JPH0611330B2 - Lipoprotein removal device - Google Patents

Lipoprotein removal device

Info

Publication number
JPH0611330B2
JPH0611330B2 JP4253998A JP25399892A JPH0611330B2 JP H0611330 B2 JPH0611330 B2 JP H0611330B2 JP 4253998 A JP4253998 A JP 4253998A JP 25399892 A JP25399892 A JP 25399892A JP H0611330 B2 JPH0611330 B2 JP H0611330B2
Authority
JP
Japan
Prior art keywords
gel
plasma
sulfate
lipoprotein
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4253998A
Other languages
Japanese (ja)
Other versions
JPH05200111A (en
Inventor
敍孝 谷
恒夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63249652A priority Critical patent/JPH01145071A/en
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4253998A priority patent/JPH0611330B2/en
Publication of JPH05200111A publication Critical patent/JPH05200111A/en
Publication of JPH0611330B2 publication Critical patent/JPH0611330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、血液中の有害成分の除
去装置、さらに詳しくは、血液より分離された血漿から
リポ蛋白、特に低密度リポ蛋白(LDL)および/また
は極低密度リポ蛋白(VLDL)を選択的に吸着除去す
るリポ蛋白除去装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for removing harmful components in blood, and more particularly to lipoprotein, particularly low density lipoprotein (LDL) and / or very low density lipoprotein from plasma separated from blood. The present invention relates to a lipoprotein removal device that selectively removes (VLDL) by adsorption.

【0002】[0002]

【従来の技術】血液中に存在するリポ蛋白のうちLDL
はコレステロールを多く含み、動脈硬化の原因となるこ
とが知られている。とりわけ家族性高脂血症等の高コレ
ステロール症では正常値の数倍のLDL値を示し、冠動
脈の硬化等をひきおこす。この治療のため、血中のLD
Lの低下を目的として食事療法、プロブコール、コレス
チラミン等の薬物療法が行なわれているが効果に限界が
あり、副作用も懸念されている。特に家族性高脂血症に
対しては患者の血漿を分離した後、正常血漿あるいはア
ルブミン等を成分とする補液と交換する、いわゆる血漿
交換療法が現在のところほぼ唯一の効果的な治療法であ
る。しかしながら、周知の如く血漿交換療法は、(1)
高価な新鮮血漿あるいは血漿製剤を用いる必要がある、
(2)肝炎ビールス等の感染のおそれがある、(3)有
害成分のみでなく有用成分も同時に除去してしまう等の
欠点を有する。
2. Description of the Related Art Among the lipoproteins present in blood, LDL
Is rich in cholesterol and is known to cause arteriosclerosis. Particularly, in hypercholesterolemia such as familial hyperlipidemia, the LDL value is several times higher than the normal value, which causes hardening of the coronary arteries and the like. LD in blood for this treatment
Although drug therapy such as diet therapy, probucol, and cholestyramine is performed for the purpose of lowering L, the effects are limited and side effects are also a concern. Especially for familial hyperlipidemia, so-called plasma exchange therapy, in which the plasma of a patient is separated and then replaced with normal plasma or a replacement fluid containing albumin, etc., is almost the only effective treatment method at present. is there. However, as is well known, plasmapheresis therapy (1)
Need to use expensive fresh plasma or plasma products,
(2) There are drawbacks such that hepatitis virus may be infected, and (3) not only harmful components but also useful components are removed at the same time.

【0003】これらの欠点を解消する目的で膜による有
害成分の除去が試みられているが、選択性の点で満足で
きるものはいまだ得られていない。また、同じ目的で抗
原、抗体等を固定した、いわゆる免疫吸着体を用いる試
みがなされており、これは選択性の点ではほぼ満足でき
るものの、用いる抗原、抗体の入手が困難かつ高価であ
るという致命的な欠点を有する。
Attempts have been made to remove harmful components by means of a membrane for the purpose of eliminating these drawbacks, but none which is satisfactory in terms of selectivity has not yet been obtained. Further, for the same purpose, attempts have been made to use so-called immunoadsorbents on which antigens, antibodies, etc. are immobilized. Although this is almost satisfactory in terms of selectivity, it is difficult and expensive to obtain the antigens and antibodies to be used. Has a fatal drawback.

【0004】さらには、有害成分に親和性を有する化合
物(いわゆるリガンド)を固定した、いわゆるアフィニ
ティークロマトグラフの原理による吸着体も試みられて
いる。これに用いるリガンドは比較的安価で、選択性も
比較的よく好都合であるが、担体にアガロースに代表さ
れるソフトゲルを用いるため、カラムに充填した場合に
十分な流量を得るのが困難であった。すなわち近年発達
した体外循環回路を用いた血液、血漿かん流療法(いわ
ゆるプラズマフェレーシス等)にこれらの吸着体を用い
ようとすれば、高流量を得るためにカラム形状に特別の
工夫を要し、またしばしば詰まりを生ずるため予備のカ
ラムを用意しておく必要があるなど問題点が多く、安定
して治療を行える状況には到っていない。吸着体の流れ
特性を向上させるためには機械強度の大きい担体を用い
ればよいのは明白であるが、これらの担体を用いるとア
ガロース等のソフトゲルに比べて吸着能力が低下するこ
とが知られている。
Further, an adsorbent based on the so-called affinity chromatograph, in which a compound (so-called ligand) having an affinity for harmful components is immobilized, has been tried. The ligand used for this is relatively inexpensive and has relatively good selectivity, which is convenient, but since a soft gel typified by agarose is used as a carrier, it is difficult to obtain a sufficient flow rate when packed in a column. It was In other words, if these adsorbents are to be used for blood and plasma perfusion therapy (so-called plasmapheresis, etc.) that uses an extracorporeal circulation circuit that has been developed in recent years, a special shape of the column is required to obtain a high flow rate. Also, there are many problems such as the need to prepare a spare column because it often causes clogging, and it has not reached a situation where stable treatment can be performed. It is obvious that a carrier having a high mechanical strength may be used to improve the flow characteristics of the adsorbent, but it is known that the use of these carriers lowers the adsorption ability as compared with a soft gel such as agarose. ing.

【0005】一方、硫酸化多糖等のポリアニオン化合物
がリポ蛋白と親和性をもち、金属イオンの共存下で沈澱
を形成することが知られており〔例えばM.Burnstein an
d H.R.Scholnic.Adv.in Lipid,Res.,11,67(1973)〕、臨
床分析等に用いられている。しかしながらこの方法で患
者の血中からLDLを除去しようとすれば、処理しよう
とする血漿に対し少なくとも0.05%のポリアニオン
化合物および0.02M以上の金属イオンを添加しなけ
ればならず、また生じた沈澱を遠心分離等の方法で分離
する必要が生じ、操作が煩雑で危険性が高く、事実上適
用不可能であった。
On the other hand, it is known that polyanion compounds such as sulfated polysaccharides have affinity with lipoproteins and form precipitates in the presence of metal ions [eg M. Burnstein an
d HRScholnic.Adv. in Lipid, Res., 11, 67 (1973)], and is used for clinical analysis and the like. However, if LDL is to be removed from the blood of a patient by this method, at least 0.05% of the polyanion compound and 0.02 M or more of metal ion must be added to the plasma to be treated, and Since it was necessary to separate the precipitate by a method such as centrifugation, the operation was complicated and dangerous, and it was practically impossible to apply.

【0006】[0006]

【発明が解決しようとする課題】本発明は、安価で流れ
特性がよく、かつソフトゲルを担体に用いた場合に比し
吸着能力が低下しない、除去能力に優れたリポ蛋白吸着
体を得、これを充填したカラムからなる血漿からのリポ
蛋白除去装置を提供するものである
DISCLOSURE OF THE INVENTION The present invention provides a lipoprotein adsorbent which is inexpensive and has good flow characteristics, and which does not have a lower adsorptivity as compared with the case where a soft gel is used as a carrier and has an excellent removal capacity. The present invention provides a device for removing lipoprotein from plasma, which comprises a column packed with this.

【0007】[0007]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、特定のポーラスポリマーハードゲルを用い、これ
にリポ蛋白と親和性を有するポリアニオン化合物を固定
してなる吸着体をカラムに充填してなる装置により上記
課題が解決される事を見出し、本発明を完成した。すな
わち本発明は、a)血漿分離手段と、b)血漿分離手段
から送られてくる血漿の流入口とリポ蛋白吸着除去後の
血漿の流出口とを有し、球状蛋白質の排除限界分子量が
100万以上1億以下のポーラスポリマーハードゲルに
リポ蛋白と親和性を有するポリアニオン化合物を固定し
てなる吸着体を充填したカラムとから構成される血漿か
らのリポ蛋白除去装置を要旨とする。
Means for Solving the Problems As a result of earnest research by the present inventors, the column was packed with an adsorbent obtained by using a specific porous polymer hard gel and immobilizing a polyanion compound having an affinity for lipoprotein on the gel. The inventors have found that the above-mentioned problems can be solved by the device, and have completed the present invention. That is, the present invention has a) plasma separation means, b) an inlet for plasma that is sent from the plasma separation means, and an outlet for plasma after lipoprotein adsorption and removal, and the exclusion limit molecular weight of globular proteins is 100. A gist is a device for removing lipoproteins from plasma, which comprises a column filled with an adsorbent comprising a polyanion compound having an affinity for lipoproteins immobilized on a porous polymer hard gel of 10,000 to 100 million.

【0008】以下詳細に本発明を説明する。本発明に用
いるに適した吸着体の担体は、(1)耐圧性であるこ
と、(2)比較的大きな径の細孔を有することが必要で
あり、ポリマーハードゲルは本発明に最も適した担体で
ある。ここでいうハードゲルとは、デキストラン、アガ
ロース、アクリルアミド等のソフトゲルに比べ溶媒によ
る膨潤が少なく、また圧力により変形しにくいゲルのこ
とをいう。ハードゲルとソフトゲルは次の方法により区
別することができる。すなわち後記参考例に示したごと
くゲルを円筒状カラムに均一に充填し、水性液体を流し
た際の圧力損失と流量の関係が、ハードゲルではほぼ直
線となるのに対し、ソフトゲルでは圧力がある点を越え
るとゲルが変形し圧密化して流量が増加しなくなる。本
発明では後記参考例に示したカラムを用いた場合、少な
くとも0.3kg/cm2まで上記直線関係のあるものをハー
ドゲルと称する。
The present invention will be described in detail below. The carrier of the adsorbent suitable for use in the present invention is required to have (1) pressure resistance and (2) have pores having a relatively large diameter, and the polymer hard gel is most suitable for the present invention. It is a carrier. The hard gel referred to here is a gel which is less swelled by a solvent than a soft gel such as dextran, agarose, acrylamide and the like, and is hard to be deformed by pressure. Hard gel and soft gel can be distinguished by the following method. That is, as shown in the reference example below, the gel is uniformly packed in a cylindrical column, and the relationship between the pressure loss and the flow rate when the aqueous liquid is flowed is almost linear in the hard gel, whereas there is pressure in the soft gel. If the point is exceeded, the gel will be deformed and consolidated and the flow rate will not increase. In the present invention, when the column shown in the reference example described later is used, one having the above linear relationship up to at least 0.3 kg / cm 2 is called a hard gel.

【0009】次に要求される性質は、比較的大きな径の
細孔を有することである。すなわちLDLは分子量が少
なくとも100万以上といわれる巨大分子であり、これ
を吸着除去するためにはLDLが細孔内に侵入できるこ
とが必要である。次にLDLが細孔内に侵入できても、
細孔内に侵入する確立がある程度大きくなければ吸着体
としての性能は低い、即ち移動相と固定相(細孔内)間
の分配比(固定相の濃度/移動相の濃度)が大きいほど
好ましいと考えられる。従って細孔径が大きいほど有利
と思われる。細孔径の測定法には種々あり、水銀圧入法
が最もよく用いられているが、ポリマーハードゲルの場
合には適用できないことがある。従って細孔径の目安と
して排除限界分子量を用いるのが適当である。排除限界
分子量とは成書(例えば波多野博行、花井俊彦著、実験
高速液体クロマトグラフィー、化学同人)等に述べられ
ているごとく、ゲル浸透クロマトグラフィーにおいて細
孔内に侵入できない(排除される)分子のうち最も小さ
い分子量をもつものの分子量をいう。
The next required property is to have pores having a relatively large diameter. That is, LDL is a macromolecule which is said to have a molecular weight of at least 1,000,000 or more, and it is necessary for LDL to be able to penetrate into pores in order to adsorb and remove it. Next, if LDL can penetrate into the pores,
The performance as an adsorbent is low unless the probability of penetrating into the pores is large to some extent, that is, the larger the distribution ratio (concentration of stationary phase / concentration of mobile phase) between the mobile phase and stationary phase (in the pores), the better. it is conceivable that. Therefore, it seems that the larger the pore size, the more advantageous. There are various methods for measuring the pore size, and the mercury intrusion method is most often used, but it may not be applicable in the case of polymer hard gel. Therefore, it is appropriate to use the exclusion limit molecular weight as a measure of the pore size. Exclusion limit molecular weight is a molecule that cannot enter (exclude) in the pores of gel permeation chromatography as described in books such as Hiroyuki Hatano and Toshihiko Hanai, Experimental High Performance Liquid Chromatography, Kagaku Dojin. The molecular weight of the one with the smallest molecular weight.

【0010】現象的には、排除限界分子量以上の分子は
移動相体積Vo 近傍に溶出されることから、種々の分子
量の化合物を用いて溶出体積との関係を調べれば排除限
界分子量を求めることができる。排除限界分子量は対象
とする化合物の種類により異なることが知られており、
一般に球状蛋白質、デキストラン、ポリエチレングリコ
ール等についてよく調べられているが、リポ蛋白につい
ては殆ど調べられていない。従って最も類似している球
状蛋白質(ビールスを含む)を用いて得られた値を用い
るのが適当である。排除限界の異なる種々の担体を用い
て検討した結果、予想に反し排除限界分子量がLDLの
分子量より小さい100万程度のものである程度のLD
L吸着能を示し、また細孔径の大きいもの程能力が大き
いわけではなく、むしろLDL以外の蛋白が除去される
ことから最適な細孔径の範囲が存在することが明らかに
なった。すなわち100万未満の排除限界分子量をもつ
担体を用いた場合はLDLの除去量は小さく実用に耐え
ないが、排除限界分子量が100万ないし数百万とLD
Lの分子量に近い担体でも、ある程度実用に供し得る吸
着体が得られる。
Phenomenonally, molecules having an exclusion limit molecular weight or more are eluted near the mobile phase volume Vo, so that the exclusion limit molecular weight can be determined by investigating the relationship with the elution volume using compounds having various molecular weights. it can. It is known that the exclusion limit molecular weight varies depending on the type of target compound,
Generally, globular proteins, dextran, polyethylene glycol, etc. have been well investigated, but lipoproteins have hardly been investigated. Therefore, it is appropriate to use the values obtained with the most similar globular proteins (including viruses). As a result of examination using various carriers having different exclusion limits, it was unexpectedly expected that the exclusion limit molecular weight was smaller than that of LDL by about 1 million LD.
It has been demonstrated that L-adsorption capacity is exhibited, and that the larger the pore size, the larger the capacity is. Rather, proteins other than LDL are removed, so that the optimum pore size range exists. That is, when a carrier having an exclusion limit molecular weight of less than 1 million is used, the amount of LDL removed is small and cannot be practically used, but the exclusion limit molecular weight is 1 million to several million.
Even with a carrier having a molecular weight close to L, an adsorbent that can be put to practical use to some extent can be obtained.

【0011】一方排除限界分子量とLDLの吸着量、お
よびLDL以外の蛋白質の吸着(いわゆる非特異吸着)
との関係を調べると、排除限界分子量が大きくなるにつ
れLDLの吸着量が増加するが、この増加は排除限界が
1000万を越えると頭打ちとなり、一方LDL以外の
蛋白、例えばLGG、IGM等の吸着が目立つようにな
ることがわかった。さらに排除限界分子量が1億を越え
るとリガンドの固定化量が減少して結果的にLDLの吸
着量が減り、非特異吸着が無視できなくなる。従って本
発明に用いる担体の好ましい排除限界分子量は100万
以上1億以下であり、最も好ましくは300万以上70
00万以下である。
On the other hand, exclusion limit molecular weight and LDL adsorption amount, and adsorption of proteins other than LDL (so-called non-specific adsorption)
The amount of LDL adsorbed increases as the exclusion limit molecular weight increases, but this increase reaches a peak when the exclusion limit exceeds 10 million, while the adsorption of proteins other than LDL, such as LGG and IGM. Was found to be noticeable. Further, when the exclusion limit molecular weight exceeds 100 million, the amount of immobilized ligand decreases, and consequently the amount of LDL adsorbed decreases, and nonspecific adsorption cannot be ignored. Therefore, the preferred exclusion limit molecular weight of the carrier used in the present invention is 1 million or more and 100 million or less, and most preferably 3 million or more and 70
It is, 000,000 or less.

【0012】次に担体の多孔構造については表面多孔性
よりも全多孔性が好ましく、空孔容積が20%以上であ
ることが好ましい。担体の形状は、粒状、繊維状、膜
状、ホローファイバー状等任意の形状を選ぶことができ
る。粒子状の担体を用いる場合、その粒子径は1μ以上
5000μ以下であることが望ましい。さらに担体表面
には固定化反応に用い得る官能基あるいは容易に活性化
し得る官能基が存在していると好都合である。これらの
官能基の代表例としては、アミノ基、カルボキシル基、
ヒドロキシル基、チオール基、酸無水物基、サクシニル
イミド基、塩素基、アルデヒド基、アミド基、エポキシ
基等があげられる。
Next, regarding the porous structure of the carrier, the total porosity is preferable to the surface porosity, and the pore volume is preferably 20% or more. As the shape of the carrier, any shape such as a granular shape, a fibrous shape, a film shape, and a hollow fiber shape can be selected. When a particulate carrier is used, its particle size is preferably 1 μ or more and 5000 μ or less. Furthermore, it is convenient that a functional group that can be used in the immobilization reaction or a functional group that can be easily activated is present on the surface of the carrier. Typical examples of these functional groups include an amino group, a carboxyl group,
Examples thereof include a hydroxyl group, a thiol group, an acid anhydride group, a succinylimide group, a chlorine group, an aldehyde group, an amide group and an epoxy group.

【0013】本発明に適したポリマーハードゲルの代表
例としては、スチレン−ジビニルベンゼン共重合体、架
橋ポリビニルアルコール、架橋ポリアクリレート、架橋
されたビニルエーテル−無水マレイン酸共重合体、架橋
されたスチレン−無水マレイン酸共重合体、架橋ポリア
ミド等の合成高分子の硬質多孔体、およびこれらの表面
に多糖類、合成高分子等をコーティングしたもの等があ
げられるが、これらに限定されるわけではない。これら
のポリマーハードゲルは単独で用いてもよいし2種類以
上混合してもよい。
Typical examples of the polymer hard gel suitable for the present invention include styrene-divinylbenzene copolymer, crosslinked polyvinyl alcohol, crosslinked polyacrylate, crosslinked vinyl ether-maleic anhydride copolymer, and crosslinked styrene-. Examples thereof include, but are not limited to, maleic anhydride copolymers, hard porous materials of synthetic polymers such as crosslinked polyamide, and those whose surfaces are coated with polysaccharides, synthetic polymers and the like. These polymer hard gels may be used alone or in combination of two or more.

【0014】本発明に用いるに適したリポ蛋白と親和性
を有するポリアニオン化合物の代表例としては、デキス
トラン硫酸、コンドロイチン硫酸、コンドロイチンポリ
硫酸、ヘパラン酸、ケラタン硫酸、ヘパリチン硫酸、キ
シラン硫酸、カロニン硫酸、セルロース硫酸、キチン硫
酸、キトサン硫酸、ペクチン硫酸、イヌリン硫酸、アル
ギン酸硫酸、グリコーゲン硫酸、ポリラクトース硫酸、
カラゲニン硫酸、デンプン硫酸、ポリグルコース硫酸、
ラミナリン硫酸、ガラクタン硫酸、レバン硫酸、メベサ
ルフェート等の硫酸化多糖、リンタングステン酸、ポリ
硫酸化アネトール、ポリビニルアルコール硫酸、ポリリ
ン酸等があげられる。最も好ましい例としては、デキス
トラン硫酸、コンドロイチンポリ硫酸があげられる。
Typical examples of the polyanion compound having affinity with lipoprotein suitable for use in the present invention include dextran sulfate, chondroitin sulfate, chondroitin polysulfate, heparanic acid, keratan sulfate, heparitin sulfate, xylan sulfate, caronine sulfate, Cellulose sulfate, chitin sulfate, chitosan sulfate, pectin sulfate, inulin sulfate, alginate sulfate, glycogen sulfate, polylactose sulfate,
Carrageenin sulfate, starch sulfate, polyglucose sulfate,
Examples thereof include sulfated polysaccharides such as laminarin sulfate, galactan sulfate, levan sulfate, mebesulfate, phosphotungstic acid, polysulfated anethole, polyvinyl alcohol sulfate, and polyphosphoric acid. The most preferable examples include dextran sulfate and chondroitin polysulfate.

【0015】リポ蛋白と親和性を有する化合物(リガン
ド)を担体に固定する方法としては既知の種々の方法を
用いることができる。すなわち物理的吸着法、イオン結
合法、共有結合法等である。本発明に用いる吸着体は、
滅菌時等にリガンドが脱離しないことが重要であるので
結合の強固な共有結合法が望ましく、イオン結合法を用
いるにしてもリガンドを共有結合的に架橋にしておくこ
とが望ましい。また必要によりスペーサーを担体とリガ
ンドの間に導入してもよい。リガンドの固定化量につい
ては、リガンドの性状、活性により異なるが、有意のリ
ポ蛋白吸着量を得るにはカラム体積1mlあたり0.02
mg以上が好ましく、また経済性を考慮すると100mg以
下が望ましい。さらに好ましくはカラム体積1mlあたり
0.5mg以上20mg以下である。
As a method of immobilizing a compound (ligand) having an affinity for lipoprotein on a carrier, various known methods can be used. That is, a physical adsorption method, an ionic bonding method, a covalent bonding method and the like. The adsorbent used in the present invention is
Since it is important that the ligand is not detached during sterilization, a covalent bond method with a strong bond is preferable, and it is preferable that the ligand is covalently crosslinked even when the ionic bond method is used. If necessary, a spacer may be introduced between the carrier and the ligand. The amount of immobilized ligand varies depending on the nature and activity of the ligand, but 0.02 per 1 ml of column volume is required to obtain a significant amount of lipoprotein adsorption.
It is preferably at least mg, and preferably 100 mg or less in consideration of economic efficiency. More preferably, it is 0.5 mg or more and 20 mg or less per 1 ml of the column volume.

【0016】上記の如くして得られた吸着体は、一方に
血漿分離手段から送られてくる血漿の流入口と他方にリ
ポ蛋白吸着除去後の血漿の流出口とを備えたカラム内に
充填される。血漿分離手段としては特に制限はなく、公
知の分離手段が用いられる。本発明の装置を用いてリポ
蛋白を除去するには、先ず血漿分離手段により血液から
血漿を連続的に分離した後、該血漿を流入口から吸着体
の充填されたカラム内に導入し、そこで血漿中のリポ蛋
白を選択的に吸着除去した後、流出口よりカラム外に排
出する。本発明の装置を用いてLDLを除去する際、処
理しようとする血漿に多価金属イオンを添加することに
より除去効率、選択性を向上させることが可能である。
この目的に用いる多価金属イオンとしては、カルシウ
ム、マグネシウム、バリウム、ストロンチウム等のアル
カリ土類金属イオン、アルミニウム等のII属元素イオ
ン、マンガン等のVII 属元素イオン、コバルト等のVIII
属元素イオン等があげられる。
The adsorbent obtained as described above is packed in a column having an inlet for plasma sent from the plasma separation means on one side and an outlet for plasma after lipoprotein adsorption and removal on the other side. To be done. The plasma separation means is not particularly limited, and known separation means can be used. To remove lipoproteins using the device of the present invention, first, plasma is continuously separated from blood by plasma separation means, and then the plasma is introduced from an inlet into a column filled with an adsorbent, where The lipoprotein in plasma is selectively adsorbed and removed, and then discharged from the column through the outlet. When removing LDL using the apparatus of the present invention, it is possible to improve the removal efficiency and selectivity by adding polyvalent metal ions to the plasma to be treated.
The polyvalent metal ions used for this purpose include alkaline earth metal ions such as calcium, magnesium, barium and strontium, group II element ions such as aluminum, group VII element ions such as manganese, and group VIII such as cobalt.
Examples include genus element ions.

【0017】[0017]

【実施例】以下実施例により本発明をさらに詳しく説明
する。 参考例 両端に孔径15μmのフィルターを装着したガラス製円
筒カラム(内径9mm、カラム長150mm)に、ソフトゲ
ルとしてアガロースゲル(Biorad社製Biogel A5m、粒径
50〜100メッシュ)、ポリマーハードゲルとして東
ソー株式会社製トヨパールHW65(粒径50〜100μ
m)を、それぞれ均一に充填し、ペリスタティックポン
プにより水を流し、流量と圧力損失の関係を求めた。結
果を図1に示す。図1は、ポリマーハードゲルの場合は
圧力の増加にほぼ比例して流量が増加するのに対し、ア
ガロースゲルの場合は圧密化を引き起し圧力を増加させ
ても流量が増加しないことを示している。
The present invention will be described in more detail with reference to the following examples. Reference Example A glass cylindrical column (inner diameter 9 mm, column length 150 mm) equipped with filters with pore diameters of 15 μm on both ends, agarose gel (Biorad Biogel A5m, particle size 50-100 mesh) as a soft gel, and Tosoh as a polymer hard gel. Toyo Pearl HW65 (particle size 50-100μ
m) were uniformly filled, and water was caused to flow by a peristaltic pump to determine the relationship between the flow rate and the pressure loss. The results are shown in Fig. 1. FIG. 1 shows that in the case of polymer hard gel, the flow rate increases almost in proportion to the increase in pressure, whereas in the case of agarose gel, the flow rate does not increase even if pressure is increased by causing consolidation. ing.

【0018】実施例1〜6、比較例1 (1)吸着体A〜Gの製造 吸着体A:架橋アクリレートゲル(全多孔性のハードゲ
ル)であるトヨパールHW55〔球状蛋白質の排除限界分子
量(以下、蛋白質の排除限界と略称する)700,000 、粒
径50〜100μm〕10mlに飽和NaOH水溶液6m
l、エピクロルヒドリン15mlを加え攪拌しながら50
℃で2時間反応しエポキシ化ゲルを得た。このゲルに濃
アンモニア水20mlを加え50℃で2時間攪拌しアミノ
基を導入した。得られたエポキシ化ゲル2mlに0.5g
のデキストラン硫酸ナトリウムを含む水溶液2mlを加え
pHを12に調整した。この混合液を40℃に保ち18時
間反応させた後、ゲルを濾別し、2モル食塩水溶液、
0.5モル食塩水溶液、次いで水で洗浄した。未反応の
エポキシ基をモノエタノールアミンと反応させることに
よりブロックし、デキストラン硫酸ナトリウムが固定さ
れたゲルを得た。固定化量は1.6mg/mlであった。
Examples 1 to 6 and Comparative Example 1 (1) Production of Adsorbents A to G Adsorbent A: Toyopearl HW55 [cross-linked acrylate gel (totally porous hard gel)] Abbreviated as protein exclusion limit) 700,000, particle size 50-100 μm] 10 ml, saturated NaOH aqueous solution 6 m
l, add epichlorohydrin 15ml and stir 50
The reaction was carried out at 0 ° C for 2 hours to obtain an epoxidized gel. 20 ml of concentrated aqueous ammonia was added to this gel and stirred at 50 ° C. for 2 hours to introduce an amino group. 0.5 g in 2 ml of the epoxidized gel obtained
Add 2 ml of an aqueous solution containing dextran sodium sulfate
The pH was adjusted to 12. After keeping this mixed solution at 40 ° C. and reacting for 18 hours, the gel was separated by filtration, and a 2 molar saline solution,
It was washed with a 0.5 molar saline solution and then with water. Unreacted epoxy groups were blocked by reacting with monoethanolamine to obtain a gel with dextran sodium sulfate immobilized. The immobilized amount was 1.6 mg / ml.

【0019】吸着体B:架橋アクリレートゲル(全多孔
性のハードゲル)であるトヨパールHW60(蛋白質の排除
限界1,000,000 、粒径50〜100μm)10mlに飽和
NaOH水溶液6ml、エピクロルヒドリン15mlを加え
攪拌しながら50℃で2時間反応しエポキシ化ゲルを得
た。このゲルに濃アンモニア水20mlを加え50℃で2
時間攪拌しアミノ基を導入した。得られたエポキシ化ゲ
ル2mlに0.5gのデキストラン硫酸ナトリウムを含む
水溶液2mlを加えpHを12に調整した。この混合液を4
0℃に保ち18時間反応させた後、ゲルを濾別し、2モ
ル食塩水溶液、0.5モル食塩水溶液、次いで水で洗浄
した。未反応のエポキシ基をモノエタノールアミンと反
応させることによりブロックし、デキストラン硫酸ナト
リウムが固定されたゲルを得た。固定化量は1.0mg/
mlであった。
Adsorbent B: Toyopearl HW60 (protein exclusion limit 1,000,000, particle size 50 to 100 μm), which is a crosslinked acrylate gel (totally porous hard gel), was added with saturated NaOH aqueous solution 6 ml and epichlorohydrin 15 ml at 50 ° C. with stirring. And reacted for 2 hours to obtain an epoxidized gel. To this gel, add 20 ml of concentrated aqueous ammonia, and then at 50 ° C for 2
After stirring for an hour, an amino group was introduced. To 2 ml of the obtained epoxidized gel was added 2 ml of an aqueous solution containing 0.5 g of sodium dextran sulfate to adjust the pH to 12. Add this mixture to 4
After keeping at 0 ° C. and reacting for 18 hours, the gel was separated by filtration and washed with a 2 molar saline solution, a 0.5 molar saline solution, and then with water. Unreacted epoxy groups were blocked by reacting with monoethanolamine to obtain a gel with dextran sodium sulfate immobilized. Immobilization amount is 1.0 mg /
It was ml.

【0020】吸着体C:架橋アクリレートゲル(全多孔
性のハードゲル)であるトヨパールHW65(蛋白質の排除
限界 5,000,000、粒径50〜100μm)10mlに飽和
NaOH水溶液6ml、エピクロルヒドリン15mlを加え
攪拌しながら50℃で2時間反応しエポキシ化ゲルを得
た。このゲルに濃アンモニア水20mlを加え50℃で2
時間攪拌しアミノ基を導入した。次いでコンドロイチン
ポリ硫酸200mgを10mlの水に溶解しpHを4.5に調
整した後、これに3mlの上記アミノ基含有ゲルを加え
た。これに1−エチル−3−(ジメチルアミノプロピ
ル)−カルボジイミド200mgをpHを4.5に保ちなが
ら添加し4℃で24時間振とうした。反応終了後、2モ
ル食塩水溶液、0.5モル食塩水溶液、次いで水で洗浄
しコンドロイチンポリ硫酸固定化トヨパールゲルHW65を
得た。固定化量は1.2mg/mlであった。
Adsorbent C: Crosslinked acrylate gel (totally porous hard gel) Toyopearl HW65 (protein exclusion limit 5,000,000, particle size 50 to 100 μm) 10 ml, saturated aqueous NaOH solution 6 ml, epichlorohydrin 15 ml were added and stirred at 50 ° C. And reacted for 2 hours to obtain an epoxidized gel. To this gel, add 20 ml of concentrated aqueous ammonia, and then at 50 ° C for 2
After stirring for an hour, an amino group was introduced. Then, 200 mg of chondroitin polysulfate was dissolved in 10 ml of water to adjust the pH to 4.5, and then 3 ml of the above-mentioned amino group-containing gel was added thereto. 200 mg of 1-ethyl-3- (dimethylaminopropyl) -carbodiimide was added thereto while keeping the pH at 4.5, and the mixture was shaken at 4 ° C. for 24 hours. After completion of the reaction, the product was washed with a 2 molar saline solution, a 0.5 molar saline solution and then with water to obtain chondroitin polysulfate-immobilized Toyopearl gel HW65. The immobilized amount was 1.2 mg / ml.

【0021】吸着体D:全多孔性セルロースハードゲル
であるセルロファインA−3(チッソ株式会社製、蛋白
質の排除限界50,000,000、粒径45〜105μm,)を
フィルター上で吸引し水分を減少させた後、その10g
をとり、これに20%NaOH4gとヘプタン12g、
さらにノニオン性界面活性剤TWEEN20を1滴加え
40℃で2時間攪拌した。これにエピクロルヒドリン5
gを加え40℃でさらに2時間攪拌した。反応終了後上
澄みを廃棄し、ゲルを水洗いしてエポキシ化されたゲル
を得た。得られたゲル2mlに0.5gのデキストラン硫
酸ナトリウムを含む水溶液2mlを加えpHを12に調整し
た。この混合液を40℃に保ち18時間反応させた後、
ゲルを濾別し、2モル食塩水溶液、0.5モル食塩水溶
液、次いで水で洗浄した。未反応のエポキシ基をモノエ
タノールアミンと反応させることによりブロックし、デ
キストラン硫酸ナトリウムが固定されたゲルを得た。固
定化量は1.5mg/mlであった。
Adsorbent D: Cellulofine A-3 (manufactured by Chisso Corporation, protein exclusion limit 50,000,000, particle size 45 to 105 μm), which is a fully porous cellulose hard gel, was sucked on a filter to reduce water content. After that, 10g
Take 20g of NaOH 4g and heptane 12g,
Further, one drop of nonionic surfactant TWEEN20 was added and stirred at 40 ° C. for 2 hours. Epichlorohydrin 5
g was added and the mixture was stirred at 40 ° C. for 2 hours. After completion of the reaction, the supernatant was discarded and the gel was washed with water to obtain an epoxidized gel. 2 ml of an aqueous solution containing 0.5 g of dextran sulfate sodium was added to 2 ml of the obtained gel to adjust the pH to 12. After keeping this mixed solution at 40 ° C. for 18 hours to react,
The gel was filtered off and washed with 2 molar saline solution, 0.5 molar saline solution and then water. Unreacted epoxy groups were blocked by reacting with monoethanolamine to obtain a gel with dextran sodium sulfate immobilized. The immobilized amount was 1.5 mg / ml.

【0022】吸着体E:全多孔性セルロースハードゲル
であるセルロファインA−3(蛋白質の排除限界50,00
0,000、粒径45〜105μm,)をフィルター上で吸
引し水分を減少させた後、その10gをとり、これに2
0%NaOH4gとヘプタン12g、さらにノニオン性
界面活性剤TWEEN20を1滴加え40℃で2時間攪
拌した。これにエピクロルヒドリン5gを加え40℃で
さらに2時間攪拌した。反応終了後上澄みを廃棄し、ゲ
ルを水洗いしてエポキシ化されたゲルを得た。得られた
エポキシ化ゲルに濃アンモニア水15mlを加え40℃で
1.5時間攪拌した後ゲルを濾別、水洗いしてアミノ基
が導入されたゲルを得た。次にポリビニルアルコール硫
酸200mgを10mlの水に溶解しpHを4.5に調整した
後、これに3mlの上記アミノ基含有ゲルを加えた。これ
に1−エチル−3−(ジメチルアミノプロピル)−カル
ボジイミド200mgをpHを4.5に保ちながら添加し4
℃で24時間振とうした。反応終了後、2モル食塩水溶
液、0.5モル食塩水溶液、次いで水で洗浄しポリビニ
ルアルコール硫酸固定化ゲルを得た。固定化量は1.5
mg/mlであった。
Adsorbent E: Cellulofine A-3, which is a fully porous cellulose hard gel (protein exclusion limit of 50,00)
(000, particle size 45-105 μm,) is sucked on the filter to reduce water content, and then 10 g is taken and
4 g of 0% NaOH, 12 g of heptane, and 1 drop of the nonionic surfactant TWEEN20 were added, and the mixture was stirred at 40 ° C. for 2 hours. 5 g of epichlorohydrin was added thereto, and the mixture was stirred at 40 ° C. for 2 hours. After completion of the reaction, the supernatant was discarded and the gel was washed with water to obtain an epoxidized gel. To the obtained epoxidized gel, 15 ml of concentrated aqueous ammonia was added, and the mixture was stirred at 40 ° C. for 1.5 hours, then the gel was filtered off and washed with water to obtain a gel having an amino group introduced therein. Then, 200 mg of polyvinyl alcohol sulfuric acid was dissolved in 10 ml of water to adjust the pH to 4.5, and then 3 ml of the amino group-containing gel was added thereto. To this was added 200 mg of 1-ethyl-3- (dimethylaminopropyl) -carbodiimide while maintaining the pH at 4.5.
Shake at 24 ° C. for 24 hours. After completion of the reaction, the mixture was washed with a 2 molar saline solution, a 0.5 molar saline solution, and then with water to obtain a polyvinyl alcohol sulfate-immobilized gel. Immobilization amount is 1.5
It was mg / ml.

【0023】吸着体F:フィルター上で吸引し水分を減
少させたセルロファインA−3を5gはかりとり、これ
に1,4−ブタンジオールジグリシジルエーテル2.5
mlさらに0.1NのNaOH水溶液7.5mlを加え攪拌
しながら室温で18時間反応させ、ゲルにエポキシ基を
導入した。得られたエポキシ化ゲル2mlに0.5gのデ
キストラン硫酸ナトリウムを含む水溶液2mlを加えpHを
12に調整した。この混合液を40℃に保ち18時間反
応させた後、ゲルを濾別し、2モル食塩水溶液、0.5
モル食塩水溶液、次いで水で洗浄した。未反応のエポキ
シ基をモノエタノールアミンと反応させることによりブ
ロックし、デキストラン硫酸ナトリウムが固定されたゲ
ルを得た。固定化量は1.8mg/mlであった。
Adsorbent F: 5 g of Cellulofine A-3 sucked on the filter to reduce the water content was weighed, and 1,4-butanediol diglycidyl ether 2.5
Further, 7.5 ml of 0.1N NaOH aqueous solution was added, and the mixture was reacted at room temperature for 18 hours with stirring to introduce an epoxy group into the gel. To 2 ml of the obtained epoxidized gel was added 2 ml of an aqueous solution containing 0.5 g of sodium dextran sulfate to adjust the pH to 12. After keeping this mixed solution at 40 ° C. and reacting for 18 hours, the gel was filtered off, and a 2 molar saline solution, 0.5
It was washed with a molar saline solution and then with water. Unreacted epoxy groups were blocked by reacting with monoethanolamine to obtain a gel with dextran sodium sulfate immobilized. The immobilized amount was 1.8 mg / ml.

【0024】吸着体G:トヨパールHW6510mlに飽和N
aOH水溶液6ml、エピクロルヒドリン15mlを加え攪
拌しながら50℃で2時間反応しエポキシ化ゲルを得
た。得られたエポキシ化ゲル2mlに0.5gのデキスト
ラン硫酸ナトリウムを含む水溶液2mlを加えpHを12に
調整した。この混合液を40℃に保ち18時間反応させ
た後、ゲルを濾別し、2モル食塩水溶液、0.5モル食
塩水溶液、次いで水で洗浄した。未反応のエポキシ基を
モノエタノールアミンと反応させることによりブロック
し、デキストラン硫酸ナトリウムが固定されたゲルを得
た。固定化量は1.2mg/mlであった。
Adsorbent G: Toyopearl HW65 10 ml saturated N
6 ml of an aOH aqueous solution and 15 ml of epichlorohydrin were added and reacted at 50 ° C. for 2 hours while stirring to obtain an epoxidized gel. To 2 ml of the obtained epoxidized gel was added 2 ml of an aqueous solution containing 0.5 g of sodium dextran sulfate to adjust the pH to 12. The mixture was kept at 40 ° C. and reacted for 18 hours, then the gel was separated by filtration and washed with a 2 molar saline solution, a 0.5 molar saline solution and then with water. Unreacted epoxy groups were blocked by reacting with monoethanolamine to obtain a gel with dextran sodium sulfate immobilized. The immobilized amount was 1.2 mg / ml.

【0025】(2)装置の作成及びリポ蛋白の除去 上記(1)で得られた吸着体A〜Gをそれぞれ内径9m
m、長さ47mmのカラムに均一に充填し、カラムの一方
の血漿流入口に血漿分離手段を接続してリポ蛋白除去装
置を作成した。これらの装置を用い、ヒト血漿18mlを
0.3ml/分の速度で流し血漿中のリポ蛋白を吸着除去
した。カラムより流出した血漿中のリポ蛋白濃度および
蛋白濃度を測定し、元の血漿中の濃度との比較によりそ
れぞれの除去率を求めた。結果を表1に示す。尚、表中
の蛋白の除去率については、リポ蛋白の除去による蛋白
濃度の減少は除外して示した。
(2) Preparation of device and removal of lipoproteins Adsorbents A to G obtained in (1) above were each 9 m in inside diameter.
A column with m and a length of 47 mm was uniformly packed, and a plasma separation means was connected to one plasma inlet of the column to prepare a lipoprotein removal device. Using these devices, 18 ml of human plasma was flown at a rate of 0.3 ml / min to adsorb and remove lipoproteins in plasma. The lipoprotein concentration and protein concentration in the plasma that flowed out from the column were measured, and the removal rate of each was determined by comparison with the original plasma concentration. The results are shown in Table 1. The removal rates of proteins in the table are shown excluding the decrease in protein concentration due to removal of lipoproteins.

【0026】[0026]

【表1】 註)VLDL:極低密度リポ蛋白 LDL:低密度リポ蛋白 HDL:高密度リポ蛋白[Table 1] Note) VLDL: Very low density lipoprotein LDL: Low density lipoprotein HDL: High density lipoprotein

【0027】[0027]

【発明の効果】叙上の通り、本発明の装置は安価で流れ
特性がよく、ソフトゲルを担体に用いた場合に比べてリ
ポ蛋白の吸着除去能力に優れている。
INDUSTRIAL APPLICABILITY As described above, the device of the present invention is inexpensive and has good flow characteristics, and is superior in lipoprotein adsorption / removal ability as compared with the case where a soft gel is used as a carrier.

【図面の簡単な説明】[Brief description of drawings]

【図1】参考例のソフトゲル「Biogel A5m」及びポリマ
ーハードゲル「トヨパールHW65」を用いた場合の流速と
圧力損失との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a flow velocity and a pressure loss when a soft gel “Biogel A5m” and a polymer hard gel “Toyopearl HW65” of Reference Example are used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 a)血漿分離手段と、b)血漿分離手段
から送られてくる血漿の流入口とリポ蛋白吸着除去後の
血漿の流出口とを有し、球状蛋白質の排除限界分子量が
100万以上1億以下のポーラスポリマーハードゲルに
リポ蛋白と親和性を有するポリアニオン化合物を固定し
てなる吸着体を充填したカラムとから構成される血漿か
らのリポ蛋白除去装置。
1. An a) plasma separation means, b) an inflow port for plasma sent from the plasma separation means, and an outflow port for plasma after lipoprotein adsorption / removal, and the exclusion limit molecular weight of globular proteins is 100. An apparatus for removing lipoproteins from plasma, which comprises a column filled with an adsorbent comprising a polyanion compound having an affinity for lipoproteins immobilized on a porous polymer hard gel of 10,000 to 100 million.
JP4253998A 1988-10-03 1992-08-28 Lipoprotein removal device Expired - Lifetime JPH0611330B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63249652A JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood
JP4253998A JPH0611330B2 (en) 1988-10-03 1992-08-28 Lipoprotein removal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63249652A JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood
JP4253998A JPH0611330B2 (en) 1988-10-03 1992-08-28 Lipoprotein removal device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63249652A Division JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood

Publications (2)

Publication Number Publication Date
JPH05200111A JPH05200111A (en) 1993-08-10
JPH0611330B2 true JPH0611330B2 (en) 1994-02-16

Family

ID=26539415

Family Applications (2)

Application Number Title Priority Date Filing Date
JP63249652A Granted JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood
JP4253998A Expired - Lifetime JPH0611330B2 (en) 1988-10-03 1992-08-28 Lipoprotein removal device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP63249652A Granted JPH01145071A (en) 1988-10-03 1988-10-03 Removal of lipoprotein from blood

Country Status (1)

Country Link
JP (2) JPH01145071A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2937728B2 (en) * 1993-12-13 1999-08-23 日本圧着端子製造 株式会社 Printed wiring board connector
CN102247810B (en) * 2011-04-26 2013-01-30 浙江大学 Method for surface modification of chitosan and application of chitosan subjected to surface modification

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190003A (en) * 1981-05-18 1982-11-22 Asahi Chem Ind Co Ltd Wholly porous activated gel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756038A (en) * 1980-09-22 1982-04-03 Kuraray Co Ltd Low molecular weight protein adsorbent
JPS57134164A (en) * 1981-02-13 1982-08-19 Asahi Chemical Ind Self-antibody adsorbing material and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190003A (en) * 1981-05-18 1982-11-22 Asahi Chem Ind Co Ltd Wholly porous activated gel

Also Published As

Publication number Publication date
JPH0362433B2 (en) 1991-09-25
JPH01145071A (en) 1989-06-07
JPH05200111A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
EP0225867B1 (en) Adsorbent and process for preparing the same
JPH0434451B2 (en)
CA2026717C (en) Absorbent for the removal of biomacromolecules such as ldl and endotoxins from whole blood in extracorporeal circuits
JP4578405B2 (en) Adsorbent and adsorber for low density lipoprotein and fibrinogen capable of whole blood treatment
US4654420A (en) Lipoprotein adsorbent for use in extracorporeal circulation treatment and process for preparing thereof
JP2928589B2 (en) Adsorbent for modified LDL and apparatus for removing modified LDL using the same
JPS6256782B2 (en)
JPS59193135A (en) Adsorbing body
JPH0611330B2 (en) Lipoprotein removal device
JPS6319214B2 (en)
JPS62192172A (en) Adsorbing body
JPH0611333B2 (en) Immune complex adsorbent and immune complex removing apparatus using the same
JPH0323182B2 (en)
JP2649224B2 (en) Sterilization method for body fluid treatment device and sterilized body fluid treatment device
JPS59186559A (en) Self-antibody and/or immunological composite adsorbing material
JPH0339736B2 (en)
JPH0622632B2 (en) Adsorbent and removal device
JP2925249B2 (en) How to remove cholesterol
JPH01265972A (en) Removing method of harmful component in humors
JPH11332981A (en) Method for removing low-density lipoprotein in blood
JP4402236B2 (en) Lipoprotein adsorption removal method
JP2726662B2 (en) Adsorbent and removal device using the same
JP2007029511A (en) Adsorbent, adsorption method and adsorber of high mobility group protein
JPH0640899B2 (en) Adsorbent manufacturing method
JP2983955B2 (en) Device for removing glomerular basement membrane adhering protein

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19961119