrating gyroscope of the present invention, by applying an AC voltage to the two sets of piezoelectric elements attached to the side surface of the vibrating body, self-excited vibration of the vibrator is caused, and By separating and extracting the voltage generated with strain in each direction for each strain direction, two sets of piezoelectric elements have three functions of drive, feedback, and detection. The reference output of was made sufficiently accurate.

【0012】このことにより、この発明の振動ジャイロ
によれば、駆動条件に及ぼす接着剤の影響を低減して、
温度サイクルなどが加わったときにも駆動条件にヒステ
リシスが生じるのを抑制して、漏れ電圧の変化を十分小
さく抑えることができる。しかも、この発明の振動ジャ
イロでは、二組の圧電素子を貼着するだけで足りるの
で、振動子の組立作業を、簡易迅速ならしめることがで
きる。そしてさらには、基準出力をもって駆動電圧成分
を正確に打ち消すことにより、振動子の駆動ひずみに伴
って発生する電圧だけを高い精度で取り出すことがで
き、この結果として、振動子の自励振動を極めて安定な
ものとすることができる。
Thus, according to the vibrating gyroscope of the present invention, the influence of the adhesive on the driving condition is reduced,
It is possible to suppress the occurrence of hysteresis in the driving condition even when a temperature cycle or the like is applied, and to suppress the change in the leakage voltage to be sufficiently small. Moreover, in the vibrating gyroscope according to the present invention, it is sufficient to attach two sets of piezoelectric elements, so that the assembling work of the vibrator can be performed simply and quickly. Furthermore, by accurately canceling the drive voltage component with the reference output, it is possible to extract only the voltage generated due to the drive distortion of the vibrator with high accuracy, and as a result, the self-excited vibration of the vibrator is extremely reduced. It can be stable.

【0013】[0013]

【実施例】以下にこの発明の実施例を図面に基づいて説
明する。図1は、この発明に係る振動ジャイロに適用す
ることができる振動子の構成例を示す図である。図1
(a) は、横断面形状が三角形、たとえば正三角形をなす
振動体1の一側面1aに第1の圧電素子21を貼着するとと
もに、その側面1aと隣接する他の側面1bに第2の圧電素
子22を貼着することによって振動子6を構成したもので
ある。また、図1(b) に示す振動子6は、横断面形状が
四角形、たとえば正四角形をなす振動体1の一側面1cに
第1の圧電素子21を貼着するとともに、その側面1cに隅
部を隔てて隣接する他の側面1dに第2の圧電素子22を貼
着したものであり、図1(c) に示す振動子6は、横断面
形状が四角形をなす振動体1の一側面1cに、一の圧電素
子21b を貼着し、この圧電素子21b の電極を、振動体1
の幅方向に二分割してそれぞれの分割電極21c, 21dとし
たものである。なお、このような分割は、電極のみなら
ず、圧電素子21b の全体にわたっても行い得ることはも
ちろんである。そして図1(d) は、横断面形状が四角形
をなす振動体1の一側面1cおよびそれの対抗側面1eのそ
れぞれに、相互に組をなす圧電素子21, 21a を貼着し、
他の二側面1d, 1fに、他の組をなす圧電素子22, 22a を
貼着することによって振動子6を構成したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration example of a vibrator that can be applied to the vibration gyro according to the present invention. Figure 1
In (a), the first piezoelectric element 21 is attached to one side surface 1a of the vibrating body 1 having a triangular cross section, for example, an equilateral triangle, and the second piezoelectric element 21 is attached to the other side surface 1b adjacent to the side surface 1a. The vibrator 6 is configured by attaching the piezoelectric element 22. In addition, the vibrator 6 shown in FIG. 1 (b) has a first piezoelectric element 21 attached to one side surface 1c of the vibrating body 1 having a quadrangular cross section, for example, a regular quadrangle, and a corner formed on the side surface 1c. The second piezoelectric element 22 is attached to the other side surface 1d that is adjacent to the side surface of the vibrator 1 shown in FIG. 1 (c). One piezoelectric element 21b is attached to 1c, and the electrode of this piezoelectric element 21b is attached to the vibrating body 1
Is divided into two in the width direction of each of the divided electrodes 21c and 21d. It is needless to say that such division can be performed not only on the electrodes but also on the entire piezoelectric element 21b. In FIG. 1 (d), piezoelectric elements 21 and 21a forming a pair are attached to one side surface 1c of the vibrating body 1 having a quadrangular cross section and the opposing side surface 1e thereof, respectively.
The vibrator 6 is constructed by attaching other sets of piezoelectric elements 22 and 22a to the other two side surfaces 1d and 1f.

【0014】図2は、このような振動子6を用いたこの
発明の一実施例を示すブロック線図である。なお、この
例では、図1(a) に示す振動子6を用いることとしてる
が、他のいずれの振動子6であっても同様に適用し得る
ことはもちろんである。ここでは、それぞれの圧電素子
21, 22を、それぞれの容量素子C1, C2を介して駆動装置
7に接続するとともに、その駆動装置7を、相互に直列
接続した二個の抵抗素子R1, R2にも接続することによ
り、駆動装置7からの交流電圧を、両圧電素子21, 22の
他、抵抗素子R1, R2にも同時に印加可能とする。
FIG. 2 is a block diagram showing an embodiment of the present invention using such a vibrator 6. In this example, the oscillator 6 shown in FIG. 1A is used, but it goes without saying that any other oscillator 6 can be similarly applied. Here, each piezoelectric element
21 and 22 are connected to the driving device 7 via the respective capacitive elements C 1 and C 2 , and the driving device 7 is also connected to the two resistance elements R 1 and R 2 connected in series with each other. As a result, the AC voltage from the driving device 7 can be simultaneously applied to the resistance elements R 1 and R 2 as well as the piezoelectric elements 21 and 22.

【0015】一方、前記各容量素子C1, C2と、それぞれ
の圧電素子21, 22との接続部24, 25を、加算器26を介し
て差動増幅器27に接続し、加算器26では、それらの両接
続部24, 25からの出力を加算し、そして、差動増幅器27
では、両抵抗素子R1, R2の相互の接続部28からの基準電
圧と、加算器26からの出力を差動増幅して、そこからの
差動出力を駆動装置7に帰還させる。そしてさらには、
それぞれの容量素子C1, C2と、それぞれの圧電素子21,
22との接続部24, 25を他の差動増幅器8に接続し、この
差動増幅器8を、従来技術と同様に、同期検波器9およ
び直流増幅器10に順次に接続する。
On the other hand, the connecting portions 24 and 25 of the respective capacitive elements C 1 and C 2 and the respective piezoelectric elements 21 and 22 are connected to the differential amplifier 27 via the adder 26, and the adder 26 , The outputs from both of these connections 24, 25 are summed, and the differential amplifier 27
Then, the reference voltage from the mutual connecting portion 28 of the resistance elements R 1 and R 2 and the output from the adder 26 are differentially amplified, and the differential output from the reference voltage is fed back to the driving device 7. And even more,
Each capacitive element C 1 , C 2 and each piezoelectric element 21,
The connection portions 24 and 25 to 22 are connected to another differential amplifier 8, and this differential amplifier 8 is sequentially connected to the synchronous detector 9 and the DC amplifier 10 as in the prior art.

【0016】以上のように構成してなる振動ジャイロに
よれば、駆動装置7からそれぞれの圧電素子21, 22への
交流電圧の印加によって、振動子6をX軸方向に駆動振
動させることができ、その振動状態においては、それぞ
れの接続部24, 25からの出力は、駆動装置7からの供給
電圧と、それぞれの圧電素子21, 22のひずみに伴って、
それらの各圧電素子21,22から出力される電圧との合成
出力となる。従って、それらの両合成出力を、加算器26
で加算した後、差動増幅器27に通過させることにより、
それぞれの容量素子C1, C2およびそれぞれの圧電素子2
1, 22のインピーダンス配分比との関連において抵抗比
を適宜に調節したそれぞれの抵抗素子R1,R2の作用下
で、X軸方向の振動に基づいて圧電素子21, 22から発生
された電圧だけを正確に抽出し、そしてその差動出力を
駆動装置7に帰還させることで振動子6の自励振動を十
分安定なものとすることができる。
According to the vibrating gyroscope constructed as described above, the vibrator 6 can be driven and vibrated in the X-axis direction by applying an AC voltage from the driving device 7 to the respective piezoelectric elements 21 and 22. In the vibrating state, the output from each of the connecting portions 24 and 25 is accompanied by the supply voltage from the driving device 7 and the strain of each of the piezoelectric elements 21 and 22,
It is a combined output with the voltage output from each of the piezoelectric elements 21 and 22. Therefore, both of these combined outputs are added by the adder 26.
After adding in, by passing it through the differential amplifier 27,
Each capacitive element C 1 , C 2 and each piezoelectric element 2
The voltage generated from the piezoelectric elements 21 and 22 based on the vibration in the X-axis direction under the action of the respective resistance elements R 1 and R 2 whose resistance ratio is appropriately adjusted in relation to the impedance distribution ratio of 1 and 22. It is possible to make the self-excited vibration of the vibrator 6 sufficiently stable by accurately extracting only that and feeding back the differential output to the driving device 7.

【0017】ここで、振動子6のこのような自励振動の
下で、その振動子6がZ軸の廻りに回転されると、振動
子6には、コリオリの力に基づくY軸方向の振動が発生
し、これにより、接続部24, 25の出力電圧に差を生じ
る。そこで、これらの両出力電圧を、差動増幅器8にて
差動増幅することにより、漏れ電圧の影響を取り除い
て、コリオリの力の発生に伴う電圧を正確に分離検出す
ることができる。
Under the self-excited vibration of the vibrator 6, when the vibrator 6 is rotated around the Z axis, the vibrator 6 moves in the Y axis direction based on the Coriolis force. Vibration is generated, which causes a difference in the output voltage of the connection portions 24 and 25. Therefore, by differentially amplifying both of these output voltages by the differential amplifier 8, the influence of the leakage voltage can be removed, and the voltage associated with the generation of the Coriolis force can be accurately separated and detected.

【0018】図3は、図2に示す実施例の変形例であ
り、これは、振動体1のそれぞれの側面1a, 1bに貼着し
た各圧電素子121, 122のいずれか一方の分極方向を、図
2に示したものとは逆にし、これによって、ひずみや出
力電圧を、両圧電素子121, 122間で相互に逆転させたも
のである。従って、それぞれの接続部24a, 25aの出力を
差動することは、図2に示す例において加算することと
同様の意義を有し、また、それらの出力を加算すること
は、図2において差動することと同様の意義を有する。
FIG. 3 is a modification of the embodiment shown in FIG. 2, in which the polarization direction of either one of the piezoelectric elements 121, 122 attached to the respective side faces 1a, 1b of the vibrating body 1 is set. 2 is reversed from that shown in FIG. 2 so that the strain and the output voltage are reversed between the piezoelectric elements 121 and 122. Therefore, differentiating the outputs of the respective connection parts 24a and 25a has the same meaning as adding in the example shown in FIG. 2, and adding these outputs is different in FIG. It has the same meaning as moving.

【0019】このため、この例では、それぞれの容量素
子C1, C2と、それぞれの圧電素子121, 122との接続部24
a, 25aを、それらの接続部24a, 25aからの出力を相互に
差動する差動増幅器29にまず接続し、そしてこの差動増
幅器29を、そこからの差動出力を基準電圧と差動する差
動増幅器27を介して駆動装置7に接続する一方、それら
の両接続部24a, 25aを、加算器30を介して同期検波器9
にも接続する。なおここでは、それぞれの圧電素子121,
122に供給する駆動電圧のいずれか一方の位相を 180度
反転させるものとする。このような振動ジャイロによっ
ても、図2について述べたものと全く同様の作用をもた
らし得ることはもちろんである。
Therefore, in this example, the connecting portion 24 between the respective capacitive elements C 1 and C 2 and the respective piezoelectric elements 121 and 122 is used.
a, 25a is first connected to a differential amplifier 29 which differentially outputs the outputs from those connections 24a, 25a from each other, and this differential amplifier 29 is connected to the differential output from the differential amplifier 29 with respect to a reference voltage. While being connected to the drive unit 7 via the differential amplifier 27, the two connecting portions 24a and 25a are connected to the synchronous detector 9 via the adder 30.
Also connect to. Incidentally, here, each piezoelectric element 121,
It is assumed that either one of the drive voltages supplied to 122 is inverted by 180 degrees. It is needless to say that such a vibration gyro can bring about the same effect as that described with reference to FIG.

【0020】図4は、この発明の他の実施例を示すブロ
ック線図である。この例は、駆動装置7を、それぞれの
容量素子C1, C2を介してそれぞれの圧電素子21, 22に接
続するとともに、相互に直列接続した二個の抵抗素子
R3, R4およびR5, R6のそれぞれにも並列に接続し、そし
て、接続部24を、両抵抗素子R3, R4の接続部36の基準出
力との差動を行う差動増幅器33に、また、接続部25を、
両抵抗素子R5, R6の接続部37の基準出力との差動を行う
差動増幅器34にそれぞれ接続し、さらに、それらの両差
動増幅器33, 34を、加算器35を介して駆動装置7に接続
したものであり、その他の構成は、図2に示す実施例と
同様である。
FIG. 4 is a block diagram showing another embodiment of the present invention. In this example, the driving device 7 is connected to the respective piezoelectric elements 21 and 22 via the respective capacitive elements C 1 and C 2, and two resistance elements connected in series are also provided.
R 3, R 4 and R 5, connected in parallel to each R 6, and the connection portion 24, a differential performing differential between the reference outputs of the resistive element R 3, R 4 of the connecting portion 36 To the amplifier 33 and the connection 25,
Connected to a differential amplifier 34 that performs differential with respect to a reference output of a connection portion 37 of both resistance elements R 5 and R 6 , and further drive both differential amplifiers 33 and 34 via an adder 35 It is connected to the device 7, and other configurations are similar to those of the embodiment shown in FIG.

【0021】従ってここでは、差動増幅器33は、両抵抗
素子R3, R4の接続部36からの基準出力と、接続部24から
の出力とを差動増幅し、差動増幅器34は、両抵抗素子
R5, R6の接続部37からの基準出力と、接続部25からの出
力とを差動増幅して、ともに、振動子6のX軸方向の振
動によって発生する電圧だけを分離検出する。また、加
算器35は、それらの両差動増幅出力を加算することによ
って、それぞれの圧電素子2, 3の両検出電圧を駆動装
置7に合わせて帰還させて、振動子6の安定した自励振
動をもたらす。
Therefore, here, the differential amplifier 33 differentially amplifies the reference output from the connecting portion 36 of the resistance elements R 3 and R 4 and the output from the connecting portion 24, and the differential amplifier 34 Double resistance element
The reference output from the connection portion 37 of R 5 and R 6 and the output from the connection portion 25 are differentially amplified, and both of them separately detect only the voltage generated by the vibration of the vibrator 6 in the X-axis direction. Further, the adder 35 adds both of the differential amplified outputs to feed back both detection voltages of the respective piezoelectric elements 2 and 3 in accordance with the drive device 7, and stabilizes the self-excitation of the vibrator 6. Cause vibration.

【0022】このような振動ジャイロでは、振動子6の
回転時におけるコリオリの力は、それぞれの接続部24,
25の出力を他の差動増幅器8に入力して差動することに
より、前述の場合と同様に分離検出することができる。
In such a vibrating gyro, the Coriolis force during rotation of the vibrator 6 is generated by the respective connecting portions 24,
By inputting the output of 25 to another differential amplifier 8 and making it differential, it is possible to separate and detect as in the case described above.

【0023】なお、上述したところでは、コリオリの力
の分離検出に当たり、接続部24, 25の出力を、差動増幅
器8に直接的に入力させることとしているが、図5に示
すように、それぞれの差動増幅器33, 34からの出力をそ
の差動増幅器8に入力させることによってもまた、図4
に示すものと同様にコリオリの力、ひいては、角速度を
検出することができる。
In the above description, in detecting the separation of the Coriolis force, the outputs of the connecting portions 24 and 25 are directly input to the differential amplifier 8. However, as shown in FIG. Also by inputting the outputs from the differential amplifiers 33 and 34 of FIG.
The Coriolis force, and thus the angular velocity, can be detected in the same manner as shown in FIG.

【0024】ところで、図4および図5における、振動
子6および基準電圧発生部分を等価的に表わすと、図6
に示すようになり、振動子6の自励振動を常に適正なも
のとするためには、容量素子C1と圧電素子21とのインピ
ーダンスの配分比に等しくなるように、それぞれの抵抗
素子R3, R4の抵抗比を調節することによって、接続部2
4, 36間の駆動電圧成分を完全に打ち消し、併せて、圧
電素子22の側においても、抵抗素子R5, R6の抵抗比を同
様に調節することが望ましいが、微妙な調節において
は、それぞれの抵抗値の設定が甚だ面倒になる。そこで
好ましくは、図7に示すように、それぞれの抵抗素子
R3, R4を、一の可変抵抗器VR1 とし、また、抵抗素子
R5, R6を、他の一の可変抵抗器VR2 として、それぞれの
可変抵抗器VR1 , VR2 の一方の固定端子を振動用駆動手
段に接続するとともに、それらのそれぞれの可動端子を
それぞれの接続部36, 37として機能させる。
By the way, when the oscillator 6 and the reference voltage generating portion in FIGS. 4 and 5 are equivalently represented, FIG.
In order to always make the self-excited vibration of the vibrator 6 appropriate, the resistance elements R 3 and R 3 should be equal to the impedance distribution ratio of the capacitive element C 1 and the piezoelectric element 21. , R 4 by adjusting the resistance ratio
It is desirable to completely cancel the drive voltage component between 4, 36, and at the same time, also on the piezoelectric element 22 side, adjust the resistance ratio of the resistance elements R 5 and R 6 in the same manner. Setting each resistance value is very troublesome. Therefore, preferably, as shown in FIG.
R 3 and R 4 are one variable resistor VR 1 and the resistance element
The R 5, R 6, as a variable resistor VR 2 other one, each one fixed terminal of the variable resistor VR 1, VR 2 with connecting to the vibration drive means, their respective movable terminal It functions as the respective connection parts 36 and 37.

【0025】このことによれば、それぞれの可変抵抗器
VR1 , VR2 の可動端子の位置を調整することによって、
接続部24, 36間および接続部25, 37間における駆動電圧
成分を、簡単かつ容易に、ほぼ完全に打ち消すことがで
き、この結果として、振動子の、さらに安定した自励振
動を迅速に実現することができる。以上この発明を図示
例に基づいて説明したが、図2および図3に示す実施例
にも可変抵抗器を適用し得ることはもちろんである。
According to this, each variable resistor is
By adjusting the position of the movable terminals of VR 1 and VR 2 ,
The driving voltage component between the connecting parts 24 and 36 and between the connecting parts 25 and 37 can be canceled almost completely easily and easily, and as a result, the more stable self-excited vibration of the oscillator can be realized quickly. can do. Although the present invention has been described based on the illustrated example, it goes without saying that the variable resistor can be applied to the embodiments shown in FIGS. 2 and 3.

【0026】[0026]

【発明の効果】以上に述べたところから明らかなよう
に、この発明によれば、振動体の側面に二組の圧電素子
を設けることにより、帰還用圧電素子を特別に設けるこ
となく、常に安定した自励振動をもたらすことができ、
また、高い精度にて角速度を検出することができる。す
なわち、二組の圧電素子に、駆動、帰還および検出の三
つの機能を発揮させることによって、駆動条件に及ぼす
接着剤の影響を十分に低減して、温度サイクル等が加わ
ったときの、駆動条件へのヒステリシスの発生を有効に
抑制し、また、漏れ電圧の変化を十分小さく抑え、この
結果として、常に安定した自励振動をもたらすととも
に、高い検出精度を確保することができる。
As is apparent from the above description, according to the present invention, by providing two sets of piezoelectric elements on the side surface of the vibrating body, it is always possible to provide stable feedback without providing a feedback piezoelectric element. Can bring about self-excited vibration,
Moreover, the angular velocity can be detected with high accuracy. In other words, by making the two sets of piezoelectric elements perform the three functions of drive, feedback, and detection, the influence of the adhesive on the drive conditions can be sufficiently reduced, and the drive conditions when a temperature cycle or the like is applied. It is possible to effectively suppress the occurrence of hysteresis and suppress the change of the leakage voltage to a sufficiently small level. As a result, it is possible to always provide stable self-excited vibration and ensure high detection accuracy.

【0027】そしてさらには、ここでは、振動体に二組
の圧電素子を貼着するだけで振動子を構成することがで
きるので、振動子の組立を極めて簡易迅速に行うことが
できる。
Furthermore, in this case, since the vibrator can be constructed by simply sticking two sets of piezoelectric elements to the vibrator, the vibrator can be assembled very easily and quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に適用し得る振動子の構成例を示す正
面図である。
FIG. 1 is a front view showing a configuration example of a vibrator applicable to the present invention.

【図2】この発明の一実施例を示すブロック線図であ
る。
FIG. 2 is a block diagram showing an embodiment of the present invention.

【図3】図1に示す例の変形例を示すブロック線図であ
る。
FIG. 3 is a block diagram showing a modified example of the example shown in FIG.

【図4】この発明の他の実施例を示すブロック線図であ
る。
FIG. 4 is a block diagram showing another embodiment of the present invention.

【図5】この発明のさらに他の実施例を示すブロック線
図である。
FIG. 5 is a block diagram showing still another embodiment of the present invention.

【図6】図4, 図5に示す例の振動子および基準電圧発
生部分の等価回路図である。
FIG. 6 is an equivalent circuit diagram of a vibrator and a reference voltage generating portion of the examples shown in FIGS. 4 and 5.

【図7】図6に示す例の変形例を示す等価回路図であ
る。
FIG. 7 is an equivalent circuit diagram showing a modified example of the example shown in FIG.

【図8】従来例を示すブロック線図である。FIG. 8 is a block diagram showing a conventional example.

【図9】他の従来例を示すブロック線図である。FIG. 9 is a block diagram showing another conventional example.

【符号の説明】[Explanation of symbols]

1 振動体 1a, 1b, 1c, 1d, 1e, 1f 側面 6 振動子 7 駆動装置 8, 27, 29, 33, 34 差動増幅器 9 同期検波器 10 直流増幅器 21, 21a, 21b, 22, 22a, 121, 122 圧電素子 24, 24a, 25, 25a, 28, 36, 37 接続部 26, 30, 35 加算器 C1, C2 容量素子 R1, R2, R3, R4, R5, R6 抵抗素子 VR1, VR2 可変抵抗器1 Vibrating body 1a, 1b, 1c, 1d, 1e, 1f Side surface 6 Transducer 7 Drive device 8, 27, 29, 33, 34 Differential amplifier 9 Synchronous detector 10 DC amplifier 21, 21a, 21b, 22, 22a, 121, 122 Piezoelectric element 24, 24a, 25, 25a, 28, 36, 37 Connection section 26, 30, 35 Adder C 1 , C 2 Capacitance element R 1 , R 2 , R 3 , R 4 , R 5 , R 6- resistor element VR 1 , VR 2 variable resistor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 横断面形状が多角形をなす振動体の側面
に二組の圧電素子を貼着して振動子を構成し、この振動
子のそれぞれの組の圧電素子を、それぞれの容量素子を
介して一の振動用駆動手段に接続するとともに、この振
動用駆動手段を、相互に直列接続した二個の抵抗素子に
も接続したところにおいて、 各組の圧電素子と容量素子との接続部の各出力の和を、
それぞれの抵抗素子の接続部の基準出力と差動して振動
用駆動手段に帰還させるとともに、各組の圧電素子と容
量素子との接続部の各出力を相互に差動させて取り出す
ことを特徴とする振動ジャイロ。
1. A vibrator is constructed by attaching two sets of piezoelectric elements to the side surfaces of a vibrating body having a polygonal cross section, and each set of piezoelectric elements of the vibrator is replaced by a capacitive element. Connection to one vibration drive means, and this vibration drive means is also connected to two resistance elements connected in series with each other. The sum of each output of
It is characterized in that it is differential with respect to the reference output of the connection part of each resistance element and is fed back to the vibration drive means, and each output of the connection part of the piezoelectric element and the capacitive element of each set is made to be mutually differential and taken out. Vibration gyro to be.
【請求項2】 前記基準出力を、一方の固定端子を振動
用駆動手段に接続した可変抵抗器の可動端子から取り出
すことを特徴とする請求項1記載の振動ジャイロ。
2. The vibration gyro according to claim 1, wherein the reference output is taken out from a movable terminal of a variable resistor having one fixed terminal connected to a vibration driving means.
【請求項3】 横断面形状が多角形をなす振動体の側面
に二組の圧電素子を貼着して振動子を構成し、この振動
子のそれぞれの組の圧電素子を、それぞれの容量素子を
介して一の振動用駆動手段に接続するとともに、この振
動用駆動手段を、相互に直列接続した二個の抵抗素子の
二組にもそれぞれ並列に接続したところにおいて、 各組の圧電素子と容量素子との接続部の各出力を、各組
のそれぞれの抵抗素子の接続部の基準出力と差動させ、
各差動出力の和を振動用駆動手段に帰還させるととも
に、各組の圧電素子と容量素子との接続部の各出力を相
互に差動させて取り出すことを特徴とする振動ジャイ
ロ。
3. A vibrator is constructed by attaching two sets of piezoelectric elements to the side surfaces of a vibrating body having a polygonal cross section, and each set of piezoelectric elements of the vibrator is replaced by a capacitive element. Via a single vibration drive means, and this vibration drive means is also connected in parallel to two sets of two resistance elements connected in series with each other. Each output of the connection with the capacitive element is made differential with the reference output of the connection of each resistance element of each set,
A vibration gyro, wherein the sum of each differential output is fed back to the vibration drive means, and each output of the connecting portion of each set of the piezoelectric element and the capacitive element is differentially obtained.
【請求項4】 それぞれの基準出力を、一方の固定端子
を振動用駆動手段に接続したそれぞれの可変抵抗器のそ
れぞれの可動端子から取り出すことを特徴とする請求項
3記載の振動ジャイロ。
4. The vibration gyro according to claim 3, wherein each reference output is taken out from each movable terminal of each variable resistor whose one fixed terminal is connected to the vibration driving means.
JP3260224A 1991-10-08 1991-10-08 Vibration gyro Pending JPH05126585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260224A JPH05126585A (en) 1991-10-08 1991-10-08 Vibration gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260224A JPH05126585A (en) 1991-10-08 1991-10-08 Vibration gyro

Publications (1)

Publication Number Publication Date
JPH05126585A true JPH05126585A (en) 1993-05-21

Family

ID=17345079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260224A Pending JPH05126585A (en) 1991-10-08 1991-10-08 Vibration gyro

Country Status (1)

Country Link
JP (1) JPH05126585A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160809A (en) * 1981-12-08 1983-09-24 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Gyroscope
JPH02266214A (en) * 1989-04-06 1990-10-31 Murata Mfg Co Ltd Vibration gyro
JPH0310113A (en) * 1989-06-08 1991-01-17 Tokimec Inc Gyroscope apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160809A (en) * 1981-12-08 1983-09-24 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Gyroscope
JPH02266214A (en) * 1989-04-06 1990-10-31 Murata Mfg Co Ltd Vibration gyro
JPH0310113A (en) * 1989-06-08 1991-01-17 Tokimec Inc Gyroscope apparatus

Similar Documents

Publication Publication Date Title
EP0692698B1 (en) Vibration control apparatus
JP3016986B2 (en) Vibrating gyroscope detection circuit
JP3201135B2 (en) Vibrating gyro detection method
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JPH05126585A (en) Vibration gyro
JP4877322B2 (en) Tuning fork type bimorph piezoelectric vibrator, vibration gyro module using the same, and method for manufacturing tuning fork type bimorph piezoelectric vibrator
JP2529786B2 (en) Vibrating gyro
EP0658743B1 (en) Vibrating gyroscope
EP1098169A1 (en) Vibrating gyroscope
JP2583691B2 (en) Vibrating gyro
JP2686209B2 (en) Vibrating gyro
JP3265840B2 (en) Drive detection circuit for piezoelectric vibrator
EP0663584B1 (en) Vibration control device for vibration of gyroscopes
JPS6219714A (en) Gyro device
JPH05118853A (en) Vibration gyro
JP2620007B2 (en) Vibrator for vibrating gyroscope
JPH0783670A (en) Drive and detection circuit of piezoelectric vibrator
JP2547910B2 (en) Vibrating gyro
JP2622331B2 (en) Vibrating gyro
JP2547911B2 (en) Vibration control device
JPH03150409A (en) Vibration gyro
JPH08122081A (en) Output regulating method for angular velocity sensor
JPH05126584A (en) Vibration gyro
JPH06241813A (en) Detection circuit
JPH05133754A (en) Vlbratory gyroscope