JPH06112517A - Crystal growing method - Google Patents

Crystal growing method

Info

Publication number
JPH06112517A
JPH06112517A JP4258743A JP25874392A JPH06112517A JP H06112517 A JPH06112517 A JP H06112517A JP 4258743 A JP4258743 A JP 4258743A JP 25874392 A JP25874392 A JP 25874392A JP H06112517 A JPH06112517 A JP H06112517A
Authority
JP
Japan
Prior art keywords
layer
crystal
grown
growth
light absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4258743A
Other languages
Japanese (ja)
Inventor
Koji Yamada
幸二 山田
Routo Kuramata
郎人 倉又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4258743A priority Critical patent/JPH06112517A/en
Publication of JPH06112517A publication Critical patent/JPH06112517A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide a crystal growing method by which a crystal for avalanche photodiodes having good characteristics can be economically grown. CONSTITUTION:In a crystal growing process in which a crystal for avalanche photodiodes is grown by successively growing a buffer layer 2, light absorbing layer 3, composition-gradient layer 4, multiplying layer 5, and cap layer 6 on an InP-crystal substrate 1 by the epitaxial vapor growth method by using groups III and V organic metal compounds as gaseous starting materials, only the layer 3 is grown at >=600 deg.C, with the other layers 2, 4, 5, and 6 being grown at <=600 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアバランシェ・ホト・ダ
イオード(略称APD)用結晶の成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a crystal for an avalanche photo diode (abbreviation APD).

【0002】[0002]

【従来の技術】APD用結晶は気相成長法(CVD法)
を用い、図1に示すような層構造をとって作られてい
る。
2. Description of the Related Art Crystals for APD are vapor phase growth method (CVD method)
, And has a layered structure as shown in FIG.

【0003】すなわち、引上げ法などの方法により形成
したn型インジウム・燐(InP)結晶基板1の上に、n-
InPよりなるバッファ層2,n型インジウム・ガリウム
・砒素或いはこれに燐を添加してなり、n-InGaAs(P)
の一般式で表される光吸収層3,組成が緩やかに変わる
組成傾斜層4,n-InPよりなる増倍層5,InGaAsPより
なるキャップ層6と順次に層形成されている。
That is, n-type indium phosphide (InP) crystal substrate 1 formed by a pulling method or the like is n-
InP buffer layer 2, n-type indium gallium arsenide or n-InGaAs (P)
The light absorption layer 3 represented by the general formula (3), the composition gradient layer 4 whose composition changes gently, the multiplication layer 5 made of n-InP, and the cap layer 6 made of InGaAsP are sequentially formed.

【0004】これらの半導体層は何れもIII 族元素とV
族元素の化合物から構成されているが、従来V族元素の
原料ガスとしてアルシン(AsH3)やフォスフィン(PH
3)などの水素化物が用いられていた。
Each of these semiconductor layers contains a Group III element and a V element.
Although it is composed of a compound of group V element, arsine (AsH 3 ) or phosphine (PH
3 ) and other hydrides were used.

【0005】そして、この結晶を用いてAPDの製造を
行なってきた。然し、これらのAsH3 やPH3 は非常に
有毒なガスであることから、安全の見地からこれに代わ
るガスとしてターシャリブチルアルシン〔(CH3)3CAsH2
略称TBA〕やターシャリブチルフォスフィン〔(CH3)3
CPH2略称TBP〕のような毒性の少ないガスを使用する
必要があった。
Then, APD has been manufactured using this crystal. However, since these AsH 3 and PH 3 are extremely toxic gases, tert-butylarsine [(CH 3 ) 3 CAsH 2 is used as an alternative gas from the viewpoint of safety.
Abbreviation TBA] and tertiary butyl phosphine [(CH 3 ) 3
It was necessary to use a gas having a low toxicity such as CPH 2 (abbreviation: TBP).

【0006】[0006]

【発明が解決しようとする課題】InPやInGaAsなどの化
合物半導体をCVD法で形成する場合に、V族元素の供
給ガスとして毒性の少ないTBAやTBPを使う有機金
属気相エピタキシャル成長法(Metal Organic Vapor Ph
ase Epitaxy 略称MOVPE法)は公知であり、半導体
レーザや発光ダイオードの形成に使用されている。
When forming a compound semiconductor such as InP or InGaAs by the CVD method, a metal organic vapor phase epitaxial growth method (Metal Organic Vapor Epitaxial Growth Method) using TBA or TBP, which is less toxic, as a gas for supplying a group V element is used. Ph
ase Epitaxy (abbreviated as MOVPE method) is known and is used for forming semiconductor lasers and light emitting diodes.

【0007】こゝで、III 族元素の原料ガスとして、In
についてはトリメチルインジウム[(CH3)3In 略称TMI
]やトリエチルインジウム[(C2H5)3In略称TEI] が、
またGaについてはトリメチルガリウム[(CH3)3Ga 略称T
MG ]やトリエチルガリウム[(C2H5)3Ga略称TEG] な
どが使用されている。
Here, as a source gas of the group III element, In
Is trimethylindium [(CH 3 ) 3 In Abbreviation TMI
] And triethylindium [(C 2 H 5 ) 3 In abbreviation TEI]
Regarding Ga, trimethylgallium [(CH 3 ) 3 Ga abbreviated as T
MG] and triethylgallium [(C 2 H 5 ) 3 Ga abbreviation TEG] are used.

【0008】然し、TBAやTBPを使用するMOVP
E法は未だAPDの製造には使用されていなかった。す
なわち、従来のAPD用結晶の成長方法としては、III
族元素の原料ガスとしてはTMIやTEGを、またV族
元素の原料ガスとしてAsH3 やPH3 を用い、基板温度
を600 ℃以上に保って気相成長を行なってきた。
However, MOVP using TBA or TBP
Method E has not yet been used in the manufacture of APD. That is, the conventional APD crystal growth method is III
TMI and TEG are used as the source gas of the group element, and AsH 3 and PH 3 are used as the source gas of the group V element, and vapor phase growth has been performed while maintaining the substrate temperature at 600 ° C. or higher.

【0009】然し、V族元素の原料ガスを有機化合物に
置き換える場合は原料コストが上昇すると云う問題があ
る。また、600 ℃以上の基板温度で行なう場合はV族元
素の供給量を多くしないと良質の結晶ができないと云う
問題がある。
However, when the source gas of the group V element is replaced with an organic compound, there is a problem that the raw material cost increases. Further, when the substrate temperature is 600 ° C. or higher, there is a problem that a high-quality crystal cannot be formed unless the supply amount of the group V element is increased.

【0010】そこで、TBAやTBPを用いるMOVP
E法を使用する場合に結晶の品質が良く、且つ経済的な
成長方法を実用化することが必要である。
Therefore, MOVP using TBA or TBP
When the method E is used, it is necessary to put into practical use a crystal growth method which has good crystal quality and is economical.

【0011】[0011]

【課題を解決するための手段】上記の課題はIII 族の有
機金属化合物とV族の有機化合物を原料ガスとし、気相
成長法によりInP結晶基板上にバッファ層,光吸収層,
組成傾斜層,増倍層,キャップ層と順次にエピタキシャ
ル成長を行ないAPD用結晶を成長する工程において、
光吸収層の成長を600 ℃以上の温度で、また、光吸収層
を除くそれぞれの層の成長を600 ℃以下の温度で行なう
ことを特徴として結晶成長方法を構成することにより解
決することができる。
[Means for Solving the Problems] The above-mentioned problems are obtained by using a group III organometallic compound and a group V organic compound as source gases and by vapor phase growth on a buffer layer, a light absorption layer,
In the step of growing a crystal for APD by sequentially performing epitaxial growth on a compositionally graded layer, a multiplication layer, and a cap layer,
This can be solved by configuring the crystal growth method, which is characterized in that the growth of the light absorption layer is performed at a temperature of 600 ° C or higher, and the growth of each layer except the light absorption layer is performed at a temperature of 600 ° C or lower. .

【0012】[0012]

【作用】APDを使用するに当たっては、n-InP結晶基
板上に図1に示すようにバッファ層/光吸収層/組成傾
斜層/増倍層/キャップ層と順次エピタキシャル成長を
行なって作ったこの増倍層に、不純物の注入を行なって
導電型を変えた領域と、この周囲に電極を作り、この上
部電極を負とし、n-InP結晶基板上に形成した電極を正
とし、逆バイアスを加えて使用している。
When the APD is used, as shown in FIG. 1, a buffer layer / light absorption layer / composition gradient layer / multiplication layer / cap layer are sequentially epitaxially grown on the n-InP crystal substrate to form the grown layer. A region in which the conductivity type has been changed by implanting impurities into the double layer and an electrode are formed around this region, the upper electrode is made negative, the electrode formed on the n-InP crystal substrate is made positive, and a reverse bias is applied. I am using it.

【0013】そのために、電極間に逆バイアスを加えた
場合に流れる電流(APDの暗電流)はなるべく少ない
ことが必要であり、これはn-InGaAs(P)よりなる光吸
収層の成長温度が高いほど少なくなることが知られてい
る。
Therefore, it is necessary that the current (dark current of APD) that flows when a reverse bias is applied between the electrodes is as small as possible. This is because the growth temperature of the light absorption layer made of n-InGaAs (P) is It is known that the higher the number, the less.

【0014】すなわち、成長温度が高い程、深い不純物
準位の数が少なくなり、そのために暗電流が少なくなる
ことから、基板温度を600 ℃より高く、例えば620 ℃に
保って気相成長を行なうと、液相成長法で成長させたも
のと同一レベルの電流値にまで下げることができる。
That is, as the growth temperature is higher, the number of deep impurity levels is smaller, which results in a smaller dark current. Therefore, the substrate temperature is kept higher than 600 ° C., for example, 620 ° C. to perform the vapor phase growth. Then, it is possible to reduce the current value to the same level as that grown by the liquid phase growth method.

【0015】一方、V・III 族元素よりなる化合物半導
体をCVD法で形成する場合、何れかの元素のガス例え
ばIII 族元素のガスの流量を一定として蒸気圧を勘案し
て流量比を決めているが、V族元素ガスとIII 族元素ガ
スの実流量比(以下略してV/III 比)は基板温度の上
昇と共に増大すると云う問題があり、基板温度を従来の
ように620 ℃に保つ場合はバッファ層や増倍層を形成す
るn-InPを作るにはV/III 比を150 以上にしないと良
質な結晶ができないと云う問題がある。
On the other hand, in the case of forming a compound semiconductor composed of a V · III group element by the CVD method, the flow rate of the gas of any element, for example, the gas of the group III element is kept constant and the vapor pressure is taken into consideration to determine the flow rate ratio. However, there is a problem that the actual flow rate ratio of group V element gas and group III element gas (hereinafter abbreviated as V / III ratio) increases as the substrate temperature rises. When the substrate temperature is kept at 620 ° C as in the conventional case. Has a problem that in order to form an n-InP forming a buffer layer or a multiplication layer, a high quality crystal cannot be produced unless the V / III ratio is 150 or more.

【0016】そこで、本発明はAPD用結晶を成長させ
る場合に基板温度を使い分け、n-InGaAs(P)よりなる
光吸収層を形成する場合には600 ℃以上に、これ以外の
InP層などを形成する場合は基板温度を600 ℃以下に下
げるもので、これによりV/III 比を100 以下とするこ
とが可能となる。
Therefore, according to the present invention, when the crystal for APD is grown, the substrate temperature is properly used, and when the light absorption layer made of n-InGaAs (P) is formed, the temperature is 600 ° C. or higher.
When forming an InP layer or the like, the substrate temperature is lowered to 600 ° C. or lower, which makes it possible to set the V / III ratio to 100 or lower.

【0017】[0017]

【実施例】引上げ法で形成した厚さが0.3mm のn-InP基
板をMOVPE装置にセットし、III 族原料ガスとして
TMIとTEGを、V族原料ガスとしてTBPとTBA
を、またn型ドーパントとして硫化水素(H2 S)を使
用した。
EXAMPLE An n-InP substrate having a thickness of 0.3 mm formed by the pulling method was set in a MOVPE apparatus, TMI and TEG were used as group III source gases, and TBP and TBA were used as group V source gases.
And hydrogen sulfide (H 2 S) as an n-type dopant.

【0018】また、キャリアガスとして水素(H2 )を
使用し、原料ガスを含めて総流量を8リットル/分に保
った。まず、装置内を減圧排気した後、TBPを40ccm
含むH2 を供給しながら排気を行い、装置内の真空度を
20 torr に保ちながら基板を600 ℃まで15分かけて上昇
させた。
Further, hydrogen (H 2 ) was used as the carrier gas, and the total flow rate including the raw material gas was kept at 8 liters / minute. First of all, after decompressing the inside of the equipment, TBP is 40ccm.
Evacuate while supplying H 2 containing the
The substrate was raised to 600 ° C over 15 minutes while maintaining at 20 torr.

【0019】次に、TMIを0.5ccm供給し、V/III 比
を80に保ってn-InPよりなるバッファ層の成長を行なっ
た。次に、基板の温度を620 ℃に上げ、V/III 比を20
に保ってn-InGaAs(P)よりなる光吸収層の成長を行な
った。
Next, TMI was supplied at 0.5 ccm and the V / III ratio was maintained at 80 to grow a buffer layer of n-InP. Next, raise the substrate temperature to 620 ° C and increase the V / III ratio to 20.
Then, a light absorption layer made of n-InGaAs (P) was grown.

【0020】次に、基板温度を600 ℃に下げ、この温度
で組成がInGaAs(P)よりInPに徐々に変化する組成傾
斜層を作った後、V/III 比を80に保ってn-InPよりな
る倍増層を作り、次にV/III 比を80に保ってキャップ
層の形成を行なうことでAPD用結晶を作った。
Next, after lowering the substrate temperature to 600 ° C. and forming a composition gradient layer in which the composition gradually changes from InGaAs (P) to InP at this temperature, the V / III ratio is kept at 80 and n-InP is maintained. A double layer was formed, and then a cap layer was formed while maintaining the V / III ratio at 80 to produce an APD crystal.

【0021】かゝる結晶を用いて製造したAPDは暗電
流が10 nAと少なく、また表面も荒れておらず特性が優
れていた。
The APD produced using such a crystal had a dark current as small as 10 nA, and the surface was not roughened, and the characteristics were excellent.

【0022】[0022]

【発明の効果】本発明の実施によりTBPやTBAなど
有機V族を用いるMOVPEにおいて、暗電流の少ない
APD用結晶を少ない有機V族原料の使用量で製造する
ことができる。
According to the present invention, in MOVPE using organic group V such as TBP and TBA, crystals for APD with a small dark current can be produced with a small amount of the organic group V raw material.

【図面の簡単な説明】[Brief description of drawings]

【図1】APD用結晶の組成を示す断面図である。FIG. 1 is a cross-sectional view showing the composition of a crystal for APD.

【符号の説明】[Explanation of symbols]

2 バッファ層 3 光吸収層 5 増倍層 2 buffer layer 3 light absorption layer 5 multiplication layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 III 族の有機金属化合物とV族の有機化
合物を原料ガスとし、気相成長法によりInP結晶基板上
にバッファ層,光吸収層,組成傾斜層,増倍層,キャッ
プ層と順次にエピタキシャル成長を行ないアバランシェ
・ホト・ダイオード用結晶を成長する工程において、前
記光吸収層の成長のみを600 ℃以上の温度で、また、該
光吸収層を除くそれぞれの層の成長を600 ℃以下の温度
で行なうことを特徴とする結晶成長方法。
1. A buffer layer, a light absorption layer, a composition gradient layer, a multiplication layer and a cap layer are formed on an InP crystal substrate by vapor phase growth using a Group III organometallic compound and a Group V organic compound as source gases. In the step of growing the crystal for avalanche photodiode by sequentially performing epitaxial growth, only the growth of the light absorption layer is performed at a temperature of 600 ℃ or more, and the growth of each layer except the light absorption layer is 600 ℃ or less. A method for growing a crystal, which is performed at the temperature of.
JP4258743A 1992-09-29 1992-09-29 Crystal growing method Withdrawn JPH06112517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4258743A JPH06112517A (en) 1992-09-29 1992-09-29 Crystal growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4258743A JPH06112517A (en) 1992-09-29 1992-09-29 Crystal growing method

Publications (1)

Publication Number Publication Date
JPH06112517A true JPH06112517A (en) 1994-04-22

Family

ID=17324470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4258743A Withdrawn JPH06112517A (en) 1992-09-29 1992-09-29 Crystal growing method

Country Status (1)

Country Link
JP (1) JPH06112517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990955A (en) * 1982-11-17 1984-05-25 Nec Corp Manufacture of photosensor array
JP2011060792A (en) * 2009-09-04 2011-03-24 Sumitomo Electric Ind Ltd Method for manufacturing semiconductor element
TWI458111B (en) * 2011-07-26 2014-10-21 Univ Nat Central Lateral avalanche photodiode structure
JP2015534270A (en) * 2012-09-14 2015-11-26 リミテッド・ライアビリティ・カンパニー”エルイーディ・マイクロセンサー・エヌティ”Limited Liability Companyled Microsensor Nt Heterostructure for mid-infrared spectral range, and light emitting diode and photodiode manufacturing method based thereon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990955A (en) * 1982-11-17 1984-05-25 Nec Corp Manufacture of photosensor array
JP2011060792A (en) * 2009-09-04 2011-03-24 Sumitomo Electric Ind Ltd Method for manufacturing semiconductor element
TWI458111B (en) * 2011-07-26 2014-10-21 Univ Nat Central Lateral avalanche photodiode structure
JP2015534270A (en) * 2012-09-14 2015-11-26 リミテッド・ライアビリティ・カンパニー”エルイーディ・マイクロセンサー・エヌティ”Limited Liability Companyled Microsensor Nt Heterostructure for mid-infrared spectral range, and light emitting diode and photodiode manufacturing method based thereon

Similar Documents

Publication Publication Date Title
JP3124861B2 (en) Thin film growth method and semiconductor device manufacturing method
US5834331A (en) Method for making III-Nitride laser and detection device
US4906583A (en) Making a semiconductor photodetector
USRE41310E1 (en) Methods for growing semiconductors and devices thereof the alloy semiconductor gainnas
US6108360A (en) Long wavelength DH, SCH and MQW lasers based on Sb
JP3598591B2 (en) Method for manufacturing group 3-5 compound semiconductor
US5400740A (en) Method of preparing compound semiconductor
US5442201A (en) Semiconductor light emitting device with nitrogen doping
JPH06112517A (en) Crystal growing method
US5294565A (en) Crystal growth method of III - V compound semiconductor
JPH05175150A (en) Compound semiconductor and its manufacture
US20110233730A1 (en) REACTIVE CODOPING OF GaAlInP COMPOUND SEMICONDUCTORS
US20110215275A1 (en) Methods using surfactants to control unintentional dopant in semiconductors
JP3223575B2 (en) Compound semiconductor and manufacturing method thereof
JP4545074B2 (en) Semiconductor manufacturing method
JP2945464B2 (en) Method for manufacturing semiconductor device
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
EP0631298A2 (en) Semiconductor epitaxial substrate and process for its production
EP4102658A2 (en) Epitaxial laser structure and method of fabrication of epitaxial laser structure
JPH1168235A (en) Crystal growth method of algaas compound semiconductor and manufacture of semiconductor laser
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JP3900653B2 (en) Compound semiconductor crystal growth method
JP2003197948A (en) Epitaxial wafer for photodetector, its manufacturing method, photodetector and its use
JPH0211560B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130