JPH06117405A - Valve gear - Google Patents

Valve gear

Info

Publication number
JPH06117405A
JPH06117405A JP4263696A JP26369692A JPH06117405A JP H06117405 A JPH06117405 A JP H06117405A JP 4263696 A JP4263696 A JP 4263696A JP 26369692 A JP26369692 A JP 26369692A JP H06117405 A JPH06117405 A JP H06117405A
Authority
JP
Japan
Prior art keywords
pressure
passage
control
passages
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4263696A
Other languages
Japanese (ja)
Other versions
JP3162203B2 (en
Inventor
Tsukasa Toyooka
司 豊岡
Masami Ochiai
正巳 落合
Hideyo Kato
英世 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP26369692A priority Critical patent/JP3162203B2/en
Publication of JPH06117405A publication Critical patent/JPH06117405A/en
Application granted granted Critical
Publication of JP3162203B2 publication Critical patent/JP3162203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To offer a valve gear capable of causing an actuator to make stable composite drive even in case that the sum of the flow requested by a flow control valve exceeds the maximum discharge flow of an oil pressure pump and the pressure differential DELTAPLs between a supply pressure Ps and a maximum load pressure PLmax changes. CONSTITUTION:With regard to a valve gear consisting of a plural number of directional control valves 38 including supply passages 42, 43, load passages 46, 47, 48, 49, first passages 44, 45, second passages 50, 51, flow control valves 36, 39 and pressure controllers 37, 40, and also including a third passage 62 and a pressure control means 70 to control the pressure oil flowing through the third passage 62, provision is made for a first induction means 76, which induces the maximum load pressure to oneside drive portion of the pressure control means 70, and a second induction means 75 which induces the supply pressure of an oil pressure supply source 33 to the other side drive portion of the pressure control means 70 in the manner opposing to the maximum load pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、油圧ショベルなどの複
数のアクチュエータを有する土木・建設機械等に具備さ
れる弁装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve device provided in a civil engineering / construction machine having a plurality of actuators such as a hydraulic excavator.

【0002】[0002]

【従来の技術】図4は従来の弁装置が備えられる油圧回
路を示す回路図である。この図4に示す従来の弁装置3
0は、油圧ショベルなどの土木・建設機械等の油圧回
路、例えば可変容量油圧ポンプ31と、該油圧ポンプ3
1から吐出される流量を制御するレギュレータ32とか
らなる圧油供給源33と、油圧ポンプ31から供給され
る圧油によって駆動する複数のアクチュエータ、例えば
油圧シリンダ34、35とを具備する油圧回路に設けら
れている。そして弁装置30は、油圧シリンダ34に供
給される圧油の流れを制御する流量制御弁36と、圧力
制御器37とを含む方向切換弁38と、油圧シリンダ3
5に供給される圧油の流れを制御する流量制御弁39
と、圧力制御器40とを含む方向切換弁41とを備えて
いる。上記した方向切換弁38,41は、それぞれ油圧
ポンプ31に連絡される第1の通路44,45と、油圧
シリンダ34,35のそれぞれに連絡される負荷通路4
6,47,48,49と、第1の通路44,45のそれ
ぞれ及び負荷通路46,47,48,49のそれぞれに
連絡可能な第2の通路50,51とを備えている。そし
て上記した流量制御弁36,39のそれぞれは、供給通
路42,43と第1の通路44,45との間を通過する
圧油流量を制御するとともに、第2の通路50,51と
負荷通路46,47,48,49との間をそれぞれ閉
塞、もしくは連絡する。また、上記した圧力制御器37
は、第1の通路44と第2の通路50との間に配置さ
れ、圧力制御器40は第1の通路45と第2の通路51
との間に配置され、これらの圧力制御器37,40は制
御管路56によって導かれる制御圧力と、ばね66、6
7のばね力及び第1の通路44、45の管路圧力によっ
て駆動可能になっている。
2. Description of the Related Art FIG. 4 is a circuit diagram showing a hydraulic circuit provided with a conventional valve device. The conventional valve device 3 shown in FIG.
Reference numeral 0 denotes a hydraulic circuit for civil engineering / construction machinery such as a hydraulic excavator, for example, a variable displacement hydraulic pump 31 and the hydraulic pump 3
1 to a hydraulic circuit including a pressure oil supply source 33 including a regulator 32 that controls the flow rate discharged from the hydraulic pump 1, and a plurality of actuators driven by the pressure oil supplied from the hydraulic pump 31, for example, hydraulic cylinders 34 and 35. It is provided. Then, the valve device 30 includes a flow control valve 36 that controls the flow of pressure oil supplied to the hydraulic cylinder 34, a direction switching valve 38 that includes a pressure controller 37, and the hydraulic cylinder 3
Flow control valve 39 for controlling the flow of pressure oil supplied to
And a directional control valve 41 including a pressure controller 40. The direction switching valves 38 and 41 described above include the first passages 44 and 45 connected to the hydraulic pump 31 and the load passage 4 connected to the hydraulic cylinders 34 and 35, respectively.
6, 47, 48, 49, and second passages 50, 51 connectable to the first passages 44, 45 and the load passages 46, 47, 48, 49, respectively. The flow rate control valves 36 and 39 described above control the flow rate of the pressure oil passing between the supply passages 42 and 43 and the first passages 44 and 45, respectively, and the second passages 50 and 51 and the load passages. 46, 47, 48, 49 are closed or communicated with each other. In addition, the pressure controller 37 described above
Is disposed between the first passage 44 and the second passage 50, and the pressure controller 40 includes a first passage 45 and a second passage 51.
And pressure control devices 37, 40, which are arranged between the control pressures guided by the control line 56 and the springs 66, 6
It can be driven by the spring force of 7 and the line pressure of the first passages 44 and 45.

【0003】さらに、この弁装置30は、第2の通路5
0と制御管路56とを連絡する伝達通路57と、第2の
通路51と制御管路56とを連絡する伝達通路58と、
伝達通路57に設けられ、制御管路56から第2の通路
50方向への圧油の流れを阻止する逆止弁59と、伝達
通路58に設けられ、制御管路56から第2の通路51
方向への圧油の流れを阻止する逆止弁60と、制御管路
56を、タンク61に連絡可能な第3の通路62と、こ
の第3の通路62中に設けた圧力補償弁65を備えてい
る。
Further, the valve device 30 includes a second passage 5
A transmission passage 57 connecting the 0 and the control pipe 56, a transmission passage 58 connecting the second passage 51 and the control pipe 56,
A check valve 59 that is provided in the transmission passage 57 and blocks the flow of the pressure oil from the control pipeline 56 toward the second passage 50, and a check valve 59 that is provided in the transmission passage 58 and that extends from the control pipeline 56 to the second passage 51.
The check valve 60 for blocking the flow of pressure oil in the direction, the control conduit 56, the third passage 62 that can communicate with the tank 61, and the pressure compensation valve 65 provided in the third passage 62. I have it.

【0004】なお、上記した圧油供給源33を構成する
レギュレータ32は、供給圧Psと、制御管路56の制
御圧力すなわち油圧シリンダ34,35の負荷圧力のう
ちの最大負荷圧力PLmaxとの差圧ΔPLs(=Ps
−PLmax)がばね64により設定される設定値とな
るように、すなわち差圧ΔPLsによる力とばね64の
力とがバランスするように油圧ポンプ31の流量を制御
する流量制御手段を構成している。
The regulator 32 constituting the above-mentioned pressure oil supply source 33 has a difference between the supply pressure Ps and the control pressure of the control line 56, that is, the maximum load pressure PLmax of the load pressures of the hydraulic cylinders 34, 35. Pressure ΔPLs (= Ps
The flow rate control means for controlling the flow rate of the hydraulic pump 31 is configured such that −PLmax) becomes a set value set by the spring 64, that is, the force due to the differential pressure ΔPLs and the force of the spring 64 are balanced. .

【0005】この従来技術にあっては、方向切換弁3
8,41の流量制御弁36、39のそれぞれを操作レバ
ー68、69を操作することにより切換駆動すると、こ
れに応じて油圧ポンプ31の圧油がそれぞれ供給通路4
2,43、可変絞り部52(53)、あるいは可変絞り
部54(55)、第1の通路44,45に導かれ、これ
により圧力制御器37,40が図4の上方に押し上げら
れ、さらに該圧油は第2の通路50,51、負荷通路4
6(47)、あるいは48(49)を介して油圧シリン
ダ34,35に供給され、これにより油圧シリンダ3
4,35の複合動作が行なわれる。この複合動作の際
に、油圧シリンダ34の負荷圧力が負荷通路46,(4
7)を介して第2の通路50に導かれ、さらに伝達通路
57、逆止弁59を介して制御管路56に導かれ、一
方、油圧シリンダ35の負荷圧力が負荷通路48(4
9)を介して第2の通路51に導かれ、さらに伝達通路
58、逆止弁60を介して制御管路56に導かれ、結
局、油圧シリンダ34,35の負荷圧力のうちの大きい
方の圧力、すなわち最大負荷圧力PLmaxが制御管路
56内の制御圧力として取出される。この最大負荷圧力
PLmaxが圧力制御器37,40の制御室37a,4
0aの受圧部37b,40bのそれぞれに与えられ、こ
れにより供給圧Psに抗して圧力制御器37,40が前
述した上昇状態から下降し、第1の通路44,45内の
圧力Pa1,Pa2がそれぞれ高くなり、最大負荷圧力
PLmaxとばね66,67のばね力により、第1の通
路44,45内の圧力Pa1,Pa2は制御される。な
お、ばね66,67のばね力は互いにほぼ等しい値に設
定されており、これにより圧力Pa1,Pa2は互いに
同等の圧力に制御される。そして、制御管路56の制御
圧力すなわち油圧シリンダ34,35の最大負荷圧力P
Lmaxがレギュレータ32の一方の駆動部に導かれ、
供給圧Psと最大負荷圧力PLmaxとの差圧ΔPLs
による力と、レギュレータ32を付勢するばね64の力
とがバランスするような流量が油圧ポンプ31から供給
される。
In this prior art, the directional control valve 3
When the flow control valves 36 and 39 of 8 and 41 are switched by operating the operation levers 68 and 69, the pressure oil of the hydraulic pump 31 is correspondingly supplied to the supply passage 4 respectively.
2, 43, the variable throttle portion 52 (53) or the variable throttle portion 54 (55) and the first passages 44, 45, whereby the pressure controllers 37, 40 are pushed upward in FIG. The pressure oil is supplied to the second passages 50 and 51 and the load passage 4
6 (47) or 48 (49) to supply to the hydraulic cylinders 34 and 35.
4, 35 composite operations are performed. During this combined operation, the load pressure of the hydraulic cylinder 34 changes the load passages 46, (4
7) to the second passage 50, and further to the control pipe 56 via the transmission passage 57 and the check valve 59, while the load pressure of the hydraulic cylinder 35 is changed to the load passage 48 (4).
9) to the second passage 51, and further to the control pipe 56 via the transmission passage 58 and the check valve 60, so that the larger one of the load pressures of the hydraulic cylinders 34, 35 is eventually determined. The pressure, that is, the maximum load pressure PLmax is taken out as the control pressure in the control line 56. This maximum load pressure PLmax is the control chamber 37a, 4 of the pressure controller 37, 40.
0a of the pressure receiving portions 37b and 40b, whereby the pressure controllers 37 and 40 are lowered from the above-mentioned raised state against the supply pressure Ps, and the pressures Pa1 and Pa2 in the first passages 44 and 45 are increased. Are increased, and the pressures Pa1 and Pa2 in the first passages 44 and 45 are controlled by the maximum load pressure PLmax and the spring forces of the springs 66 and 67. The spring forces of the springs 66 and 67 are set to be substantially equal to each other, whereby the pressures Pa1 and Pa2 are controlled to be equal to each other. Then, the control pressure of the control line 56, that is, the maximum load pressure P of the hydraulic cylinders 34, 35.
Lmax is guided to one drive section of the regulator 32,
Differential pressure ΔPLs between supply pressure Ps and maximum load pressure PLmax
The hydraulic pump 31 supplies a flow rate that balances the force generated by the force with the force of the spring 64 that biases the regulator 32.

【0006】上記の圧力制御器37,40に作用する
力、及びレギュレータ32に作用する力の関係を式を立
てて考えた場合、ばね66,67のばね力をFk、圧力
制御器37,40の受圧部37b,40bの受圧面積を
Aとすると、この圧力制御器37,40に作用する力の
つり合いから、 Pa1−PLmax=Fk/A (1) Pa2−PLmax=Fk/A (2) が成立する。一方、レギュレータ32においては、 Ps−PLmax=ΔPLs (3) が成立する。上記(3)式と(1)式、(3)式と
(2)式から、流量制御弁36,39の各可変絞り部5
2(53),54(55)の前後差圧はそれぞれ、 Ps−Pa1=ΔPLs−Fk/A (4) Ps−Pa2=ΔPLs−Fk/A (5) となる。この(4),(5)式から、 Ps−Pa1=Ps−Pa2=一定 となり、 Pa1=Pa2=Pa (6) となる。
When the relation between the force acting on the pressure controllers 37 and 40 and the force acting on the regulator 32 is considered by formulating, the spring forces of the springs 66 and 67 are Fk, and the pressure controllers 37 and 40. Assuming that the pressure receiving areas of the pressure receiving portions 37b and 40b are A, from the balance of the forces acting on the pressure controllers 37 and 40, Pa1-PLmax = Fk / A (1) Pa2-PLmax = Fk / A (2) To establish. On the other hand, in the regulator 32, Ps-PLmax = ΔPLs (3) holds. From the formulas (3) and (1), and the formulas (3) and (2), the variable throttle parts 5 of the flow control valves 36 and 39 are obtained.
The differential pressures across 2 (53) and 54 (55) are Ps-Pa1 = [Delta] PLs-Fk / A (4) Ps-Pa2 = [Delta] PLs-Fk / A (5), respectively. From these equations (4) and (5), Ps-Pa1 = Ps-Pa2 = constant and Pa1 = Pa2 = Pa (6).

【0007】このように、流量制御弁36,39の各可
変絞り部52(53),54(55)の流入側の圧力は
供給通路42,43の圧力、すなわち供給圧Psで共に
等しく、また流出側の圧力、すなわち第1の通路44,
45内の圧力Pa1,Pa2も上述のように共に等し
く、これにより流量制御弁36,39の各可変絞り部5
2(53),54(55)のそれぞれの前後差圧は常に
等しい。したがって、流量制御弁36,39のそれぞれ
のストローク量に対する可変絞り部52(53)、ある
いは54(55)のそれぞれの絞り量、すなわち開口量
に応じた流量が油圧シリンダ34,35のそれぞれの負
荷変動の影響を互いに他の油圧シリンダに及ぼすことな
く、安定した当該油圧シリンダ34,35の複合駆動を
実現させることができる。
As described above, the pressures on the inflow sides of the variable throttle portions 52 (53) and 54 (55) of the flow rate control valves 36 and 39 are equal in the pressures of the supply passages 42 and 43, that is, the supply pressure Ps, and The pressure on the outflow side, ie the first passage 44,
The pressures Pa1 and Pa2 in the valve 45 are also equal to each other as described above, so that the variable throttle portions 5 of the flow control valves 36 and 39 can be controlled.
The differential pressures across 2 (53) and 54 (55) are always equal. Therefore, the respective throttle amounts of the variable throttle portions 52 (53) or 54 (55) with respect to the respective stroke amounts of the flow rate control valves 36 and 39, that is, the flow rates corresponding to the opening amounts, are applied to the respective load of the hydraulic cylinders 34 and 35. It is possible to realize stable combined driving of the hydraulic cylinders 34 and 35 without affecting the other hydraulic cylinders due to fluctuations.

【0008】そして、制御管路56が圧力補償弁65を
介してタンク61に連絡していることから、流量制御弁
36,39の中立時に制御管路56の制御圧力をタンク
61に逃し、圧力制御器37,40を無負荷状態にする
ことができる。また、流量制御弁36,39が切換駆動
されている時、制御管路56からタンク61へ流れる流
量を、圧力補償弁65により制御し、エネルギーロスを
抑制することができる。
Since the control line 56 communicates with the tank 61 via the pressure compensating valve 65, the control pressure of the control line 56 is released to the tank 61 when the flow control valves 36 and 39 are in the neutral position. The controllers 37 and 40 can be put into an unloaded state. Further, when the flow rate control valves 36, 39 are driven to be switched, the flow rate of the fluid flowing from the control line 56 to the tank 61 can be controlled by the pressure compensation valve 65 to suppress energy loss.

【0009】[0009]

【発明が解決しようとする課題】上記のように従来技術
においては、油圧シリンダ34,35の複合駆動時、流
量制御弁36,39のそれぞれの可変絞り部52(5
3)、あるいは可変絞り部54(55)の前後差圧をそ
れぞれ等しくするものである。油圧シリンダ35側を最
大負荷圧力PLmax側とすると、圧油が、逆止弁6
0、制御管路56、通路62、および圧力補償弁65を
介してタンク61へ流れ、圧力制御器37,40のそれ
ぞれの制御室37a,40aへ最大負荷圧力PLmax
を伝える。この時、管路56を圧油が流れることにより
圧力損失ΔPLossが圧力制御器37,40の間で発
生する。その結果、流量制御弁36の可変絞り部52
(53)の前後差圧はΔPLossだけ大きくなる。こ
れは供給圧Psと最大負荷圧力PLmaxの差圧ΔPL
sが設定値を保っている場合は問題にならない大きさで
あるが、流量制御弁36,39の要求流量の和が、油圧
ポンプ31の最大吐出流量をこえた場合、供給圧Psと
制御管路内56の制御圧力すなわち最大負荷圧力PLm
axとの差圧ΔPLsが設定値を保てなくなり小さくな
る。上記ΔPLossは該差圧ΔPLsに対し無視でき
ない大きさとなり、流量制御弁36の可変絞り部52
(53)の前後差圧はΔPLoss分だけ流量制御弁3
9の可変絞り部54(55)の前後差圧より大きくな
り、複合駆動時の操作性が悪化する。
As described above, in the prior art, when the hydraulic cylinders 34 and 35 are driven in combination, the variable throttle portions 52 (5) of the flow control valves 36 and 39, respectively.
3), or the differential pressure across the variable throttle 54 (55) is made equal. If the hydraulic cylinder 35 side is set to the maximum load pressure PLmax side, the pressure oil flows to the check valve 6
0, the control line 56, the passage 62, and the pressure compensating valve 65 to the tank 61, and the maximum load pressure PLmax to the respective control chambers 37a and 40a of the pressure controllers 37 and 40.
Tell. At this time, the pressure oil? PLoss is generated between the pressure controllers 37 and 40 due to the pressure oil flowing through the pipe 56. As a result, the variable throttle portion 52 of the flow control valve 36
The differential pressure across (53) increases by ΔPLoss. This is the differential pressure ΔPL between the supply pressure Ps and the maximum load pressure PLmax.
When s maintains the set value, the magnitude is not a problem, but when the sum of the required flow rates of the flow rate control valves 36 and 39 exceeds the maximum discharge flow rate of the hydraulic pump 31, the supply pressure Ps and the control pipe are Control pressure in the road 56, that is, maximum load pressure PLm
The pressure difference ΔPLs with respect to ax cannot be maintained at the set value and becomes small. The above-mentioned ΔPLoss becomes a size that cannot be ignored with respect to the differential pressure ΔPLs, and the variable throttle portion 52 of the flow control valve 36.
The differential pressure across (53) is equal to ΔPLoss for the flow control valve 3
It becomes larger than the differential pressure across the variable throttle unit 54 (55) of No. 9 and the operability during composite driving deteriorates.

【0010】本発明の目的は、流量制御弁の要求流量の
和が油圧ポンプの最大吐出流量を越え、供給圧Psと最
大負荷圧力PLmaxとの差圧ΔPLsが変化した場合
でも各流量制御弁の開度に応じた流量が得られ、アクチ
ュエータを安定して複合駆動させることのできる弁装置
を提供することにある。
It is an object of the present invention that even if the sum of the required flow rates of the flow control valves exceeds the maximum discharge flow rate of the hydraulic pump and the differential pressure ΔPLs between the supply pressure Ps and the maximum load pressure PLmax changes, An object of the present invention is to provide a valve device that can obtain a flow rate according to the opening degree and can stably drive the actuator in combination.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に、本発明は、圧油供給源(33)に連絡される供給通
路(42,43)と、アクチュエータに連絡される負荷
通路(46,47,48,49)と、上記供給通路(4
2,43)に連絡可能な第1の通路(44,45)と、
この第1の通路(44,45)及び上記負荷通路(4
6,47,48,49)に連絡可能な第2の通路(5
0,51)と、上記供給通路(42,43)と上記第1
の通路(44,45)との間を閉塞、もしくは内蔵する
可変絞り部(52,53,54,55)を介して連絡
し、その可変絞り部(52,53,54,55)の絞り
量の変化に応じて上記供給通路(42,43)と第1の
通路(44,45)との間を通過する圧油流量を制御す
るとともに、上記第2の通路(50,51)と上記負荷
通路(46,47,48,49)との間を閉塞、もしく
は連絡する流量制御弁(36,39)と、上記第1の通
路(44,45)と第2の通路(50,51)との間に
配置され、第1の通路(44,45)内の圧力を制御す
る圧力制御器(37,40)とを含む方向切換弁(3
8,41)を複数有し、上記圧力制御器(37,40)
のそれぞれを付勢するばね(66,67)と、該圧力制
御器(37,40)に制御圧力を伝える制御管路(5
6)を備え、該制御管路(56)に上記アクチュエータ
の負荷圧力のうちの最大負荷圧力を上記制御圧力として
導き、上記制御管路(56)をタンク(61)に連絡可
能な第3の通路(62)を有するとともに、この第3の
通路(62)に、該第3の通路(62)を流れる圧油の
圧力を制御する圧力制御手段(70)を備えた弁装置に
おいて、上記最大負荷圧力を上記圧力制御手段(70)
の一方の駆動部に導く第1の誘導手段(76)と、上記
圧油供給源(33)の供給圧を上記圧力制御手段(7
0)の他方の駆動部に、上記最大負荷圧力と対抗するよ
うに導く第2の誘導手段(75)を設けた構成にしてあ
る。
To achieve this object, the present invention provides a supply passageway (42, 43) connected to a pressure oil supply source (33) and a load passageway (46) connected to an actuator. , 47, 48, 49) and the supply passage (4
A second passageway (44,45) that can be reached to
The first passage (44, 45) and the load passage (4
6, 47, 48, 49) second passage (5
0, 51), the supply passages (42, 43) and the first
Of the variable throttle portion (52, 53, 54, 55) is communicated through the variable throttle portion (52, 53, 54, 55) that is closed or built in. The flow rate of the pressure oil passing between the supply passages (42, 43) and the first passages (44, 45) is controlled in accordance with the change of the load passage, and the second passages (50, 51) and the load are controlled. A flow control valve (36, 39) that closes or communicates with the passage (46, 47, 48, 49), the first passage (44, 45) and the second passage (50, 51). And a pressure controller (37, 40) for controlling the pressure in the first passages (44, 45), the directional control valve (3
8, 41), and the pressure controller (37, 40)
And a control line (5) for transmitting control pressure to the pressure controller (37, 40).
6), which guides the maximum load pressure among the load pressures of the actuators to the control line (56) as the control pressure, and can connect the control line (56) to the tank (61). In the valve device having the passage (62), the third passage (62) is provided with the pressure control means (70) for controlling the pressure of the pressure oil flowing through the third passage (62). The load pressure is controlled by the pressure control means (70).
The first guide means (76) for guiding the first drive means to one of the driving parts, and the pressure control means (7) for controlling the supply pressure of the pressure oil supply source (33).
The other drive unit of (0) is provided with the second guide means (75) for guiding so as to oppose the maximum load pressure.

【0012】[0012]

【作用】本発明は、制御管路をタンクに連絡する通路に
設けられた圧力制御手段に、供給管路内の供給圧力と制
御管路内の最大負荷圧力を導き、この差圧ΔPLsが設
定値より小さくなったら、制御管路からタンクへ流れる
圧油の流量を制限し、制御管路内の各圧力制御器間で生
じる圧力損失ΔPLossを上記差圧ΔPLsに応じて
小さくする。これによって各圧力制御器に伝えられる制
御圧力すなわち最大負荷圧力は、各圧力制御器でほぼ同
一の値となり、各流量制御弁の可変絞り部の前後差圧、
つまり供給圧と圧力制御器が制御する第1の通路内の圧
力の差圧が同一となる。よって各流量制御弁の可変絞り
部の絞り量に比例した流量を得ることができる。
According to the present invention, the supply pressure in the supply pipeline and the maximum load pressure in the control pipeline are guided to the pressure control means provided in the passage connecting the control pipeline to the tank, and this differential pressure ΔPLs is set. When it becomes smaller than the value, the flow rate of the pressure oil flowing from the control pipeline to the tank is limited, and the pressure loss ΔPLoss generated between the pressure controllers in the control pipeline is reduced according to the differential pressure ΔPLs. As a result, the control pressure transmitted to each pressure controller, that is, the maximum load pressure, becomes almost the same value in each pressure controller, and the differential pressure across the variable throttle of each flow control valve,
That is, the pressure difference between the supply pressure and the pressure in the first passage controlled by the pressure controller is the same. Therefore, it is possible to obtain a flow rate proportional to the throttle amount of the variable throttle portion of each flow control valve.

【0013】[0013]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は本発明の弁装置の第1の実施例が備
えられる油圧回路を示す回路図である。この図1は前述
した図4に対応させて描いてある。この図1に示す実施
例も図4に示すものと同等のものを備えている。すなわ
ち、可変容量油圧ポンプ31と、該油圧ポンプ31から
吐出される流量を制御するレギュレータ32とからなる
圧油供給源33と、油圧ポンプ31から供給される圧油
によって駆動する複数のアクチュエータ、例えば油圧シ
リンダ34,35とを具備する油圧回路に設けられてい
る。そして弁装置30aは、油圧シリンダ34に供給さ
れる圧油の流れを制御する流量制御弁36と、圧力制御
器37とを含む方向切換弁38と、油圧シリンダ35に
供給される圧油の流れを制御する流量制御弁39と、圧
力制御器40とを含む方向切換弁41とを備えている。
上記した方向切換弁38,41はそれぞれ油圧ポンプ3
1に連絡される第1の通路44,55と、油圧シリンダ
34,35のそれぞれに連絡される負荷通路46,4
7,48,49と、第1の通路44,45のそれぞれ及
び負荷通路46,47,48,49のそれぞれに連絡可
能な第2の通路50,51とを備えている。そして上記
した流量制御弁36,39のそれぞれは、供給通路4
2,43と第1の通路44,45との間を通過する圧油
流量を制御するとともに、第2の通路50,51と負荷
通路46,47,48,49との間をそれぞれ閉塞、も
しくは連絡する。また、上記圧力制御器37は、第1の
通路44と第2の通路50との間に配置され、圧力制御
器40は第1の通路45と第2の通路51との間に配置
され、これらの圧力制御器37,40は制御管路56に
よって導かれる制御圧力とばね66,67のばね力及び
第1の通路44,45の管路圧力によって駆動可能とな
っている。
FIG. 1 is a circuit diagram showing a hydraulic circuit provided with a first embodiment of a valve device of the present invention. This FIG. 1 is drawn corresponding to FIG. 4 described above. The embodiment shown in FIG. 1 is also equipped with the same one as shown in FIG. That is, a variable displacement hydraulic pump 31, a pressure oil supply source 33 including a regulator 32 that controls the flow rate discharged from the hydraulic pump 31, and a plurality of actuators driven by the pressure oil supplied from the hydraulic pump 31, for example, It is provided in a hydraulic circuit including hydraulic cylinders 34 and 35. The valve device 30 a includes a flow control valve 36 that controls the flow of pressure oil supplied to the hydraulic cylinder 34, a direction switching valve 38 including a pressure controller 37, and a flow of pressure oil supplied to the hydraulic cylinder 35. A flow control valve 39 for controlling the pressure control valve 40 and a directional control valve 41 including a pressure controller 40 are provided.
The direction switching valves 38 and 41 described above are respectively used for the hydraulic pump 3.
1 and the first passages 44 and 55, and the load passages 46 and 4 that communicate with the hydraulic cylinders 34 and 35, respectively.
7, 48, 49, and second passages 50, 51 that are respectively in communication with the first passages 44, 45 and the load passages 46, 47, 48, 49. Each of the flow control valves 36 and 39 described above is connected to the supply passage 4
2, 43 and the first passages 44, 45 to control the flow rate of the pressure oil, and the second passages 50, 51 and the load passages 46, 47, 48, 49 are closed or contact. Further, the pressure controller 37 is arranged between the first passage 44 and the second passage 50, and the pressure controller 40 is arranged between the first passage 45 and the second passage 51. These pressure controllers 37 and 40 can be driven by the control pressure guided by the control line 56, the spring force of the springs 66 and 67, and the line pressure of the first passages 44 and 45.

【0015】さらに、この弁装置30aは、第2の通路
50と制御管路56を連絡する伝達通路57と、第2の
通路51と制御管路56を連絡する伝達通路58と、伝
達通路57に設けられ、制御管路56から第2の通路5
0方向への圧油の流れを阻止する逆止弁59と、伝達通
路58に設けられ、制御管路56から第2の通路51方
向への圧油の流れを阻止する逆止弁60を備えている。
Further, in the valve device 30a, a transmission passage 57 for connecting the second passage 50 and the control pipe 56, a transmission passage 58 for connecting the second passage 51 and the control pipe 56, and a transmission passage 57. Is provided in the control pipe 56 to the second passage 5
A check valve 59 for blocking the flow of pressure oil in the 0 direction and a check valve 60 provided in the transmission passage 58 for blocking the flow of pressure oil in the direction of the second passage 51 from the control pipe 56 are provided. ing.

【0016】この実施例では、制御管路56とタンク6
1を連絡する第3の通路62に設けられた圧力制御手段
の構成が、図4に示した従来例とは異なっている。すな
わち上記圧力制御手段である圧力補償弁70に設けられ
た流量制御部100の一方の駆動部に、パイロット管路
75により供給管路42(43)内の供給圧Psを導
き、また、上記流量制御部100の他方の駆動部に制御
管路56内の制御圧力、すなわち最大負荷圧力PLma
xをパイロット管路76により上記供給圧Psと対抗す
るように導き、上記圧力補償弁70内の固定絞り71の
前後差圧が、上記供給圧Psと上記最大負荷圧力PLm
axの差圧ΔPLs(Ps−PLmax)となるように
設けられている。ここで上記パイロット管路76は図1
中では圧力補償弁70内で導かれているが、上記制御管
路56から直接導いてもかまわない。
In this embodiment, the control line 56 and the tank 6 are
The configuration of the pressure control means provided in the third passage 62 communicating with No. 1 is different from that of the conventional example shown in FIG. That is, the pilot line 75 guides the supply pressure Ps in the supply line 42 (43) to one drive unit of the flow rate control unit 100 provided in the pressure compensating valve 70 serving as the pressure control unit, and the flow rate is increased. The control pressure in the control line 56, that is, the maximum load pressure PLma, is applied to the other drive unit of the control unit 100.
x through a pilot line 76 so as to oppose the supply pressure Ps, and the differential pressure across the fixed throttle 71 in the pressure compensating valve 70 is the supply pressure Ps and the maximum load pressure PLm.
It is provided so as to have a differential pressure ΔPLs (Ps-PLmax) of ax. Here, the pilot line 76 is shown in FIG.
Although it is introduced inside the pressure compensation valve 70, it may be introduced directly from the control line 56.

【0017】なお、上記した圧油供給源33を構成する
レギュレータ32は、供給圧Psと、制御管路56の制
御圧力すなわち油圧シリンダ34,35の負荷圧力のう
ちの最大負荷圧力PLmaxとの差圧ΔPLsが設定値
となるように、すなわち差圧ΔPLsによる力とばね6
4の力とがバランスするように油圧ポンプ31の流量を
制御する流量制御手段を構成している。
The regulator 32 constituting the above-mentioned pressure oil supply source 33 has a difference between the supply pressure Ps and the control pressure of the control line 56, that is, the maximum load pressure PLmax of the load pressures of the hydraulic cylinders 34, 35. So that the pressure ΔPLs becomes a set value, that is, the force due to the differential pressure ΔPLs and the spring 6
The flow rate control means for controlling the flow rate of the hydraulic pump 31 is configured so as to balance with the force of 4.

【0018】このような実施例における動作は以下のと
おりである。
The operation in such an embodiment is as follows.

【0019】図1に示す方向切換弁38,41の流量制
御弁36,39のそれぞれを操作レバー68,69を操
作することにより切換駆動すると、これに応じて油圧ポ
ンプ31の圧油がそれぞれ供給通路42,43、可変絞
り部52(53)、あるいは可変絞り部54(55)、
第1の通路44,45に導かれ、これにより圧力制御器
37,40が図1上方に押し上げられ、さらに該圧油は
第2の通路50,51、負荷通路46(47)あるいは
48(49)を介して油圧シリンダ34,35に導か
れ、これらの油圧シリンダ34,35の複合動作がおこ
なわれる。この複合動作の際に、油圧シリンダ34の負
荷圧力が負荷通路46(47)を介して第2の通路50
に導かれ、さらに伝達通路57、逆止弁59を介して制
御管路56に導かれ、一方、油圧シリンダ35の負荷圧
力が負荷通路48(49)を介して第2の通路51に導
かれ、さらに伝達通路58、逆止弁60を介して制御管
路56に導かれ、結局、油圧シリンダ34,35の負荷
圧力のうちの大きい方の圧力、すなわち最大負荷圧力P
Lmaxが制御圧力として取出される。この最大負荷圧
力PLmaxが圧力制御器37,40の制御室37a,
40aの受圧部37b,40bのそれぞれに与えられ、
これにより供給圧Psに抗して圧力制御器37,40が
前述した上昇状態から下降し、第1の通路44,45内
の圧力Pa1,Pa2がそれぞれ高くなり、最大負荷圧
力PLmaxとばね66,67のばね力により、第1の
通路44,45内の圧力Pa1,Pa2は制御される。
なお、ばね66,67のばね力は互いにほぼ等しい値に
設定されており、これにより圧力Pa1,Pa2は互い
に同等の圧力に制御される。そして、制御管路56の制
御圧力すなわち油圧シリンダ34,35の最大負荷圧力
PLmaxがレギュレータ32の一方の駆動部に導か
れ、供給圧Psと最大負荷圧力PLmaxとの差圧ΔP
Lsによる力と、レギュレータ32を付勢するばね64
の力とがバランスするような流量が油圧ポンプ31から
供給される。
When the flow control valves 36 and 39 of the directional control valves 38 and 41 shown in FIG. 1 are switched by operating the operating levers 68 and 69, the pressure oil of the hydraulic pump 31 is supplied accordingly. The passages 42, 43, the variable throttle portion 52 (53), or the variable throttle portion 54 (55),
The pressure controllers 37 and 40 are guided to the first passages 44 and 45, and the pressure controllers 37 and 40 are pushed upward in FIG. 1. Further, the pressure oil is supplied to the second passages 50 and 51 and the load passages 46 (47) or 48 (49). ) To hydraulic cylinders 34 and 35, and the combined operation of these hydraulic cylinders 34 and 35 is performed. During this combined operation, the load pressure of the hydraulic cylinder 34 passes through the load passage 46 (47) to the second passage 50.
To the control pipe 56 via the transmission passage 57 and the check valve 59, while the load pressure of the hydraulic cylinder 35 is led to the second passage 51 via the load passage 48 (49). Further, the pressure is guided to the control line 56 via the transmission passage 58 and the check valve 60, and eventually, the larger one of the load pressures of the hydraulic cylinders 34 and 35, that is, the maximum load pressure P.
Lmax is taken out as control pressure. This maximum load pressure PLmax is the control chamber 37a of the pressure controller 37, 40,
Is applied to each of the pressure receiving portions 37b and 40b of 40a,
As a result, the pressure controllers 37 and 40 are lowered from the above-mentioned raised state against the supply pressure Ps, the pressures Pa1 and Pa2 in the first passages 44 and 45 are respectively increased, and the maximum load pressure PLmax and the spring 66, The spring force of 67 controls the pressures Pa1 and Pa2 in the first passages 44 and 45.
The spring forces of the springs 66 and 67 are set to be substantially equal to each other, whereby the pressures Pa1 and Pa2 are controlled to be equal to each other. Then, the control pressure of the control line 56, that is, the maximum load pressure PLmax of the hydraulic cylinders 34 and 35 is guided to one drive portion of the regulator 32, and the differential pressure ΔP between the supply pressure Ps and the maximum load pressure PLmax.
The force of Ls and the spring 64 for urging the regulator 32
The hydraulic pump 31 supplies a flow rate that balances with the force of.

【0020】そして、制御管路56が、第3の通路62
に設けられた圧力補償弁70を介してタンク61に連絡
していることから、流量制御弁36,39の中立時に制
御管路56の制御圧力をタンク61に逃し、圧力制御器
37,40を無負荷状態にすることができる。また流量
制御弁36,39が切換駆動されているとき、制御管路
56からタンク61へ流れる流量を、供給圧Psと制御
管路56の制御圧力PLmaxとの差圧ΔPLsにより
制御する圧力補償弁70により制限し、エネルギーロス
を抑制している。
The control line 56 is connected to the third passage 62.
Since it communicates with the tank 61 via the pressure compensating valve 70 provided in, the control pressure of the control line 56 is released to the tank 61 when the flow rate control valves 36, 39 are in the neutral state, and the pressure controllers 37, 40 are connected. Can be unloaded. Further, when the flow rate control valves 36, 39 are driven to be switched, a pressure compensating valve that controls the flow rate flowing from the control line 56 to the tank 61 by the differential pressure ΔPLs between the supply pressure Ps and the control pressure PLmax of the control line 56. 70 to limit the energy loss.

【0021】ここで、切換動作させた流量制御弁36,
39の要求流量の和が、油圧ポンプ31の最大吐出流量
をこえた場合、供給圧Psと制御管路56の制御圧力つ
まり油圧シリンダ34,35の負荷圧力のうち最大負荷
圧力PLmaxとの差圧ΔPLsが小さくなる。この
時、制御管路56から第3の通路62、圧力補償弁70
を通過してタンク61へ流れる圧油の流量は、ポンプ圧
Psと制御管路56の制御圧力PLmaxとの差圧ΔP
Lsで制御された圧力補償弁70により著しく制限さ
れ、さらに閉塞することも可能である。これにより、制
御管路56を流れる圧油によって生じる各圧力制御器3
7,40間の圧力損失ΔPLossは著しく減少し、各
圧力制御器37,40の各制御室37a,40aに伝え
られる最大負荷圧力PLmaxにほぼ等しくなる。よっ
て、各圧力制御器37,40の受圧部37b,40bの
受圧面積をAとし、ばね66,67のばね力をFkとす
ると、この圧力制御器37,40に作用する力のつり合
いから、 Pa1−PLmax=Fk/A (7) Pa2−PLmax=Fk/A (8) が成立する。一方、各流量制御弁36,39の要求流量
の和が油圧ポンプ31の最大吐出流量を越えているた
め、レギュレータ32に関係なく Ps−PLmax=ΔPLs´ (9) が成立する。上記(9)式と(7)式、(9)式と
(8)式から、流量制御弁36,39の前後差圧つまり
可変絞り部52,53および54,55の前後差圧はそ
れぞれ、 Ps−Pa1=ΔPLs´−Fk/A (10) Ps−Pa2=ΔPLs´−Fk/A (11) となる。この(10),(11)式から、 Ps−Pa1=Ps−Pa2=一定 となり、 Pa1=Pa2=Pa (12) となる。
Here, the flow control valve 36, which has been switched,
When the sum of the required flow rates of 39 exceeds the maximum discharge flow rate of the hydraulic pump 31, the differential pressure between the supply pressure Ps and the control pressure of the control line 56, that is, the maximum load pressure PLmax of the load pressures of the hydraulic cylinders 34, 35. ΔPLs becomes small. At this time, from the control line 56 to the third passage 62, the pressure compensation valve 70
The flow rate of the pressure oil flowing through the tank to the tank 61 is the differential pressure ΔP between the pump pressure Ps and the control pressure PLmax of the control line 56.
It is significantly limited by the pressure compensating valve 70 controlled by Ls and can be closed further. As a result, each pressure controller 3 generated by the pressure oil flowing through the control line 56
The pressure loss ΔPLoss between 7 and 40 is remarkably reduced and becomes substantially equal to the maximum load pressure PLmax transmitted to the control chambers 37a and 40a of the pressure controllers 37 and 40. Therefore, assuming that the pressure receiving areas of the pressure receiving portions 37b and 40b of the pressure controllers 37 and 40 are A and the spring force of the springs 66 and 67 is Fk, from the balance of the forces acting on the pressure controllers 37 and 40, Pa1 -PLmax = Fk / A (7) Pa2-PLmax = Fk / A (8) holds. On the other hand, since the sum of the required flow rates of the flow rate control valves 36 and 39 exceeds the maximum discharge flow rate of the hydraulic pump 31, Ps−PLmax = ΔPLs ′ (9) holds regardless of the regulator 32. From the equations (9) and (7), and the equations (9) and (8), the differential pressure across the flow control valves 36 and 39, that is, the differential pressure across the variable throttle portions 52, 53 and 54 and 55, Ps-Pa1 = [Delta] PLs'-Fk / A (10) Ps-Pa2 = [Delta] PLs'-Fk / A (11). From these equations (10) and (11), Ps-Pa1 = Ps-Pa2 = constant and Pa1 = Pa2 = Pa (12).

【0022】このように、流量制御弁36,39の要求
流量の和が油圧ポンプ31の最大吐出量をこえ、供給圧
Psと制御管路56の制御圧力つまり最大負荷圧力PL
maxとの差圧ΔPLsが所定の値よりも小さくなった
場合でも、流量制御弁36,39の各可変絞り部52
(53),54(54)の流入側の圧力は供給通路4
2,43の圧力、すなわち供給圧Psで共に等しく、ま
た流出側の圧力、すなわち第1の通路44,45内の圧
力Pa1,Pa2も上述のように共に等しく、これによ
り流量制御弁36,39それぞれの可変絞り部52(5
3),54(55)の前後差圧は常に等しい。したがっ
て流量制御弁36,39のそれぞれのストローク量に対
する可変絞り部52(53)、あるいは54(55)の
それぞれの絞り量、すなわち開口量に応じた流量が油圧
シリンダ34,35のそれぞれの負荷変動の影響を互い
に他の油圧シリンダに及ぼすことなく、安定した当該油
圧シリンダ34,35の複合駆動を実現させることがで
きる。
As described above, the sum of the required flow rates of the flow rate control valves 36 and 39 exceeds the maximum discharge amount of the hydraulic pump 31, and the supply pressure Ps and the control pressure of the control line 56, that is, the maximum load pressure PL.
Even when the pressure difference ΔPLs with respect to max becomes smaller than a predetermined value, the variable throttle portions 52 of the flow rate control valves 36 and 39.
The pressure on the inflow side of (53), 54 (54) is
The pressures of 2 and 43, that is, the supply pressure Ps, are equal, and the pressures on the outflow side, that is, the pressures Pa1 and Pa2 in the first passages 44 and 45 are equal to each other as described above. Each variable diaphragm unit 52 (5
3), the differential pressure across 54 (55) is always the same. Therefore, the variable throttle portions 52 (53) or 54 (55) have their respective throttle amounts with respect to the stroke amounts of the flow control valves 36 and 39, that is, the flow rates corresponding to the opening amounts cause the load fluctuations of the hydraulic cylinders 34 and 35, respectively. It is possible to realize stable combined driving of the hydraulic cylinders 34 and 35 without affecting the other hydraulic cylinders.

【0023】図2は本発明の第2の実施例を含む回路図
である。
FIG. 2 is a circuit diagram including a second embodiment of the present invention.

【0024】この第2の実施例は、制御管路56をタン
ク61に連絡する第3の通路62に圧力制御手段とし
て、供給圧Psを導くパイロット管路75と制御管路5
6の制御圧力PLmaxを導くパイロット管路76が対
抗するように導いた圧力制御弁72を設けてある。該圧
力制御弁72は、制御管路56を流れる圧油の圧力を、
供給圧Psと制御管路56の制御圧力つまり最大負荷圧
力PLmaxとの差圧ΔPLsにより制御するもので、
該ΔPLsがレギュレータ32の所定値より小さくなっ
た場合、制御管路56からタンク61へ流れる圧油の流
量を著しく制限し、制御管路56で生ずる各圧力制御器
37,40の間の圧力損失ΔPLossを減少させる。
最大負荷圧力PLmaxの変動が少ない場合、この第2
実施例によれば、上記第3の通路62に設けられる圧力
制御手段が第1実施例に比例して、簡略化することがで
きる。
In the second embodiment, the control conduit 56 serves as a pressure control means for the third conduit 62 communicating with the tank 61, and the pilot conduit 75 for guiding the supply pressure Ps and the control conduit 5 are provided.
A pressure control valve 72 is provided so as to oppose a pilot line 76 that guides the control pressure PLmax of 6. The pressure control valve 72 controls the pressure of the pressure oil flowing through the control line 56,
The pressure is controlled by the differential pressure ΔPLs between the supply pressure Ps and the control pressure of the control line 56, that is, the maximum load pressure PLmax.
When ΔPLs becomes smaller than the predetermined value of the regulator 32, the flow rate of the pressure oil flowing from the control line 56 to the tank 61 is significantly limited, and the pressure loss between the pressure controllers 37 and 40 generated in the control line 56. ΔP Loss is reduced.
If the maximum load pressure PLmax varies little, this second
According to the embodiment, the pressure control means provided in the third passage 62 can be simplified in proportion to the first embodiment.

【0025】図3は本発明の第3の実施例を含む回路図
である。
FIG. 3 is a circuit diagram including a third embodiment of the present invention.

【0026】この第3の実施例は、第3の通路62に圧
力制御手段として、信号管路112が接続される圧力補
償弁111を設け、該信号管路112の他端には該信号
管路112内の圧力を制御するために、一次側に定圧力
源114を接続した電磁比例減圧弁113が接続され、
該電磁比例減圧弁113への指令信号119は、図示さ
れていない制御装置より出力される。また、上記圧力補
償弁111に接続される上記信号管路112は、圧力補
償弁111内部で流量制御部110の一方の駆動部に接
続され、固定絞り71の前後差圧を、上記信号管路11
2の圧力に応じて制御される。一方、制御管路56に接
続したパイロット管路115、および供給管路42(4
3)に接続したパイロット管路116を接続した圧力検
出器117により最大負荷圧力PLmaxと供給圧Ps
の差圧ΔPLsを検出し、信号線118により上記図示
されない制御装置に伝えられる。このように構成された
第3の実施例では、差圧ΔPLsを圧力検出器117に
より検出し、信号線118により上記制御装置に伝え、
該制御装置内部で演算し、指令信号119により電磁比
例減圧弁113に伝え、信号管路112内の圧力を上記
差圧ΔPLsに応じた圧力に制御し、圧力補償弁111
に伝えることにより、第3の通路62内を流れる圧油の
流量を、上記差圧ΔPLsに応じて可変にする。
In the third embodiment, a pressure compensating valve 111 to which a signal line 112 is connected is provided in the third passage 62 as a pressure control means, and the signal pipe 112 is provided at the other end thereof with the signal pipe 112. In order to control the pressure in the passage 112, an electromagnetic proportional pressure reducing valve 113 having a constant pressure source 114 connected to the primary side is connected,
The command signal 119 to the electromagnetic proportional pressure reducing valve 113 is output from a control device (not shown). The signal line 112 connected to the pressure compensating valve 111 is connected to one driving unit of the flow rate control unit 110 inside the pressure compensating valve 111, and the differential pressure across the fixed throttle 71 is changed to the signal line. 11
It is controlled according to the pressure of 2. On the other hand, the pilot conduit 115 connected to the control conduit 56 and the supply conduit 42 (4
The maximum load pressure PLmax and the supply pressure Ps are determined by the pressure detector 117 connected to the pilot line 116 connected to 3).
The differential pressure ΔPLs is detected and is transmitted to the control device (not shown) by the signal line 118. In the third embodiment configured in this way, the differential pressure ΔPLs is detected by the pressure detector 117 and transmitted to the control device by the signal line 118.
The pressure is calculated in the control device and transmitted to the electromagnetic proportional pressure reducing valve 113 by the command signal 119 to control the pressure in the signal line 112 to a pressure corresponding to the differential pressure ΔPLs.
To the variable flow rate of the pressure oil flowing in the third passage 62 according to the differential pressure ΔPLs.

【0027】この第3の実施例によれば、第1の実施例
と同等の効果が得られ、さらに、上記第3の通路62を
流れる圧油の流量を、上記差圧ΔPLsにかかわりなく
任意に制御でき、例えば、上記差圧ΔPLsが設定値を
保っている場合でも流れを阻止できるため、制御管路5
6を流れる圧油により発生する圧力損失ΔPLossを
無くすことも可能となる。
According to the third embodiment, the same effect as that of the first embodiment can be obtained, and the flow rate of the pressure oil flowing through the third passage 62 is arbitrary regardless of the differential pressure ΔPLs. Can be controlled to, for example, the flow can be blocked even when the above-mentioned differential pressure ΔPLs maintains a set value.
It is also possible to eliminate the pressure loss ΔPLoss generated by the pressure oil flowing through 6.

【0028】[0028]

【発明の効果】本発明によれば、供給圧Psと最大負荷
圧力PLmaxとの差圧ΔPLsにより制御管路を流れ
る圧油の圧力を制御できるので、各流量制御弁の要求流
量の和がポンプの最大吐出量をこえ、上記ΔPLsが小
さくなった場合でも、各流量制御弁の開口面積に応じた
流量が得られ、アクチュエータを安定して複合駆動させ
ることができる。
According to the present invention, since the pressure of the pressure oil flowing through the control line can be controlled by the pressure difference ΔPLs between the supply pressure Ps and the maximum load pressure PLmax, the sum of the required flow rates of the respective flow rate control valves can be controlled by the pump. Even when the above ΔPLs becomes smaller than the maximum discharge amount of, the flow rate corresponding to the opening area of each flow rate control valve can be obtained, and the actuator can be stably driven in combination.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の弁装置の第1の実施例が備えられた油
圧回路を示す回路図である。
FIG. 1 is a circuit diagram showing a hydraulic circuit provided with a first embodiment of a valve device of the present invention.

【図2】本発明の弁装置の第2の実施例が備えられた油
圧回路を示す回路図である。
FIG. 2 is a circuit diagram showing a hydraulic circuit provided with a second embodiment of the valve device of the present invention.

【図3】本発明の弁装置の第3の実施例が備えられた油
圧回路を示す回路図である。
FIG. 3 is a circuit diagram showing a hydraulic circuit provided with a third embodiment of the valve device of the present invention.

【図4】従来の弁装置が備えられた油圧回路を示す回路
図である。
FIG. 4 is a circuit diagram showing a hydraulic circuit provided with a conventional valve device.

【符号の説明】[Explanation of symbols]

30a 弁装置 31 可変容量油圧ポンプ 32 レギュレータ 33 圧油供給源 34,35 油圧シリンダ 36,39 流量制御弁 37,40 圧力制御器 38,41 方向切換弁 42,43 供給通路 44,45 第1の通路 46,47,48,49 負荷通路 50,51 第2の通路 52,53,54,55 可変絞り部 56 制御管路 57,58 伝達通路 59,60 逆止弁 61 タンク 62 第3の通路 70 圧力補償弁 71 絞り 72 圧力制御弁 75,76 パイロット管路 111 圧力補償弁 113 電磁比例減圧弁 117 圧力検出器 30a Valve device 31 Variable displacement hydraulic pump 32 Regulator 33 Pressure oil supply source 34, 35 Hydraulic cylinder 36, 39 Flow control valve 37, 40 Pressure controller 38, 41 Directional switching valve 42, 43 Supply passage 44, 45 First passage 46, 47, 48, 49 Load passage 50, 51 Second passage 52, 53, 54, 55 Variable throttle portion 56 Control pipe 57, 58 Transmission passage 59, 60 Check valve 61 Tank 62 Third passage 70 Pressure Compensation valve 71 Throttle 72 Pressure control valve 75,76 Pilot line 111 Pressure compensation valve 113 Electromagnetic proportional pressure reducing valve 117 Pressure detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧油供給源(33)に連絡される供給通
路(42,43)と、アクチュエータに連絡される負荷
通路(46,47,48,49)と、上記供給通路(4
2,43)に連絡可能な第1の通路(44,45)と、
この第1の通路(44,45)及び上記負荷通路(4
6,47,48,49)に連絡可能な第2の通路(5
0,51)と、上記供給通路(42,43)と上記第1
の通路(44,45)との間を閉塞、もしくは内蔵する
可変絞り部(52,53,54,55)を介して連絡
し、その可変絞り部(52,53,54,55)の絞り
量の変化に応じて上記供給通路(42,43)と第1の
通路(44,45)との間を通過する圧油流量を制御す
るとともに、上記第2の通路(50,51)と上記負荷
通路(46,47,48,49)との間を閉塞、もしく
は連絡する流量制御弁(36,39)と、上記第1の通
路(44,45)と第2の通路(50,51)との間に
配置され、第1の通路(44,45)内の圧力を制御す
る圧力制御器(37,40)とを含む方向切換弁(3
8,41)を複数有し、上記圧力制御器(37,40)
のそれぞれを付勢するばね(66,67)と、該圧力制
御器(37,40)に制御圧力を伝える制御管路(5
6)を備え、該制御管路(56)に上記アクチュエータ
の負荷圧力のうちの最大負荷圧力を上記制御圧力として
導き、上記制御管路(56)をタンク(61)に連絡可
能な第3の通路(62)を有するとともに、この第3の
通路(62)に、該第3の通路(62)を流れる圧油の
圧力を制御する圧力制御手段(70)を備えた弁装置に
おいて、上記最大負荷圧力を上記圧力制御手段(70)
の一方の駆動部に導く第1の誘導手段(76)と、上記
圧油供給源(33)の供給圧を上記圧力制御手段(7
0)の他方の駆動部に、上記最大負荷圧力と対抗するよ
うに導く第2の誘導手段(75)を設けたことを特徴と
する弁装置。
1. A supply passage (42, 43) connected to a pressure oil supply source (33), a load passage (46, 47, 48, 49) connected to an actuator, and the supply passage (4).
A second passageway (44,45) that can be reached to
The first passage (44, 45) and the load passage (4
6, 47, 48, 49) second passage (5
0, 51), the supply passages (42, 43) and the first
Of the variable throttle portion (52, 53, 54, 55) is communicated through the variable throttle portion (52, 53, 54, 55) that is closed or built in. The flow rate of the pressure oil passing between the supply passages (42, 43) and the first passages (44, 45) is controlled in accordance with the change of the load passage, and the second passages (50, 51) and the load are controlled. A flow control valve (36, 39) that closes or communicates with the passage (46, 47, 48, 49), the first passage (44, 45) and the second passage (50, 51). And a pressure controller (37, 40) for controlling the pressure in the first passages (44, 45), the directional control valve (3
8, 41), and the pressure controller (37, 40)
And a control line (5) for transmitting control pressure to the pressure controller (37, 40).
6), which guides the maximum load pressure among the load pressures of the actuators to the control line (56) as the control pressure, and can connect the control line (56) to the tank (61). In the valve device having the passage (62), the third passage (62) is provided with the pressure control means (70) for controlling the pressure of the pressure oil flowing through the third passage (62). The load pressure is controlled by the pressure control means (70).
The first guide means (76) for guiding the first drive means to one of the driving parts, and the pressure control means (7) for controlling the supply pressure of the pressure oil supply source (33).
0) The other drive unit is provided with a second guide means (75) for guiding the other drive section so as to oppose the maximum load pressure.
【請求項2】 第1の誘導手段(76)および第2の誘
導手段(75)が管路であることを特徴とする請求項1
記載の弁装置。
2. The first guiding means (76) and the second guiding means (75) are conduits.
The valve device described.
【請求項3】 第1の誘導手段(76)が上記制御管路
(56)に接続されることを特徴とする請求項1記載の
弁装置。
3. Valve arrangement according to claim 1, characterized in that a first guiding means (76) is connected to the control line (56).
JP26369692A 1992-10-01 1992-10-01 Valve device Expired - Fee Related JP3162203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26369692A JP3162203B2 (en) 1992-10-01 1992-10-01 Valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26369692A JP3162203B2 (en) 1992-10-01 1992-10-01 Valve device

Publications (2)

Publication Number Publication Date
JPH06117405A true JPH06117405A (en) 1994-04-26
JP3162203B2 JP3162203B2 (en) 2001-04-25

Family

ID=17393070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26369692A Expired - Fee Related JP3162203B2 (en) 1992-10-01 1992-10-01 Valve device

Country Status (1)

Country Link
JP (1) JP3162203B2 (en)

Also Published As

Publication number Publication date
JP3162203B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
KR100233783B1 (en) Pressure compensating hydraulic control system
CA2240929C (en) Pilot solenoid control valve and hydraulic control system using same
US7614336B2 (en) Hydraulic system having augmented pressure compensation
JP5297187B2 (en) Hydraulic system with pressure compensator
US5146747A (en) Valve apparatus and hydraulic circuit system
JP2618396B2 (en) Hydraulic control system
KR20020006607A (en) Actuater controller for hydraulic drive machine
JP2557000B2 (en) Control valve device
JPH0333928B2 (en)
US6212886B1 (en) Hydraulic drive system and directional control valve apparatus in hydraulic machine
US6438952B1 (en) Hydraulic circuit device
JP3768192B2 (en) Hydraulic control device
EP0877168A1 (en) Hydraulic drive apparatus
JPS6214718B2 (en)
JP3162203B2 (en) Valve device
JP2555287B2 (en) Hydraulic control device
JP2555361B2 (en) Road sensing control hydraulic circuit device
JP2542005B2 (en) Road sensing control hydraulic drive
JP3522959B2 (en) Hydraulic drive
JP5004665B2 (en) Piston pump hydraulic circuit
JP3762480B2 (en) Hydraulic drive
JP3240286B2 (en) Hydraulic system
JP3681704B2 (en) Hydraulic control device
JPH07293508A (en) Hydraulic control device
JP2018128066A (en) Hydraulic drive device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees