JPH0611679A - Method for inspecting and reading display element - Google Patents

Method for inspecting and reading display element

Info

Publication number
JPH0611679A
JPH0611679A JP18891892A JP18891892A JPH0611679A JP H0611679 A JPH0611679 A JP H0611679A JP 18891892 A JP18891892 A JP 18891892A JP 18891892 A JP18891892 A JP 18891892A JP H0611679 A JPH0611679 A JP H0611679A
Authority
JP
Japan
Prior art keywords
pixel
sensor
pixels
light
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18891892A
Other languages
Japanese (ja)
Other versions
JP2630893B2 (en
Inventor
Hiroshi Egawa
寛 江川
Kunihiro Mizuno
邦広 水野
Keiichi Kurashiyo
啓一 藏所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINATO ELECTRON KK
MINATO ELECTRONICS
Original Assignee
MINATO ELECTRON KK
MINATO ELECTRONICS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINATO ELECTRON KK, MINATO ELECTRONICS filed Critical MINATO ELECTRON KK
Priority to JP4188918A priority Critical patent/JP2630893B2/en
Publication of JPH0611679A publication Critical patent/JPH0611679A/en
Application granted granted Critical
Publication of JP2630893B2 publication Critical patent/JP2630893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To inspect light quantity emitted by a pixel with high accuracy by regarding an integrated value of detected light quantities from individual sensor pixels among sensor pixels group relating to a pixel image as the light quantity of pixels to be inspected. CONSTITUTION:Luminous intensity distribution 2 of the pixel image in which respective pixels are in lighting state is shown with a relation between a pixel image region 1 and sensor pixels 3 are shown with a relation between respective positions. The pixel image region of the noticed pixel on the sensor pixel surface is denoted by 1T, the luminous intensity distribution characteristic of the image region is denoted by 2T, respective pixel image regions of left and right sides pixels adjacent to the noticed pixel are denoted by 1NL, 1NR, the luminous intensity distribution characteristics of the image regions are respectively denoted by 2NL, 2NR and sensor pixels relating to the noticed pixel are denoted by 31 to 37. In order to detect all rays of light emitted from the pixel to be inspected, light quantities detected by all sensor pixels relating to the pixel image to be detected are summed. That is, the summed value of light quantities 42, 41, 43 detected by sensor pixels 33 to 35 is read-out as light quantity emitted from the pixel to be inspected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶ディスプレイ、プラ
ズマディスプレイなどの表示素子の検査方法に係わる。
さらに詳述すれば、表示素子の表示する画面を読取り、
その良否を検査する方式に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a display device such as a liquid crystal display and a plasma display.
More specifically, the screen displayed by the display element is read,
It is related to the method of inspecting the quality.

【0002】[0002]

【従来の技術】表示素子に表示された画面を少ないセン
サ画素で、すなわち少ないカメラ台数で効率良く検査対
象画面を読取る方式として、本発明の発明者の1人が特
開平4−16895「表示素子検査画面読取方式」(以
下第1従来例という)と特願平3−50101「表示素
子検査方式」(以下第2従来例という)で提案した本願
と同一出願人の出願した発明がある。前者の第1従来例
では検査対象とする画素の周りの近傍画素を消灯状態と
し、さらにセンサ受光面にピントのぼけた像を結ばせる
ことによりセンサ受光面での表示素子の1画素当たりの
像領域を拡大し、表示素子の1画素の像に関わるセンサ
画素の数を増やす事により読取り能力を増大させること
を特徴としている。また、後者の第2従来例では検査対
象となる表示素子とセンサカメラの位置関係を常に基準
位置に設定し、センサ画素のセンスした光度情報に、基
準位置で抽出した対応位置補正係数を乗じることにより
表示画素の光度情報を生成することを特徴としている。
第1従来例、第2従来例のいずれも表示画素の発する光
の一部を単一のセンサ画素で検出し、画素全体としての
光の強さを評価する方式である。
2. Description of the Related Art One of the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 4-16895 "Display Element" as a method for efficiently reading an inspection target screen with a small number of sensor pixels, that is, with a small number of cameras. There is an invention filed by the same applicant as the present application proposed in “Inspection screen reading method” (hereinafter referred to as “first conventional example”) and Japanese Patent Application No. 3-50101 “Display element inspection method” (hereinafter referred to as “second conventional example”). In the former first conventional example, an image per pixel of the display element on the sensor light-receiving surface is formed by turning off the neighboring pixels around the pixel to be inspected and further forming a blurred image on the sensor light-receiving surface. It is characterized in that the readability is increased by enlarging the area and increasing the number of sensor pixels related to the image of one pixel of the display element. In the latter second conventional example, the positional relationship between the display element to be inspected and the sensor camera is always set to the reference position, and the luminous intensity information sensed by the sensor pixel is multiplied by the corresponding position correction coefficient extracted at the reference position. Is characterized in that the luminous intensity information of the display pixel is generated.
In both the first conventional example and the second conventional example, a part of the light emitted by the display pixel is detected by a single sensor pixel, and the light intensity of the entire pixel is evaluated.

【0003】[0003]

【発明が解決しようとする課題】前記第1従来例では、
ピントのぼかしの度合いを深めれば深める程、光度の分
布領域が広がり、この分布領域に関与するセンサ画素の
数が増大するため光度の検出誤差を低減する事ができる
が、センサ画素での検出レベルも低下していくため検出
限界が生じる。このため、光度の分布状態を実用的な一
様分布状態にまですることが困難で、LCD画素とセン
サ画素の位置関係によって検出レベルが異なる結果、検
出誤差が大きくなる欠点がある。また、ピントのぼかし
の度合いを深めれば深めるほど消灯すべき近傍画素の数
が増え、全ての表示画素を検査するための検査画面数が
増大する結果、検査時間が増大する欠点がある。また第
2従来例では表示素子とセンサカメラの位置関係を基準
位置に設定する際の設定誤差が検出レベル誤差となるた
め厳密に相対位置を合わせる必要がある。実用的には相
応の位置ずれが生じる結果、検出精度が劣化する欠点が
ある。本発明は上記欠点を解決し、検査画面数の削減が
でき、また検査対象の表示素子の位置合せ精度を緩和し
た状態で光度検出レベル精度を高めることのできる方法
を提供し、より経済的、効率的な表示素子検査方式を提
供する事にある。
In the first conventional example,
The deeper the degree of blurring of the focus, the wider the light intensity distribution area, and the greater the number of sensor pixels involved in this distribution area, so the light intensity detection error can be reduced. Since the level also decreases, the detection limit occurs. For this reason, it is difficult to bring the light intensity distribution state into a practical uniform distribution state, and as a result that the detection level varies depending on the positional relationship between the LCD pixel and the sensor pixel, there is a drawback that the detection error increases. Further, as the degree of blurring of the focus is deepened, the number of neighboring pixels to be turned off increases, and the number of inspection screens for inspecting all the display pixels increases. As a result, the inspection time increases. Further, in the second conventional example, since the setting error when the positional relationship between the display element and the sensor camera is set to the reference position becomes the detection level error, it is necessary to strictly match the relative positions. Practically, there is a drawback that the detection accuracy is deteriorated as a result of a corresponding displacement. The present invention solves the above-mentioned drawbacks, can reduce the number of inspection screens, and provides a method capable of increasing the luminous intensity detection level accuracy in a state where the alignment accuracy of the display element to be inspected is relaxed, and more economical, It is to provide an efficient display element inspection method.

【0004】[0004]

【課題を解決するための手段】従来例では表示画素の発
する光の一部を単一のセンサ画素で検出し、その検出値
をもって画素全体の光の強さを検査評価していたのを、
複数のセンサ画素をもって表示画素の発する光量の検出
量を増大することにより、検出能力を増大させるように
構成したものである。すなわち、表示素子の表示画面を
検査画面としてその良否を判定するための検査方式にお
いて、(1)検査対象の表示画素をブライト状態とする
と共に、その検査対象の表示画素の近傍にある画素をダ
ーク状態とし、当該画素像に係わるセンサ画素群の個々
のセンサ画素の検知光量の積算値をもって検査対象画素
の光量とする表示素子検査画面読取方式の請求項1の発
明と、(2)各画素像に係わるセンサ画素群が当該画素
像領域とその隣接画素像領域からなる領域に収まるよう
に設定し、当該画素像に係わるセンサ画素群の個々のセ
ンサ画素の検知光量の積算値をもって検査対象画素の光
量とする表示素子検査画面読取方式の請求項2の発明を
構成したものである。
In the conventional example, a part of light emitted from a display pixel is detected by a single sensor pixel, and the light intensity of the whole pixel is inspected and evaluated by the detected value.
The detection capability is increased by increasing the detection amount of the light amount emitted from the display pixel with a plurality of sensor pixels. That is, in an inspection method for determining the quality of a display screen of a display element as an inspection screen, (1) a display pixel to be inspected is brought into a bright state, and a pixel near the display pixel to be inspected is darkened. The display element inspection screen reading method according to claim 1, wherein the light amount of the pixel to be inspected is the integrated value of the detected light amount of each sensor pixel of the sensor pixel group related to the pixel image, and (2) each pixel image Is set so that the sensor pixel group related to the pixel image area fits in the area including the pixel image area and the adjacent pixel image area, and the integrated value of the detection light amount of each sensor pixel of the sensor pixel group related to the pixel image The present invention constitutes the second aspect of the invention, which is a display element inspection screen reading method in which the amount of light is used.

【0005】[0005]

【作用】本発明を前記の如く構成したので、複数のセン
サ画素を用いて検査対象画素の画素像領域の光度分布特
性のピークから裾野までの広い範囲をセンス光量として
検出することができる結果、表示素子とセンサ素子の相
対位置の変動に対してより少ない誤差で検査評価する事
ができる。また、表示画素の一部領域の欠損を光量不足
として検出する事ができる。さらに、検査対象画素をブ
ライト状態とし、検査対象画素の近傍の画素をダーク状
態にすることにより、近傍画素からの光量を削減して、
センスすべき検査対象画素からの光量の割合を増大でき
ることから、精度良く検査をすることができる。また、
センサ画素積算領域の大きさを制限する事により、1次
元方向に連続する3個以下の画素を異常と検出した場合
は単一の欠陥画素と見なすことができ、その異常と検出
した画素の中で異常なピーク値を呈する画素を欠陥画素
と見なすことができる。
Since the present invention is configured as described above, a wide range from the peak to the skirt of the luminous intensity distribution characteristic of the pixel image region of the pixel to be inspected can be detected as the sense light amount by using a plurality of sensor pixels. The inspection and evaluation can be performed with a smaller error with respect to the variation of the relative position between the display element and the sensor element. Further, it is possible to detect a defect in a partial area of the display pixel as an insufficient amount of light. Furthermore, by setting the inspection target pixel in the bright state and setting the pixels in the vicinity of the inspection target pixel in the dark state, the amount of light from the neighboring pixels is reduced,
Since the ratio of the amount of light from the inspection target pixel to be sensed can be increased, the inspection can be performed accurately. Also,
By limiting the size of the sensor pixel integration area, if three or less consecutive pixels in the one-dimensional direction are detected as abnormal, it can be considered as a single defective pixel. A pixel exhibiting an abnormal peak value can be regarded as a defective pixel.

【0006】[0006]

【実施例】以下図面を用いて本発明を詳細に説明する。
表示素子に液晶ディスプレイ(LCD)を、センサにC
CD2次元センサを用いた場合を例に、以下図面を用い
て本発明を詳細に説明する。なお、LCD画素および、
CCD画素は直交するx、yの両方向に2次元的な広が
りを持つ。しかし、2次元的な広がりで説明するといた
ずらに複雑になり理解を妨げることになること、さらに
x、yの両方向の内の片方にだけ着目した1次元方向の
説明で容易に2次元的な広がりの場合に拡張して理解で
きることから、本明細書では特に断わらない限り1次元
の広がりでもって説明する。なお、本明細書では表示画
素の発する光の強さを光度と言う用語をもって表す。光
度は任意単位とし、表示画素の発する単位面積当たりの
光の強さも、またセンサの受光面にできた画素像の単位
面積当たりの光の強さも、これら全てを光度でもって表
現する。なお、一定領域に渡って光度を積分した量を強
調したい場合は光量でもって表現する場合もある。な
お、本明細書ではLCD画素など検査対象となる表示素
子の画素を単に画素と呼び、CCD画素などのセンサ画
素をセンサ画素と呼ぶ。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.
A liquid crystal display (LCD) is used as the display element, and C is used as the sensor.
The present invention will be described in detail below with reference to the drawings by taking the case of using a CD two-dimensional sensor as an example. The LCD pixel and
CCD pixels have a two-dimensional spread in both x and y directions that are orthogonal to each other. However, if it is explained in a two-dimensional spread, it becomes unnecessarily complicated and hinders understanding. Furthermore, a two-dimensional spread is easily explained by focusing on only one of the x and y directions. Since the case can be expanded and understood, the present description will be given with a one-dimensional spread unless otherwise specified. Note that in this specification, the intensity of light emitted from a display pixel is expressed by a term called luminous intensity. The luminous intensity is an arbitrary unit, and the intensity of light emitted from the display pixel per unit area and the intensity of light of the pixel image formed on the light receiving surface of the sensor per unit area are all expressed in terms of luminous intensity. When it is desired to emphasize the amount obtained by integrating the light intensity over a certain region, the light amount may be used in some cases. In this specification, a pixel of a display element to be inspected such as an LCD pixel is simply called a pixel, and a sensor pixel such as a CCD pixel is called a sensor pixel.

【0007】図1は本発明の原理を説明するための図で
ある。図は各画素が点灯した状態での画素像の光度分布
2が画素像領域1との関係で示され、さらにこれらとの
位置関係でセンサ画素3が示されている。ここで光度分
布は点灯状態の光度が比較的大きい場合は中央部の光度
が強く、端部に近ずくに従って光度が低くなるのが一般
であり、かかる特性で示している。本発明は検査対象の
1画素に対応するセンサ画素の数が少ない場合において
も精度良く検査する方式を提供するもので、この例では
1つの画素像領域に概略2個のセンサ画素が対応するよ
うな割合で配置されている。画素像とセンサ画素の相対
位置関係は表示素子の全面に渡ってすべての画素で同じ
にすることは難しく、2個のセンサ画素が単一の画素像
領域にきっちりと収まる極端な場合もあるが、この例に
見られる様に両端のセンサ画素が隣接の画素像領域に掛
かる場合がほとんどである。着目する画素のセンサ画素
面上での画素像領域を1T 、またその像領域の光度分布
特性を2T で示す。また、着目画素に隣接する左右の画
素のそれぞれの画素像領域を1NL、1NRで示し、その像
領域の光度分布特性をそれぞれ2NL、2NRで示す。ま
た、着目画素に係わるセンサ画素を31 〜37 で示して
いる。検査対象の画素の発する光の全てを検出するため
に検査対象の画素像に関与する全てのセンサ画素で検出
された光量を加算する。すなわち、図中センサ画素
3 、34 、35 で検出した光量42 、41、43 を加
算した量をもって検査対象の画素の発した光量として読
取る。この場合、隣接の画素が点灯しているとセンサ画
素33 、35 が不要な隣接画素からの光量5L と5R
も取込む結果、誤差となる。以上の説明では33
4 、35の3センサ画素の検出光量を積算した例で説
明したが、一般には光度分布特性が広がれば検出のため
のセンサ画素群を構成するセンサ画素の数をさらに多く
することで所望の検出精度を確保する必要があるが、光
度分布が互いに隣接画素領域に広がった場合には隣接画
素からの不要な光量を積算する結果になり、逆に検出精
度が悪化する原因にもなる。このため、近隣画素からの
光量を排除して、精度よく点灯状態の光度を検査するに
は、近隣の画素を消灯状態として隣の画素から発した光
を低減すればよい。すなわち、組織的に全画素を検査す
る場合はq画素おきに点灯状態とした分散点灯検査パタ
ーンをq回表示しつつ、その表示画面を読取り検査する
のが組織的で便利である。以上の説明は画素が例えばX
方向に1次元に配列されている場合の説明で、これと直
交するY方向にも一般にr画素おきに点灯状態とする。
この2次元の配列で説明すると点灯画素位置を変えたq
・r回の検査パターンを表示して全画素の検査をする事
になる。この検査方法において、近隣の画素が消灯状態
と点灯状態の切り替え制御ができず、いつも点灯してい
るような欠陥が隣接画素に存在する場合には、全画素を
消灯状態に制御し、制御可能で正常な画素は消灯状態に
あり、制御不能の欠陥画素は点灯状態となっている表示
情報をあらかじめ背景情報として読取り保存し、各分散
点灯検査パターンでの表示情報から背景情報を減算する
事により、常時点灯している欠陥画素を等価的に消灯状
態とすることができ、近隣画素に欠陥があっても当該検
査対象画素の光度、光量を精度良く検査できる。
FIG. 1 is a diagram for explaining the principle of the present invention. In the figure, the luminous intensity distribution 2 of the pixel image in the state where each pixel is lit is shown in relation to the pixel image region 1, and further the sensor pixel 3 is shown in positional relation with these. Here, in the luminous intensity distribution, when the luminous intensity in the lighting state is relatively large, the luminous intensity at the central portion is strong, and the luminous intensity becomes lower as it approaches the end portion, and this characteristic is shown. The present invention provides a method for inspecting accurately even when the number of sensor pixels corresponding to one pixel to be inspected is small. In this example, one pixel image area corresponds to approximately two sensor pixels. It is arranged at a certain ratio. It is difficult to make the relative positional relationship between the pixel image and the sensor pixel the same for all the pixels over the entire surface of the display element. In some cases, however, two sensor pixels may fit exactly in a single pixel image area. In most cases, the sensor pixels at both ends overlap the adjacent pixel image areas as seen in this example. The pixel image area of the pixel of interest on the sensor pixel surface is shown by 1 T , and the luminous intensity distribution characteristic of the image area is shown by 2 T. Also, the pixel image areas of the left and right pixels adjacent to the pixel of interest are indicated by 1 NL and 1 NR , and the luminous intensity distribution characteristics of the image area are indicated by 2 NL and 2 NR , respectively. Also it shows a sensor pixel according to the target pixel in 3 1 to 3 7. In order to detect all the light emitted from the pixel to be inspected, the light amounts detected by all the sensor pixels involved in the pixel image to be inspected are added. That is, read as the amount of light emitted in the pixel to be inspected with the amount obtained by adding the amount of light 4 2, 4 1, 4 3 detected in the figure the sensor pixel 3 3, 3 4, 3 5. In this case, if the adjacent pixels are lit, the sensor pixels 3 3 and 3 5 also take in the light amounts 5 L and 5 R from the unnecessary adjacent pixels, resulting in an error. In the above explanation, 3 3 ,
Although the example in which the detection light amounts of the three sensor pixels 3 4 and 3 5 are integrated has been described, in general, if the light intensity distribution characteristics are widened, it is desirable to increase the number of sensor pixels forming the sensor pixel group for detection. However, when the luminous intensity distributions spread over the adjacent pixel regions, the unnecessary light amounts from the adjacent pixels are integrated, which also causes the detection accuracy to deteriorate. Therefore, in order to eliminate the light amount from the neighboring pixels and accurately inspect the luminous intensity in the lighting state, it is sufficient to turn off the neighboring pixels and reduce the light emitted from the neighboring pixels. That is, when systematically inspecting all the pixels, it is systematic and convenient to read and inspect the display screen while displaying the distributed lighting inspection pattern q times for every q pixels. In the above description, the pixel is, for example, X.
In the description in the case of one-dimensional arrangement in the direction, generally in the Y direction orthogonal to this direction, the lighting state is set every r pixels.
Explaining this two-dimensional array, q
・ Displaying the inspection pattern r times to inspect all pixels. In this inspection method, if the neighboring pixels cannot control the switching between the extinguished state and the lit state, and if there is a defect that is always lit in the adjacent pixels, all pixels can be controlled to the extinguished state and controlled. Normal pixels are in the off state, and defective pixels that cannot be controlled are in the on state.Display information is read and stored as background information in advance, and the background information is subtracted from the display information in each distributed lighting inspection pattern. The defective pixel that is always lit can be turned off equivalently, and even if there is a defect in a neighboring pixel, the luminous intensity and the light amount of the inspection target pixel can be accurately inspected.

【0008】次に、消灯状態における光量を検査する方
法について説明する。消灯状態における欠陥画素とは、
本来の消灯状態における光量より多くの光量を発してい
る画素のことである。図2は孤立的に1個の画素Aが欠
陥となり異常な光量を発し、その近隣の画素B、Cは正
常である場合の画素像領域1とセンサ画素3との対応関
係を示している。この例では1画素像領域に概略2画素
が対応する場合を示している。また、消灯状態程度の光
度の低いレベルにおける光度分布は点灯状態の光度分布
と異なり一般に一様分布に近い。このためここでは画素
対応に一様分布と見なして記述する。欠陥画素Aの光量
を積算検出するセンサ画素群を34 を中心とした33
5 の3個とすると、その隣のB画素の光量を検出する
センサ画素群は31 〜33 の3個で、C画素対応では3
4 〜37 の3個に設定することになる。この構成の基本
条件は、検査対象の画素像領域と隣接画素像領域からな
る領域の中に積算センサ画素群が収まるように設定して
いることである。この例で見る限り、欠陥画素の光量は
3 〜35 で構成される積算センサ画素群で正しく検出
できるが、欠陥の無い画素Bの光量検出ではセンサ画素
3 で欠陥画素の異常光量4B を誤って検出してしま
う。また、欠陥の無い画素Cでもセンサ画素35 で欠陥
画素の異常光量4C を誤って検出してしまう。この誤っ
て検出する異常光量は画素像領域とセンサ画素の対応位
置関係で変化する。一般に、画素像領域とセンサ画素の
対応関係は一義的では無く、レンズの歪みなどで場所的
に変化する。また、画素像当たりに対応するセンサ画素
の数によっても変わる。特に画素像当たりの対応センサ
画素数が整数で無い場合には、レンズに歪みが無くても
画素の位置が1画素ずれるごとに少しずつセンサ画素の
相対位置がずれていく。このため、画素位置によって誤
って検出する異常光量は異なってくる。すなわち、対応
する位置関係によって誤って検出する光量の量は両隣の
画素で異なり、片方が大きく、他方が小さくなる場合も
ある。またほぼ等しい量の場合もある。さらに両方の検
出量が共に極めて小さくなる場合もある。すなわち、検
出のスレショールドレベルの選び方によっては単一の欠
陥が隣接の画素を含めた3個から2個、さらには、真の
欠陥画素の1個だけを欠陥と検出することもある。以上
の説明から明らかなように、各画素像に係わる積算セン
サ画素群が当該画素像領域とその隣接画素像領域からな
る領域に収まるように積算センサ画素群のサイズを設定
すれば、連続する3画素以下の欠陥を検出した場合は単
一の欠陥と見なすことができ、さらにその中の異常光量
が最大となる画素をもって欠陥画素と判断することがで
きる。
Next, a method of inspecting the light quantity in the off state will be described. What is a defective pixel in the off state?
A pixel that emits a larger amount of light than the original amount of light in the off state. FIG. 2 shows the correspondence relationship between the pixel image area 1 and the sensor pixel 3 in the case where one pixel A is isolated and becomes defective and emits an abnormal light amount, and the neighboring pixels B and C are normal. In this example, a case where approximately two pixels correspond to one pixel image area is shown. In addition, the luminous intensity distribution at a low luminous intensity level in the off state is generally close to a uniform distribution, unlike the luminous state distribution in the lit state. Therefore, here, the pixel is described as a uniform distribution. 3 4 The sensor group of pixels integrated detects the amount of the defective pixel A centering 3 3 -
If there are three 3 5 sensor pixels, the sensor pixel group for detecting the light amount of the B pixel adjacent thereto is 3 1 to 3 3 , and 3 for the C pixel.
4 will be set to three to 3 7. The basic condition of this configuration is that the integrated sensor pixel group is set within the area formed by the pixel image area to be inspected and the adjacent pixel image area. As far as in this example, the light intensity of the defective pixel can be correctly detected by the integrated sensor pixel group consists of 3 3-3 5, abnormal amount of defective pixels in sensor pixel 3 3 a light quantity detection without pixel B defect 4 B is mistakenly detected. Further, even in the pixel C having no defect, the sensor pixel 3 5 erroneously detects the abnormal light amount 4 C of the defective pixel. This erroneously detected abnormal light amount changes depending on the corresponding positional relationship between the pixel image area and the sensor pixel. In general, the correspondence between the pixel image area and the sensor pixel is not unique, and changes spatially due to lens distortion or the like. It also changes depending on the number of corresponding sensor pixels per pixel image. In particular, when the number of corresponding sensor pixels per pixel image is not an integer, the relative position of the sensor pixel slightly shifts every time the pixel position shifts by one pixel even if there is no distortion in the lens. Therefore, the abnormal light amount that is erroneously detected differs depending on the pixel position. That is, depending on the corresponding positional relationship, the amount of light that is erroneously detected differs between pixels on both sides, and one may be large and the other may be small. In some cases, the amounts are almost equal. Further, both detection amounts may be extremely small. That is, depending on how to select a threshold level for detection, a single defect may be detected as 3 to 2 including adjacent pixels, and only one true defective pixel may be detected as a defect. As is clear from the above description, if the size of the integrated sensor pixel group is set so that the integrated sensor pixel group related to each pixel image fits within the area composed of the pixel image area and the adjacent pixel image area, three consecutive pixels are obtained. When a defect equal to or less than the pixel is detected, it can be regarded as a single defect, and the pixel having the maximum abnormal light amount can be determined as the defective pixel.

【0009】以上の実施例では、点灯状態と消灯状態の
2状態をとる2階調表示素子での説明をしたが、多階調
の場合でも、相対的に輝かせたブライト状態を点灯状態
に対応させ、相対的に暗くしたダーク状態を消灯状態に
対応させることで同様の検査ができる。なお、以上の説
明で明らかなように画素像に対応するセンサ画素の対応
付けが重要になる。各LCD画素像に対応するセンサ画
素は、あらかじめ対応関係情報を生成して記憶装置に保
持しておき、この対応関係情報をもちいて積算処理す
る。対応関係情報は例えば良品の表示素子を用いて各画
素の光量をピーク値として検出したセンサ画素を当該画
素に対応したセンサ画素と見なすなどの方法で生成す
る。この方法の場合、これ以降の検査対象となる表示素
子であるワークの設定位置はこの最初に対応関係情報を
生成するために設定した表示素子の位置とほぼ同じ位置
におく事になる。
In the above embodiments, the description has been given of the 2-gradation display element which has two states of the lighting state and the extinguishing state. However, even in the case of multi-gradation, the bright state which is relatively brightened is changed to the lighting state. The same inspection can be performed by making the dark state, which is made relatively dark, correspond to the unlit state. As is clear from the above description, it is important to associate sensor pixels with pixel images. The sensor pixels corresponding to each LCD pixel image generate correspondence relation information in advance and hold it in the storage device, and perform integration processing using this correspondence relation information. The correspondence information is generated, for example, by a method of using a non-defective display element and regarding a sensor pixel that has detected the light amount of each pixel as a peak value as a sensor pixel corresponding to the pixel. In the case of this method, the setting position of the work, which is the display element to be inspected thereafter, is almost the same as the position of the display element initially set for generating the correspondence information.

【0010】対応関係情報とはアドレスAの画素に対応
するセンサ画素のアドレスBを対応づける情報で、例え
ば記憶装置のアドレスAを画素のアドレスAに対応さ
せ、記憶装置のアドレスAの内容にBを格納することに
よって画素とセンサ画素の対応関係情報とする。したが
って、この場合アドレスAの画素の光量を検出するに
は、記憶装置のアドレスAの内容であるBを読み出し、
アドレスBのセンサ画素を中心にその前後のあらかじめ
定めておいた数のセンサ画素のアドレスを生成しつつセ
ンサ画素の検出光量を積算処理してアドレスAのLCD
画素の光量とする。
Correspondence relationship information is information for associating the address B of the sensor pixel corresponding to the pixel of the address A. For example, the address A of the memory device is made to correspond to the address A of the pixel, and the content of the address A of the memory device is set to B. Is stored as the correspondence information between the pixel and the sensor pixel. Therefore, in this case, in order to detect the light amount of the pixel of the address A, the content B of the address A of the storage device is read out,
The LCD of the address A is generated by integrating the detected light amount of the sensor pixel while generating the addresses of a predetermined number of sensor pixels before and after the sensor pixel of the address B.
It is the light amount of the pixel.

【0011】[0011]

【発明の効果】本発明を請求項1の通り構成し、検査対
象の表示画素をブライト状態とすると共に、その検査対
象の表示画素の近傍にある画素をダーク状態とし、当該
画素像に係わるセンサ画素群の個々のセンサ画素の検知
光量の積算値をもって検査対象画素の光量とする表示素
子検査画面読取方式は、検査対象の画素からの光量のほ
とんどを検出でき、隣接画素からの光量を低減できるこ
とから精度良く検査できる効果がある。本発明を請求項
2の通り構成し、各画素像に係わるセンサ画素群が当該
画素像領域とその隣接画素像領域からなる領域に収まる
ように設定し、当該画素像に係わるセンサ画素群の個々
のセンサ画素の検知光量の積算値をもって検査対象画素
の光量とする表示素子検査画面読取方式は、孤立欠陥を
連続する多重欠陥と区別し、欠陥位置とその光量を検出
することができ、検査分解能力を高める効果がある。
According to the present invention as set forth in claim 1, a display pixel to be inspected is brought into a bright state, and a pixel in the vicinity of the display pixel to be inspected is brought into a dark state, and a sensor relating to the pixel image concerned. The display element inspection screen reading method, which uses the integrated value of the detected light amount of each sensor pixel of the pixel group as the light amount of the inspection target pixel, can detect most of the light amount from the inspection target pixel and can reduce the light amount from the adjacent pixel. There is an effect that can be accurately inspected. According to a second aspect of the present invention, the sensor pixel group related to each pixel image is set so as to fit within the area including the pixel image area and the adjacent pixel image area, and each of the sensor pixel groups related to the pixel image is set. The display element inspection screen reading method, which uses the integrated value of the detected light amount of the sensor pixel as the light amount of the inspection target pixel, can distinguish the isolated defect from the continuous multiple defects and detect the defect position and its light amount. It has the effect of increasing ability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本に係わる複数のセンサ画素による
積算法による光量検出法を説明するための原理説明図で
ある。画素像領域とセンサ画素の対応関係、さらにこれ
らと点灯状態における光度分布特性の関係を示してい
る。
FIG. 1 is a principle explanatory view for explaining a light amount detection method by an integration method using a plurality of sensor pixels according to the basics of the present invention. The correspondence between the pixel image area and the sensor pixel and the relationship between these and the luminous intensity distribution characteristic in the lighting state are shown.

【図2】消灯状態における検査法を説明するための図
で、画素像領域とセンサ画素および光度分布特性の対応
関係を示している。
FIG. 2 is a diagram for explaining an inspection method in an off state, showing a correspondence relationship between a pixel image region, a sensor pixel, and a luminous intensity distribution characteristic.

【符号の説明】[Explanation of symbols]

1 画素像領域 2 光度分布特性 3 センサ画素 4, 5 センサ画素で検出される光量 1 Pixel image area 2 Luminous intensity distribution characteristics 3 Sensor pixels 4, 5 Light intensity detected by sensor pixels

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 検査対象の表示画素をブライト状態とす
ると共に、その検査対象の表示画素の近傍にある画素を
ダーク状態とし、当該画素像に係わるセンサ画素群の個
々のセンサ画素の検知光量の積算値をもって検査対象画
素の光量とすることを特徴とする表示素子検査画面読取
方式
1. A display pixel to be inspected is set to a bright state, and pixels in the vicinity of the display pixel to be inspected are set to a dark state to detect the amount of light detected by each sensor pixel of a sensor pixel group related to the pixel image. Display element inspection screen reading method characterized in that the integrated value is used as the light amount of the inspection target pixel
【請求項2】 各画素像に係わるセンサ画素群が当該画
素像領域とその隣接画素像領域からなる領域に収まるよ
うに設定し、当該画素像に係わるセンサ画素群の個々の
センサ画素の検知光量の積算値をもって検査対象画素の
光量とすることを特徴とする表示素子検査画面読取方式
2. The detection light amount of each sensor pixel of the sensor pixel group related to the pixel image is set so that the sensor pixel group related to each pixel image fits into a region consisting of the pixel image area and its adjacent pixel image area. Display element inspection screen reading method characterized in that the light amount of the pixel to be inspected is determined by the integrated value of
JP4188918A 1992-06-24 1992-06-24 Display element inspection screen reading method Expired - Lifetime JP2630893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4188918A JP2630893B2 (en) 1992-06-24 1992-06-24 Display element inspection screen reading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4188918A JP2630893B2 (en) 1992-06-24 1992-06-24 Display element inspection screen reading method

Publications (2)

Publication Number Publication Date
JPH0611679A true JPH0611679A (en) 1994-01-21
JP2630893B2 JP2630893B2 (en) 1997-07-16

Family

ID=16232168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4188918A Expired - Lifetime JP2630893B2 (en) 1992-06-24 1992-06-24 Display element inspection screen reading method

Country Status (1)

Country Link
JP (1) JP2630893B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875542A (en) * 1994-09-05 1996-03-22 Otsuka Denshi Kk Method for measuring quantity of light for display pixel, and method and apparatus for inspecting display screen
JP2009282548A (en) 2001-02-27 2009-12-03 Dolby Lab Licensing Corp High dynamic range display device
WO2010146733A1 (en) * 2009-06-18 2010-12-23 シャープ株式会社 Defect inspection method and defect inspection device for display panel
US8890799B2 (en) 2002-03-13 2014-11-18 Dolby Laboratories Licensing Corporation Display with red, green, and blue light sources
WO2014199773A1 (en) * 2013-06-14 2014-12-18 株式会社ナベル Hatching egg inspection device and hatching egg inspection method
JP2015001418A (en) * 2013-06-14 2015-01-05 株式会社ナベル Inspection device of hatching eggs, inspection system, and inspection method
US9756229B2 (en) 2012-02-10 2017-09-05 Robert Bosch Gmbh Module device for a camera system, retaining spring device and corresponding camera system
TWI758609B (en) * 2018-06-20 2022-03-21 日商日本麥克隆尼股份有限公司 Image generation device and image generation method
WO2023108546A1 (en) * 2021-12-16 2023-06-22 Jade Bird Display (Shanghai) Company Preset part-pattern group, methods of decomposing objective micro led array pattern, and methods of detecting pixel defect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246795A (en) * 1987-04-01 1988-10-13 日本電信電話株式会社 Display tester
JPH0416895A (en) * 1990-05-10 1992-01-21 Minato Electron Kk Read system for display element inspection screen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246795A (en) * 1987-04-01 1988-10-13 日本電信電話株式会社 Display tester
JPH0416895A (en) * 1990-05-10 1992-01-21 Minato Electron Kk Read system for display element inspection screen

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875542A (en) * 1994-09-05 1996-03-22 Otsuka Denshi Kk Method for measuring quantity of light for display pixel, and method and apparatus for inspecting display screen
US5638167A (en) * 1994-09-05 1997-06-10 Otsuka Electronics Co., Ltd. Method of measuring the light amount of a display picture element, display screen inspecting method and display screen inspecting apparatus
JP2009282548A (en) 2001-02-27 2009-12-03 Dolby Lab Licensing Corp High dynamic range display device
US10261405B2 (en) 2001-02-27 2019-04-16 Dolby Laboratories Licensing Corporation Projection displays
US9804487B2 (en) 2001-02-27 2017-10-31 Dolby Laboratories Licensing Corporation Projection displays
US9412337B2 (en) 2001-02-27 2016-08-09 Dolby Laboratories Licensing Corporation Projection displays
US8684533B2 (en) 2001-02-27 2014-04-01 Dolby Laboratories Licensing Corporation Projection displays
US9270956B2 (en) 2002-03-13 2016-02-23 Dolby Laboratories Licensing Corporation Image display
US10416480B2 (en) 2002-03-13 2019-09-17 Dolby Laboratories Licensing Corporation Image display
US11378840B2 (en) 2002-03-13 2022-07-05 Dolby Laboratories Licensing Corporation Image display
US8890799B2 (en) 2002-03-13 2014-11-18 Dolby Laboratories Licensing Corporation Display with red, green, and blue light sources
JPWO2010146733A1 (en) * 2009-06-18 2012-11-29 シャープ株式会社 Display panel defect inspection method and defect inspection apparatus
CN102460106A (en) * 2009-06-18 2012-05-16 夏普株式会社 Defect inspection method and defect inspection device for display panel
WO2010146733A1 (en) * 2009-06-18 2010-12-23 シャープ株式会社 Defect inspection method and defect inspection device for display panel
US9756229B2 (en) 2012-02-10 2017-09-05 Robert Bosch Gmbh Module device for a camera system, retaining spring device and corresponding camera system
US9435783B2 (en) 2013-06-14 2016-09-06 Nabel Co., Ltd. Hatching egg inspection apparatus and hatching egg inspecting method using a central and outer light emitter
US9494565B2 (en) 2013-06-14 2016-11-15 Nabel Co., Ltd. Hatching egg inspection apparatus with vibration isolation
WO2014199773A1 (en) * 2013-06-14 2014-12-18 株式会社ナベル Hatching egg inspection device and hatching egg inspection method
JP2015001418A (en) * 2013-06-14 2015-01-05 株式会社ナベル Inspection device of hatching eggs, inspection system, and inspection method
TWI758609B (en) * 2018-06-20 2022-03-21 日商日本麥克隆尼股份有限公司 Image generation device and image generation method
WO2023108546A1 (en) * 2021-12-16 2023-06-22 Jade Bird Display (Shanghai) Company Preset part-pattern group, methods of decomposing objective micro led array pattern, and methods of detecting pixel defect

Also Published As

Publication number Publication date
JP2630893B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
CN101346623B (en) Defect inspection device for inspecting defect by image analysis
KR100335529B1 (en) Pixel defect detector for solid-state imaging device
CN103369265A (en) Pixel information management apparatus and image capture apparatus using the same
US7024041B2 (en) Pattern inspection apparatus and method
JP2630893B2 (en) Display element inspection screen reading method
JP2006180099A (en) Pixel defect compensation device
US8310570B1 (en) Repairing defective pixels
JP2007078483A (en) Liquid level measuring method and liquid quantity measuring method
JP3618713B2 (en) Display screen inspection method and display screen inspection apparatus
JP3695120B2 (en) Defect inspection method
JP2903956B2 (en) Pixel defect correction device
JP2766942B2 (en) Display screen reading method of display element
JP2000101924A (en) Defect detection correction device in image input device
JP3784762B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
JP2007028292A (en) Infrared imaging apparatus
JP3062711B2 (en) How to measure the brightness of the LCD panel
JP2797239B2 (en) Display element inspection method
JP2004012256A (en) Pixel inspection device and pixel inspection method
JPH06323954A (en) Spot detection method and device
JP2008292241A (en) Display testing device
WO2024116953A1 (en) Defect image processing device
KR0174940B1 (en) Method for inspecting the projector in ama
KR0169208B1 (en) Camera device for lcd panel picture quality inspection device
JP2008076203A (en) Apparatus and method for inspecting defect
JP2000284059A (en) Radiation solid-detecting device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970204