JPH0611467A - Depth direction spectrometric method for specimen surface with sputtering - Google Patents

Depth direction spectrometric method for specimen surface with sputtering

Info

Publication number
JPH0611467A
JPH0611467A JP4170858A JP17085892A JPH0611467A JP H0611467 A JPH0611467 A JP H0611467A JP 4170858 A JP4170858 A JP 4170858A JP 17085892 A JP17085892 A JP 17085892A JP H0611467 A JPH0611467 A JP H0611467A
Authority
JP
Japan
Prior art keywords
sputtering
depth
analysis
secondary electron
depth direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4170858A
Other languages
Japanese (ja)
Inventor
Noriko Makiishi
規子 槇石
Akira Yamamoto
山本  公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4170858A priority Critical patent/JPH0611467A/en
Publication of JPH0611467A publication Critical patent/JPH0611467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To provide a depth direction analyzing method for the surface of a specimen using sputtering process. CONSTITUTION:Electron beams generated by an electron gun 1 are converged by an electromagnetic lens 2, etc., and cast onto a specimen S fixed to a stage 3. The secondary electrons including Auger electrons generated from} this part are passed through an energy analyzer 4, sensed/amplified by a secondary electron multiplier tube 5, and fed to a computer 6 to be analyzed as the energy spectrum, and at the same time, the secondary electron image obtained in two directions i.e., from a secondary electron sensor 8 and another 11 installed in different direction from it is fed to another computer 13 to determine the plane direction of the part to be analyzed as object. Into the depth, the sputtering time is converted into the depth using the relation between the previously determined plane direction and the speed of sputtering, and thereby the depth direction analysis can be performed quickly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スパッタリングによる
試料表面の深さ方向分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing a sample surface in the depth direction by sputtering.

【0002】[0002]

【従来の技術】各種材料の表面あるいは粒界近傍など約
数千Å以内の構造は材料の特性を左右するため、その組
成,構造を調べることは材料研究にとって不可欠のテー
マである。これを調べるには、一般に表面分析手法とい
われるたとえばオージェ電子分光法(以下、AESと略
称する)や2次イオン質量分析法(以下、SIMSと略
称する),X線光電子分光法(以下、ESCAと略称す
る)などが用いられる。
2. Description of the Related Art Since the structure of various materials, such as the surface or the vicinity of grain boundaries, within about several thousand liters influences the characteristics of the material, investigating their composition and structure is an essential theme for material research. To investigate this, for example, Auger electron spectroscopy (hereinafter abbreviated as AES), secondary ion mass spectrometry (hereinafter abbreviated as SIMS), which is generally referred to as surface analysis method, X-ray photoelectron spectroscopy (hereinafter ESCA). Is abbreviated) and the like are used.

【0003】このうちAESやSIMSは、ビームを絞
って分析するため、微小領域分析法として、粒界の分析
や微小析出物の分析などに利用されている。そして、こ
のような表面分析法の深さ方向分析では、いずれもスパ
ッタリングを利用し、スパッタリングした時間を深さに
換算して結果を求めるのが一般的である。ここで、AE
Sを例に詳細に述べる。一般に用いられる走査型AES
では、図6に示すように、電子銃1で発生させた電子線
を電磁レンズ2などにより集束して試料ステージ3に固
定された試料Sの上に照射する。試料Sの照射された部
位からはオージェ電子を含む2次電子が発生し、これを
エネルギー分析器4を介して2次電子増倍管5によりに
より検出・増幅し、コンピュータ6に取り込んでエネル
ギースペクトルとして解析に用い、その結果を解析用モ
ニタ7に表示する。また、2次電子検出器8からの信号
をブラウン管などのモニタ9に電子ビームの走査と同期
して表示させ、2次電子画像を観察して試料形状を認識
する。
Among them, AES and SIMS are used as a micro-region analysis method for analyzing grain boundaries and micro-precipitates because they analyze a beam by narrowing it down. In the depth direction analysis of such a surface analysis method, it is general to utilize sputtering and convert the sputtering time into the depth to obtain the result. Where AE
S will be described in detail. Scanning AES commonly used
Then, as shown in FIG. 6, the electron beam generated by the electron gun 1 is focused by the electromagnetic lens 2 or the like and irradiated onto the sample S fixed to the sample stage 3. Secondary electrons including Auger electrons are generated from the irradiated part of the sample S, detected and amplified by the secondary electron multiplier 5 through the energy analyzer 4, and then taken into the computer 6 to obtain the energy spectrum. Is used for analysis and the result is displayed on the analysis monitor 7. Further, the signal from the secondary electron detector 8 is displayed on the monitor 9 such as a cathode ray tube in synchronization with the scanning of the electron beam, and the secondary electron image is observed to recognize the sample shape.

【0004】深さ方向分析を行うには、スパッタ用のイ
オン銃9よりAr+ などのイオンを電圧をかけて加速して
試料Sの表面に照射し、スパッタリングを行う。このと
きスパッタリング時間を深さ方向に換算するには、予め
実際の分析の場合と同じ加速電圧において、あるイオン
電流密度で対象とする材料がどれくらいの速度で掘れて
いくか、すなわちスパッタリング速度を求めておく必要
がある。
In order to carry out the depth direction analysis, ions such as Ar + are accelerated by applying a voltage from the ion gun 9 for sputtering to irradiate the surface of the sample S to carry out sputtering. At this time, in order to convert the sputtering time to the depth direction, in advance, at the same acceleration voltage as in the case of actual analysis, how fast the target material is dug at a certain ion current density, that is, the sputtering speed is obtained. Need to be kept.

【0005】スパッタリング速度はイオン電流密度をフ
ァラデーカップで正確に測定し、その条件で厚さ既知の
対象とする材料をスパッタリングするか、またはスパッ
タリングした深さをプロファイル計のような測定器で直
接測定して、スパッタリング時間と深さの関係から求め
られる。実際に分析する前にイオン電流密度を測定して
おけば、スパッタリング速度は前述の結果より簡単に算
出でき、スパッタリング時間を深さに換算することがで
きる。
The sputtering speed is measured by accurately measuring the ion current density with a Faraday cup, and sputtering a target material of known thickness under that condition, or directly measuring the sputtered depth with a measuring instrument such as a profile meter. Then, it is obtained from the relationship between the sputtering time and the depth. If the ion current density is measured before the actual analysis, the sputtering rate can be easily calculated from the above result, and the sputtering time can be converted into the depth.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うに予め求められたスパッタリング速度を用いてそのま
まスパッタリング時間を深さに換算できるのは、スパッ
タリングする面がスパッタリング速度を求めた試料と同
じ角度を維持している場合に限られる。これは角度が変
わると、その面へのイオンの照射角度がスパッタリング
速度を求めた場合と異なるため、イオン電流密度が変化
してスパッタリング速度が変わることと、いわゆるスパ
ッタリング収率(入射イオン1個当たりにスパッタリン
グされる原子数)が角度依存性を有することによるもの
である。
However, the reason why the sputtering time can be directly converted into the depth by using the previously obtained sputtering rate is that the surface to be sputtered maintains the same angle as the sample for which the sputtering rate is obtained. Only if you are. This is because when the angle changes, the irradiation angle of the ions on the surface is different from that when the sputtering rate is obtained, so the ion current density changes and the sputtering rate changes, and the so-called sputtering yield (per incident ion) This is due to the fact that the number of atoms sputtered on the metal has an angle dependence.

【0007】このため、深さ方向分析においてスパッタ
リング時間を深さに換算して解析できるのは、めっき層
やシリコン基板上の薄膜など試料ホルダの面と分析面が
ほぼ同じ角度を維持できるような試料に限定されてい
た。すなわち、分析する面に凹凸があってスパッタリン
グ速度を求めた角度と異なる方向を向いている部分の分
析では、スパッタリングを行っても深さに換算すること
はできずにいた。
Therefore, in the depth direction analysis, it is possible to analyze the sputtering time by converting it to the depth so that the surface of the sample holder such as the plating layer or the thin film on the silicon substrate and the analysis surface can maintain substantially the same angle. It was limited to samples. That is, in the analysis of a portion in which the surface to be analyzed has unevenness and is oriented in a direction different from the angle at which the sputtering rate was obtained, it was not possible to convert it into the depth even if sputtering was performed.

【0008】しかし、AESやSIMSのように微小部
分の表面分析が可能な手法に対しては粒界などの分析も
求められる。たとえば、粒界への元素の濃化や100 Å以
下の粒界層の状況を調査するために、試料を破断して粒
界の面を露出させて分析する。このような破面では、各
分析する面の角度をスパッタリング速度を求めた角度に
維持することができないため、深さ方向分析を行っても
スパッタリングした深さを正確に得ることはできず、粒
界への元素の濃化の度合いを評価することができなかっ
た。
However, analysis of grain boundaries is also required for methods such as AES and SIMS capable of surface analysis of minute portions. For example, in order to investigate the concentration of elements in the grain boundaries and the condition of the grain boundary layer of 100 Å or less, the sample is broken and the surface of the grain boundary is exposed and analyzed. In such a fractured surface, the angle of each surface to be analyzed cannot be maintained at the angle for which the sputtering rate was obtained, and therefore the depth of sputtering cannot be accurately obtained even if depth direction analysis is performed. It was not possible to evaluate the degree of element enrichment in the field.

【0009】本発明は、上記のような従来技術の有する
課題を解決すべくしてなされたものであって、破面の深
さ方向分析のように一定の角度を維持できない分析面の
深さ方向分析において深さ情報を正確に求めることを可
能にしたスパッタリングによる試料表面の深さ方向分析
方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art. In the depth direction of the analysis surface, a constant angle cannot be maintained as in the depth direction analysis of the fracture surface. An object of the present invention is to provide a method for analyzing a depth direction of a sample surface by sputtering, which enables accurate determination of depth information in analysis.

【0010】[0010]

【課題を解決するための手段】本発明は、スパッタリン
グにより試料表面から深さ方向への元素の分布状態を分
析する方法であって、少なくとも2方向に2次電子検出
器を設置し、得られる複数の2次電子画像を用いて目的
とする分析部分の面方向を決定し、予め求めた面方向と
スパッタリング速度の関係からスパッタリング時間を深
さに換算して深さ方向分析を行うことを特徴とするスパ
ッタリングによる試料表面の深さ方向分析方法である。
The present invention is a method for analyzing the distribution state of elements in the depth direction from the surface of a sample by sputtering, which is obtained by installing secondary electron detectors in at least two directions. The feature is that the surface direction of the target analysis part is determined by using multiple secondary electron images, and the depth direction analysis is performed by converting the sputtering time into the depth based on the relationship between the surface direction and the sputtering speed obtained in advance. Is a method for analyzing the depth direction of the sample surface by sputtering.

【0011】[0011]

【作 用】まず、本発明の構成について走査型AESへ
適用した場合を説明すると、図1に示すように、2次電
子検出器8とは異なる方向にステレオ2次電子画像を得
るためのもう1個の2次電子検出器11を設ける。そし
て、この2次電子検出器11で撮像された2次電子画像は
モニタ12を介して演算処理用のコンピュータ13に送り込
まれ、従来の2次電子検出器8からの2次電子画像とと
もに分析面の角度を求めるための処理が行われる。
[Operation] First, a case where the configuration of the present invention is applied to a scanning AES will be described. As shown in FIG. 1, another method for obtaining a stereo secondary electron image in a direction different from that of the secondary electron detector 8 will be described. A secondary electron detector 11 is provided. Then, the secondary electron image picked up by the secondary electron detector 11 is sent to the computer 13 for arithmetic processing through the monitor 12, and the secondary electron image from the conventional secondary electron detector 8 and the analysis surface are displayed. Processing for determining the angle of is performed.

【0012】つぎに、図2に基づいてコンピュータ13内
での処理の手順を説明すると以下のごとくである。 2つの2次電子画像を入力する。 分析面を決定する。 分析面とイオン銃の角度を算出する。 スパッタリング速度を補正する。 スパッタリング時間を深さに換算する。
The procedure of processing in the computer 13 will be described below with reference to FIG. Input two secondary electronic images. Determine the analytical surface. Calculate the angle between the analysis plane and the ion gun. Correct the sputtering rate. Convert the sputtering time to depth.

【0013】ここで、ステップにおける分析面の決定
については2つの方法がある。すなわち、2方向からの
2次電子線像をステレオ像として画像処理により3次元
画像の構築を行い、分析面上の3点の空間座標より分析
面の角度とイオン銃の角度を求める第1の方法と、2つ
のステレオ像の対応する4点の位置関係と2次電子検出
器の位置関係から、4点が存在する面の方位を算出する
第2の方法とである。このうち、第1の方法では、画像
処理を用いるため時間を要するが、2次電子画像を撮影
できた範囲全体にわたっての3次元座標が得られ、また
第2の方法では計算が速いため、たとえば、試料傾斜機
構などを有する場合には分析面の角度を求めながら試料
を傾斜させ、目的の角度にセットして深さ方向分析を行
う。
There are two methods for determining the analysis plane in the step. That is, a three-dimensional image is constructed by image processing using secondary electron beam images from two directions as a stereo image, and the angle of the analysis surface and the angle of the ion gun are obtained from the spatial coordinates of three points on the analysis surface. The second method is to calculate the azimuth of the plane on which the four points exist, from the positional relationship between the corresponding four points of the two stereo images and the positional relationship of the secondary electron detector. Of these, the first method requires time because image processing is used, but three-dimensional coordinates can be obtained over the entire range in which the secondary electronic image can be captured, and the second method is quick in calculation. When a sample tilting mechanism is provided, the sample is tilted while the angle of the analysis surface is obtained, and the sample is tilted to the desired angle for depth direction analysis.

【0014】第1の方法についてさらに詳しく説明する
と、2つの2次電子画像を用いて、予め設定した2次電
子検出器の角度をもとに画像処理による3次元画像の構
築を行い、観察視野の各点の空間座標を求める。つぎに
目的とする面の中から3点を選び、その座標をピックア
ップすることにより、その面の法線ベクトルを求める。
予めその空間座標の中でイオン銃の方向を求めておくこ
とにより、前記した法線ベクトルからイオン銃と分析面
の角度を決定することができる。
The first method will be described in more detail. Using two secondary electron images, a three-dimensional image is constructed by image processing based on a preset angle of the secondary electron detector, and an observation field of view is obtained. Find the spatial coordinates of each point. Next, by selecting three points from the target surface and picking up the coordinates, the normal vector of that surface is obtained.
By previously obtaining the direction of the ion gun in the space coordinates, the angle between the ion gun and the analysis plane can be determined from the normal vector described above.

【0015】具体的には、構築した3次元座標における
分析面内の3点の座標を、(x1 ,y1 ,z1
(x2 ,y2 ,z2 )(x3 ,y3 ,z3 )とすると、
分析面は下式数1で表され、
Specifically, the coordinates of three points on the analysis plane in the constructed three-dimensional coordinates are (x 1 , y 1 , z 1 )
(X 2 , y 2 , z 2 ) (x 3 , y 3 , z 3 )
The analysis surface is expressed by the following equation 1,

【0016】[0016]

【数1】 [Equation 1]

【0017】この面に対する法線ベクトルは、下式数2
である。
The normal vector to this surface is expressed by the following equation 2
Is.

【0018】[0018]

【数2】 [Equation 2]

【0019】この法線ベクトルに平行な単位ベクトルは
簡単に算出することができ、それをA(ax,ay,a
z)、イオン銃の方向をI(ix,iy,iz)とする
と、この2つのベクトルのなす角度θは数3として表さ
れるので、分析面法線とイオン銃の角度θ求めることが
できる。
A unit vector parallel to this normal vector can be easily calculated, and it can be calculated as A (ax, ay, a
z) and the direction of the ion gun is I (ix, iy, iz), the angle θ formed by these two vectors is expressed by Equation 3, so that the angle θ between the analysis surface normal and the ion gun can be obtained. .

【0020】[0020]

【数3】 [Equation 3]

【0021】したがって、予め求めたスパッタリング速
度と角度の関係から補正係数を求め、スパッタリング速
度を補正してスパッタリング時間を深さに換算すること
ができる。また、第2の方法の場合は、たとえば図3に
示した破面のような分析面上から4点以上2つの2次電
子画像間の対応点を指定してその点の位置関係から分析
面(点a,b,c,dで画成された斜線部分)の角度を
求めることができるため、分析面法線とイオン銃の角度
を求めることができる。
Therefore, it is possible to calculate the correction coefficient from the relationship between the sputtering speed and the angle obtained in advance, correct the sputtering speed, and convert the sputtering time into the depth. Further, in the case of the second method, four or more points from the analysis surface such as the fracture surface shown in FIG. 3 are designated, and corresponding points between two secondary electron images are designated to determine the analysis surface from the positional relationship of the points. Since it is possible to obtain the angle of (the hatched portion defined by the points a, b, c, and d), the angle between the analysis surface normal and the ion gun can be obtained.

【0022】[0022]

【実施例】Mn-Zn フェライトの粒界への元素の濃化を観
察するため、破断により粒界を露出させて分析し、粒界
への濃化元素が粒内に向かってどのような濃度変化を示
すかを分析する際に、本発明法を適用した走査型AES
を用いてスパッタリング速度の角度依存性を実験的に求
めたところ、図4のような結果を得た。この結果と分析
面の角度を求めた結果より、その分析面に対して正確な
スパッタリング速度を適用することができる。
[Example] In order to observe the concentration of elements in the grain boundaries of Mn-Zn ferrite, the grain boundaries are exposed by fracture and analyzed, and the concentration of the enriched elements in the grain boundaries toward the grain is determined. Scanning AES to which the method of the present invention is applied when analyzing whether it shows a change
When the angle dependence of the sputtering rate was experimentally obtained using, the results shown in FIG. 4 were obtained. From this result and the result of obtaining the angle of the analysis surface, an accurate sputtering rate can be applied to the analysis surface.

【0023】また図5は、Ca添加量を変えて焼成したMn
−Znフェライト試料の粒界へ濃化したCaの分析例であ
り、試料AのCa添加量は試料Bの約2倍とされる。この
図から明らかなように、試料Aの場合は試料Bに比較し
て粒界への濃化量が多いだけでなく、粒内への広がりも
大きくなっていることがわかる。このように本発明法を
用いれば、その広がりを具体的な数値に換算して、定量
的に評価することができる。
Further, FIG. 5 shows Mn burned by changing the amount of Ca added.
This is an analysis example of Ca concentrated in the grain boundary of a -Zn ferrite sample, and the amount of Ca added to sample A is about twice that of sample B. As is clear from this figure, in the case of sample A, not only the amount of concentration at grain boundaries is large but also the spread into grains is larger than in sample B. As described above, by using the method of the present invention, the spread can be converted into a specific numerical value and quantitatively evaluated.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、分
析面の面方向が一定でない試料においても、スパッタリ
ングした距離を正確に求めることができるから、たとえ
ば粒界への元素濃化を破面の深さ方向によって評価する
場合に濃化した領域の大きさを定量的に表すことがで
き、これにより材料評価に役立てることが可能である。
As described above, according to the present invention, the sputtered distance can be accurately obtained even for a sample in which the plane direction of the analysis surface is not constant, so that, for example, the element concentration at the grain boundary is broken. When the evaluation is performed in the depth direction of the surface, the size of the concentrated region can be quantitatively expressed, which can be useful for material evaluation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の走査型AESへの適用例を示す構成図
である。
FIG. 1 is a configuration diagram showing an example of application of the present invention to a scanning AES.

【図2】本発明法の処理手順を示す流れ図である。FIG. 2 is a flowchart showing a processing procedure of the method of the present invention.

【図3】分析試料の破面の模式図である。FIG. 3 is a schematic view of a fractured surface of an analysis sample.

【図4】入射角とスパッタ速度比の関係を示す特性図で
ある。
FIG. 4 is a characteristic diagram showing a relationship between an incident angle and a sputtering speed ratio.

【図5】AESピーク強度と深さとの関係を示す特性図
である。
FIG. 5 is a characteristic diagram showing the relationship between AES peak intensity and depth.

【図6】走査型AESの従来例を示す構成図である。FIG. 6 is a configuration diagram showing a conventional example of a scanning AES.

【符号の説明】 1 電子銃 2 電磁レンズ 3 試料ステージ 4 エネルギー分析器 5 2次電子増倍管 6 コンピュータ 7 解析用モニタ 8 2次電子検出器 9 モニタ 10 イオン銃 11 モニタ 12 2次電子検出器 13 コンピュータ S 試料[Explanation of symbols] 1 electron gun 2 electromagnetic lens 3 sample stage 4 energy analyzer 5 secondary electron multiplier 6 computer 7 analysis monitor 8 secondary electron detector 9 monitor 10 ion gun 11 monitor 12 secondary electron detector 13 Computer S sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スパッタリングにより試料表面から深
さ方向への元素の分布状態を分析する方法であって、少
なくとも2方向に2次電子検出器を設置し、得られる複
数の2次電子画像を用いて目的とする分析部分の面方向
を決定し、予め求めた面方向とスパッタリング速度の関
係からスパッタリング時間を深さに換算して深さ方向分
析を行うことを特徴とするスパッタリングによる試料表
面の深さ方向分析方法。
1. A method for analyzing a distribution state of elements in the depth direction from a sample surface by sputtering, wherein secondary electron detectors are installed in at least two directions, and a plurality of secondary electron images obtained are used. The depth direction of the sample surface by sputtering is characterized by determining the surface direction of the target analysis part and converting the sputtering time to the depth based on the relationship between the surface direction and the sputtering speed obtained in advance. Direction analysis method.
JP4170858A 1992-06-29 1992-06-29 Depth direction spectrometric method for specimen surface with sputtering Pending JPH0611467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4170858A JPH0611467A (en) 1992-06-29 1992-06-29 Depth direction spectrometric method for specimen surface with sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4170858A JPH0611467A (en) 1992-06-29 1992-06-29 Depth direction spectrometric method for specimen surface with sputtering

Publications (1)

Publication Number Publication Date
JPH0611467A true JPH0611467A (en) 1994-01-21

Family

ID=15912626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4170858A Pending JPH0611467A (en) 1992-06-29 1992-06-29 Depth direction spectrometric method for specimen surface with sputtering

Country Status (1)

Country Link
JP (1) JPH0611467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069469A1 (en) * 2004-12-27 2006-07-06 Sae Magnetics (H.K.) Ltd. Method of nano thin film thickness measurement by auger electron spectrscopy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069469A1 (en) * 2004-12-27 2006-07-06 Sae Magnetics (H.K.) Ltd. Method of nano thin film thickness measurement by auger electron spectrscopy

Similar Documents

Publication Publication Date Title
CN101231160B (en) Method for representing nondestructive film
US5475218A (en) Instrument and method for 3-dimensional atomic arrangement observation
JP5591107B2 (en) Method and apparatus for composition analysis of materials
US7579591B2 (en) Method and apparatus for analyzing sample
US20030080292A1 (en) System and method for depth profiling
US5770861A (en) Apparatus for working a specimen
US10054557B2 (en) Method for measuring the mass thickness of a target sample for electron microscopy
US7449682B2 (en) System and method for depth profiling and characterization of thin films
JP7040496B2 (en) Sample observation method in electron microscope, image analyzer for electron microscope, image analysis method for electron microscope and electron microscope
JP2003249186A (en) Observation method and observation equipment by scanning transmission electron microscope
Sharp et al. Uranium ion yields from monodisperse uranium oxide particles
KR100955434B1 (en) Nondestructive characterization of thin films using measured basis spectra and/or based on acquired spectrum
JP3780620B2 (en) Electron spectrometer and transmission electron microscope equipped with the same
JPH0611467A (en) Depth direction spectrometric method for specimen surface with sputtering
JP3323042B2 (en) Method and apparatus for measuring three-dimensional element concentration distribution
Barr et al. Contrast formation in focused ion beam images of polycrystalline aluminum
JP2006118941A (en) Electronic probe x-ray analyzer for displaying surface analyzing data
US20030085350A1 (en) Ultimate analyzer, scanning transmission electron microscope and ultimate analysis method
US6462340B1 (en) Device for measuring crystal orientation and crystal distortion in polycrystalline materials
Newbury Measures for spectral quality in low‐voltage X‐ray microanalysis
Statham et al. A convenient method for X-ray analysis in TEM that measures mass thickness and composition
JP2002310957A (en) X-ray analyzer by electron excitation
JP3288972B2 (en) Three-dimensional atomic array observation method and apparatus
JP2996210B2 (en) Sample absorption current spectroscopy
JPH09145344A (en) Measuring method for film thickness